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Original Article

Macrophages-based immune-related risk score model for relapse 
prediction in stage I–III non-small cell lung cancer assessed by 
multiplex immunofluorescence 
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Background: Macrophages are critical players in regulating innate and adaptive immunity in the tumor 
microenvironment (TME). The prognostic value of macrophages and their heterogeneous phenotypes in 
non-small cell lung cancer (NSCLC) is still uncertain.
Methods: Surgically-resected samples of 681 NSCLC cases were stained by multiplex immunofluorescence 
to examine macrophage phenotypes as well as the expression levels of program death-ligand 1 (PD-L1) on 
them in both tumor nest and tumor stroma, including pan-macrophage (CD68+), M1 (CD68+CD163−), 
and M2 macrophages (CD68+CD163+). Various other immune cell markers, including CD4, CD8, CD20, 
CD38, CD66B, FOXP3, and CD133, were also evaluated. Machine learning algorithm by Random Forest 
(RF) model was utilized to screen the robust prognostic markers and construct the CD68-based immune-
related risk score (IRRS) for predicting disease-free survival (DFS).
Results: The expression levels of CD68 were moderately correlated with the levels of PD-L1 (P<0.001), 
CD133 (P<0.001), and CD8 (P<0.001). Higher levels of CD68 (OR 1.03, 95% CI: 1.01–1.05, P<0.001) 
as well as M1 macrophage (OR 1.04, 95% CI: 1.01–1.06, P<0.001) indicated shorter DFS. Despite 
without statiscial significance, intratumoral M2 macrophage (OR 1.05, 95% CI: 0.99–1.10, P=0.081) was 
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Introduction

Tumor progression relies on complex interactions between 
different components, such as adaptive and innate immune 
cells in the tumor microenvironment (TME), besides 
internal mechanisms in tumor cells (1). Consequently, 
evaluating the intrinsic and intricate structure in TME 
and identifying immune biomarkers with prognostic 
value contribute to elucidating the cellular and molecular 
mechanisms responsible for cancer development (2). 
Recently, the composition of immune contexture, including 
types [e.g., tumor-infiltrating lymphocytes (TILs)], quantity 
(e.g., cell density and proportion), and location (e.g., tumor 
islet or stroma), has been proven to play a pivotal role in the 
prognosis of non-small cell lung cancer (NSCLC) (3).

Given that prognosis varies considerably among NSCLC 
patients with similar pathological stage, evidently room 
for improvement still exists in the tumor-node-metastasis 
(TNM) classification (4). More recently, Galon et al. has 
proposed an impressive diagnostic improvement utilizing 
immune parameters (i.e., the density of CD3+ and CD8+ T 
cells), namely “Immunoscore”, as an essential supplement 
to the TNM stage model of colon cancer (5). In the field of 
NSCLC, through immune profiling of various biomarkers 
in TME, macrophages are of great interest.

Macrophages, mainly derived from bone marrow, are 
comprised of heterogeneous subsets. Specifically, tumor-
associated macrophages (TAMs) are critical players in 
shaping the TME and capable to change their phenotypes 
based on ambient cytokine milieu (6). TAMs might have 

dual roles (i.e., anti-tumor and pro-tumor functions) because 
of two distinct subsets, the M1-polarized (classically activated) 
and M2-polarized (alternatively activated) populations (7). 
M1 macrophages, primarily induced by interferon-γ (IFN-γ), 
are considered to manifest anti-tumor effects by promoting 
Th1 responses (8). M2 macrophages, mainly activated by 
interleukin-4 (IL-4), can induce Th2 responses and show pro-
tumor functions by immunosuppression and angiogenesis (9).  
Various markers have been implemented to identify 
different populations of TAMs, such as CD68 for pan-
macrophages, human leucocyte antigen DR (HLA-DR) for 
M1, and CD163 for M2 macrophage, whereas no consensus 
concerning the optimal markers has been reached so far. 
For instance, CD68 is not exclusively expressed in TAMs, 
and other cell types like stromal cells might also express it in 
some way. Consequently, the amounts of macrophages might 
be overestimated, and the results can be biased. In addition to 
CD68 antibody specificity, the choice of different markers to 
phenotype M1 and M2 subsets may also contribute to their 
controversial prognostic roles reported by recent studies. In 
general, both positive (10), negative (11,12), or none (13,14) 
associations of TAMs with patients’ prognosis have been 
illustrated. The latest meta-analysis suggested that a higher 
density of TAMs in the tumor nest (TN) was associated 
with better overall survival (OS) while higher infiltrations of 
intrastromal TAMs predicted poor OS (15). In addition, they 
further found that higher infiltration levels of intratumoral 
M1 macrophages predicted better prognosis while a higher 
density of M2 macrophages in tumor stroma (TS) predicted 

also associated with worse DFS. IRRS incorporating three intratumoral CD68-related markers and four 
intrastromal markers was constructed and validated to predict recurrence (high-risk group vs. low-risk group: 
OR 2.52, 95% CI: 1.89–3.38, P<0.001). The IRRS model showed good accuracy [area under the curve 
(AUC) =0.670, 0.709, 0.695, 0.718 for 1-, 3-, 5-year, and overall DFS survival, respectively] and the predictive 
performance was better than the single-marker model (area under the curve 0.718 vs. 0.500–0.654). A 
nomogram based on clinical characteristics and IRRS for relapse prediction was then established and exhibited 
better performance than the tumor-node-metastasis (TNM) classification and IRRS system (C-index 0.76 vs. 
0.69 vs. 0.60, 0.74 vs. 0.67 vs. 0.60, 0.81 vs. 0.74 vs. 0.60 of the entire, training, testing cohort, respectively).
Conclusions: Our study suggested close interactions between CD68 and other immune markers in TME, 
demonstrating the prognostic value of CD68 in relapse prediction in resectable NSCLC.
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worse prognosis. 
I n  t h e  c u r r e n t  s t u d y,  u s i n g  t h e  m u l t i p l e x 

immunofluorescence (mIF) test for 681 stage I-III NSCLC 
primary tumor samples, we profiled the infiltration patterns 
of in situ macrophages according to broadly accepted 
markers of pan-macrophages (CD68), M1 macrophages 
(CD68+CD163-), and M2 macrophages (CD68+CD163+) 
as well as their functional status as assessed by the expression 
levels of programmed cell death-ligand 1 (PD-L1). Various 
other immune markers in TME, including CD4, CD8, 
CD20, CD38, CD66B, FOXP3, and CD133, were also 
evaluated. We further conducted the immune-related 
risk score (IRRS) model based on several CD68-related 
biomarkers identified as robust prognosticators by Random 
Forest (RF) algorithm. A nomogram system integrating the 
IRRS and clinicopathological features was also established 
as a quantitative tool to personalize risk assessment in 
predicting disease-free survival (DFS). We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-21-916/rc).

Methods

Patient samples acquisition

Six hundred and eighty-one patients of stage IA to IIIB 
NSCLC who underwent radical resection (i.e., lobectomy/
sub-lobectomy and lymph node dissection) were enrolled 
over the years 2009–2011 at the First Affiliated Hospital of 
Guangzhou Medical University, China. Additional inclusive 
criteria were: (I) all resected tissues and lymph nodes were 
confirmed by pathology finally and (II) sufficient resected 
tissues for mIF test. Patients were excluded if any of the 
following criteria were met: (I) multiple LC; (II) small 
cell lung cancer (SCLC) or non-invasive LC like lung 
adenocarcinoma (LUAD) in situ and minimally invasive 
LUAD; (III) diagnostic biopsy in pre-operation; and 
(IV) preoperative neoadjuvant therapy, as we previously 
described (16). The stage of primary tumors was classified 
based on the eighth edition of the TNM classification 
system (17). DFS is defined as the time from radical resection 
to local recurrence as measure by computed tomography 
(CT) scan. Patients received CT scan routinely every 
three months after the radical resection of lung cancer. 
Contrast-enhanced magnetic resonance imaging of head 
and radionuclide bone scanning were also done annually 
for detecting the recurrence (18). Ethics committee of the 

First Affiliated Hospital of Guangzhou Medical University 
approved this study (approval number: KLS-17-03), and 
all patients have signed the written informed consent for 
permitting mIF analyses of biological samples. The study 
was conducted following the Declaration of Helsinki (as 
revised in 2013) (19). 

Multiplex immunofluorescence detection

The mIF sta ining was  implemented at  Genecast 
Biotechnology Co., Ltd. (Beijing, China). Cutting from 
formalin-fixed paraffin-embedded (FFPE) LC tissues, a 
four-μm thick slide was used for each panel test. The slides 
were dewaxed, rehydrated, and undergone epitope retrieval 
through boiling in Tris-EDTA buffer (pH=9; Klinipath 
#643901, the Netherlands) at 97 ℃ for 20 minutes (min). 
Subsequently, endogenous peroxidase was interdicted 
by incubation in Antibody Block/Diluent (PerkinElmer 
#72424205, USA) for 10 min, and protein was then blocked 
in 0.05% Tween solution for 30 min at 26 ℃. One antigen 
was tested in each round, including primary and secondary 
antibody incubation, tyramine signal amplification (TSA) 
visualization. Subsequently, the same procedure as before, 
i.e., targeting the next antibody after epitope retrieval 
and protein blocking. A total of 10 biomarkers, including 
CD66B, FOXP3, CD38, CD4, and CD20 in panel 1, and 
CD133, CD8, PD-L1, CD163, and CD68 in panel 2 were 
detected.

Primary antibodies for CD38 (ZM0422, clone SPC32, 
Zsbio, 1:400), CD66B (ab214175, polyclonal antibody, 
abcam, 1:50), CD8 (ZA-0508, clone SP16, Zsbio, 1:100), 
CD20 (ab9475, abcam, 1:50, Zsbio, 1:100), CD163 (ZM-
0428, clone 10D6, PD-L1 (13684s, clone E1L3N, CST, 
1:100), CD68 (ZM-0060, clone KP1, Zsbio, 1:100), FOXP3 
(ab20034, clone 236A/E7, abcam, 1:100) were hatched for 
1 h at 26 ℃, CD133 (ab19898, polyclonal antibody, abcam, 
1:400) and CD4 (ZM0418, clone UMAB64, Zsbio, 1:200) 
were hatched for overnight at 4 ℃. 

Anti-rabbit/mouse horseradish peroxidase (HRP) 
antibodies (Zsbio # PV-6002 or PV-8000) were utilized as 
the secondary antibody and hatched for 10 min at 37 ℃. 
TSA visualization was conducted by the opal seven-color 
mIF Kit (NEL797B001KT, PerkinElmer, USA), containing 
fluorophores (4',6-Diamidino-2-Phenylindole (DAPI)), 
Opal 570 (PD-L1 and CD4), Opal 520 (CD20 and CD163), 
Opal 650 (CD66B and CD133), Opal 620 (CD8), Opal 690 
(CD68 and FOXP3), Opal 540 (CD38), and TSA Coumarin 
system (NEL703001KT, PerkinElmer, USA). Microwave 
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treatment (MWT) was carried out to remove the TSA-
antibody complex by Tris-EDTA buffer (pH=9; Klinipath 
#643901, the Netherlands) at 97 ℃ for 20 min, after 
targeting for all of the five antigens in each panel. All the 
slides were counterstained with DAPI for 5 min and were 
encapsulated in Antifade Mounting Medium (NobleRyder 
#I0052, China), prepared for imaging. Fresh whole-tissue 
slides cut from normal human tonsils were enrolled in 
each staining batch as positive control and evaluated the 
experiment’s reproducibility.

Wi t h  t h e  P e r k i n E l m e r  Ve c t r a  ( Ve c t r a  3 . 0 . 5 ; 
PerkinElmer, USA), slides were scanned. Multispectral 
images were independent of spectral libraries built from 
single dyed tissue images for each antigen, employing the 
inform Advanced Image Analysis software (inForm 2.3.0; 
PerkinElmer, USA). 

An algorithm is developed by training 10 to 15 typical 
multispectral images in batch analysis. Subsequently, tissue 
and cell segmentation were implemented by the algorithm. 
An experienced pathologist determined the appropriate 
positive threshold X for each biomarker. We defined X, 
2X, 3X as the threshold of low fluorescence intensity (+), 
median fluorescence intensity (++), and high fluorescence 
intensity (+++), respectively. Histochemistry score (H-score) 
was calculated with the formula of H-score = (+++)%×3+ 
(++)%×2+ (+)%×1, as described by our previous published 
article (16).

Correlation analyses and prognostic analyses of CD68-
related biomarkers

Using the Prism software (version 8.0), Spearman 
correlation coefficients were generated to investigate the 
associations between CD68-related biomarkers and the 
other biomarkers, including CD4, CD8, CD20, CD38, 
CD66B, FOXP3, and CD133. Heatmap and scatter plots 
were used to visualize the correlations. Since the data 
did not comply with normal distribution, the Kruskal-
Wallis (K-W) test was utilized to compare the proportion 
of CD68-related biomarkers in TN and TS within the 
pathological slices of patients with or without relapse, and 
for comparing the proportion of CD68-related biomarkers 
in TN and TS among different clinical stage.

To study the independent prognostic value of the 108 
immune biomarkers both in TN and TS, univariate and 
multivariate Cox analyses with covariates of age, sex, T 
stage, N stage, vascular cancer embolus, and number of 
lymph nodes resection, were performed using the SPSS 

software (version 25.0). The optimal cut-off values were 
determined based on the X-tile software (version 3.6) to 
divide the patients into high and low proportion groups (20). 
The prognostic significance of 26 CD68-related biomarkers 
was also evaluated by the Kaplan-Meier method and two-
sided log-rank test.

Establishment of the CD68-based immune-related risk 
score by random forest algorithm

As a supervised learning approach based on random vectors 
of features, RF is a machine learning algorithm combining 
multiple tree predictors, which is capable of ranking 
the predictive ability of each variable and constructing a 
predictive model (21). We divided the entire cohort (n=681) 
into the training (n=477) and testing (n=204) cohort. 
Using the “randomForest” package (version 4.6-14) in R 
software (22), all the significant biomarkers identified by 
multivariate Cox regression (P<0.05) were inputted into the 
RF decision tree model. The optimal number of trees grown 
(ntree) was determined by the actual lowest mean squared 
error (MSE). Since a higher Mean Decrease Accuracy 
(%IncMSE) represents higher variable importance (23),  
biomarkers with a %IncMSE of above four were taken 
forward for further analysis. Ultimately, based on the 
selected biomarkers, the IRRS model was constructed 
by multiplication of the proportion and their regression 
coefficients originated from the multivariate Cox regression 
method:

( )n
b bb=1

In HR proportion∗∑ 	 [1]

where HR b  stands for the HR for biomarkers and 
proportionb is their respective proportion. For investigating 
the prognostic significance of IRRS, we conducted 
multivariate Cox proportional hazards regression analysis 
adjusting for sex, age, T stage, N stage, number of lymph 
node resection, and vascular cancer embolus in the training 
cohort. According to the optimal cut-off value of the risk 
score, NSCLC patients in the training cohort were divided 
into high-IRRS and low-IRRS groups. Kaplan-Meier 
survival curves with log-rank test were exerted to contrast 
the DFS between the low-IRRS and high-IRRS groups. 
The receiver operating characteristic (ROC) curve and 
time-dependent ROC curve were then applied to assess the 
predictive accuracy of the IRRS model. Further verification 
of the robustness of IRRS was proceeded in the testing 
cohort and the entire cohort, utilizing the same formula 
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and optimal cut-off value of the IRRS model in the training 
cohort.

Construction and validation of nomogram algorithm for 
relapse prediction 

To provide the visualized risk prediction, we formulated 
a nomogram integrating IRRS and clinical characteristics 
based on multivariate Cox regression analysis results in the 
training cohort. Calibration plots were applied to estimate 
the predictive ability of the nomogram of 1-, 3-, and 5-year 
DFS. Nomograms and calibration plots were generated 
using the “rms” R package (version 6.2-0). In addition, 
with the “rmda” package (version 1.6) in R software, 
decision curve analysis (DCA) was employed for benefits 
evaluation and comparison of the nomogram model with 
standard TNM stage system and the IRRS model. Likewise, 
validation of the nomogram algorithm was applied in the 
testing cohort and the entire cohort.

Statistical analysis

Based on “survival” package (version 3.2-10) in R software, 
all survival curves were generated by the Kaplan-Meier 
method, and the two-sided log-rank test was used for 
disparity assessment of survival distributions. The chi-
square test was applied respectively for rate comparison 
between two and multiple groups. Mann-Whitney U test 
and K-W test was exerted for the non-normal distribution 
data. Statistical analysis was performed using R (version 
4.0.4, The R Foundation for Statistical Computing), SPSS 
(version 25.0, SPSS Inc), and Prism software (version 8.0, 
GraphPad Prism). All statistical tests were two-sided, and  
P value <0.05 was considered statically significant.

Results

Baseline characteristics of patients

A total of 681 eligible stage I to stage III NSCLC cases, with 
a median age of 60, were enrolled. Lung adenocarcinoma 
(479, 70.5%) and stage I to stage II patients (486, 74.8%) 
accounted for the majority of the cases. During the  
follow-up time, 282 patients relapsed (41.4%), of which 
185 had vascular tumor embolus (VTE). Compared with 
patients without relapse, male patients (P=0.001) with more 
advanced TNM stage (P<0.001) have a higher tendency of 
recurrence. Additionally, patients with occurrence also tend 

to be with VTE (P<0.001) and visceral pleural invasion (VPI) 
(P=0.015) (Table 1).

CD68-related biomarker and its relationship with other 
biomarkers and clinical data 

The proportion of immune biomarkers were proven to be 
non-normal distributing by the normality test. A total of 26 
CD68-related biomarkers, including CD68 (POS), CD68+, 
CD68++, CD68+++, H-score (CD68), CD68+PDL1+, 
CD68+PDL1−,  CD68+CD163+,  CD68+CD163−, 
C D 6 8 + C D 1 6 3 + P D L 1 + ,  C D 6 8 + C D 1 6 3 + P D L 1 − , 
CD68+CD163-PDL1+, and CD68+CD163-PDL1−, and 92 
other biomarkers both in TN and TS were tested and taken 
into analysis. Spearman rank correlation test (Figure 1A)  
presented close relationships between the expression 
levels of intratumoral CD68+PDL1+ and intratumoral 
CD8 (r2=0.31, P<0.001) (Figure 1B-1D), intratumoral 
C D 6 8 + C D 1 6 3 +  a n d  P D L 1  ( r 2= 0 . 2 8 ,  P < 0 . 0 0 1 )  
(Figure 1E-1G), and intratumoral CD68 and intratumoral 
CD133 (r2=0.30, P<0.001) (Figure 1H-1J). Highest 
infiltration levels of intratumoral CD68+++ macrophages, 
M2 macrophages, and M2 macrophages without expressing 
PDL1 were shown in stage IIB (Figure 2A,2B). Significantly 
higher infiltration levels of pan-macrophages, M1 
macrophages, and M1 macrophages without expressing 
PDL1 in TN than TS were observed in patients with 
relapse but not in patients without relapse (Figure 2C-2H). 

The prognostic values of CD68-related biomarkers

Univariate Cox regression analysis demonstrated that 
higher infiltration levels of intratumoral pan-macrophages 
and M1 macrophages were associated with significant 
shorter DFS [odds ratio (OR) 1.03, 95% confidence interval 
(CI): 1.01–1.04, P=0.004 for CD68 (POS); OR 1.04, 95% 
CI: 1.01–1.07, P=0.009 for CD68+; OR 1.03, 95% CI: 
1.01–1.05, P=0.004 for CD68+CD163−]. Despite without 
statiscial significance, intratumoral M2 macrophage (OR 
1.03, 95% CI: 0.99–1.10, P=0.081) was also associated 
with worse DFS. Moreover, these macrophages tended 
to be the subtypes without expressing PDL1 (OR 1.03, 
95% CI: 1.01–1.04, P=0.003 for CD68+PDL1−; OR 1.03, 
95% CI: 1.01–1.05, P=0.012 for CD68+CD163−PDL1−). 
The H-score of intratumoral CD68 also exhibited similar 
results (OR 1.01, 95% CI: 1.00–1.02, P=0.010). None 
of the intrastromal CD68-related biomarkers indicated 
significant relationships with DFS, implying the pivotal 
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Table 1 Clinicopathologic characteristics of the included patients

Characteristics Without occurrence (n=399) With occurrence (n=282) Mann-Whitney U test (P value)

Age (%)

≤60, years 216 (54.1) 144 (51.1) 0.073

>60, years 183 (45.9) 138 (48.9)

Mean ± SD 61±11 58±11 –

Gender (%) 0.001

Male 212 (53.1) 186 (66.0)

Female 187 (46.9) 96 (34.0)

Histology (%) 0.178

Lung adenocarcinoma 289 (72.4) 190 (67.4)

Squamous cell lung cancer 84 (21.1) 66 (23.4)

Others 26 (6.5) 24 (8.5)

Pathology stage (%) <0.001

IA 113 (28.3) 30 (10.6)

IB 152 (38.1) 50 (17.7)

IIA 49 (12.3) 56 (19.9)

IIB 15 (3.8) 21 (7.4)

IIIA 55 (13.8) 106 (37.6)

IIIB 1 (0.3) 2 (0.7)

T stage (%) <0.001

T1 201 (50.4) 109 (38.7)

T2 134 (33.6) 80 (28.4)

T3 47 (11.8) 54 (19.1)

T4 17 (4.3) 35 (12.4)

N stage (%) <0.001

N0 298 (74.7) 112 (39.7)

N1 51 (12.8) 99 (35.1)

N2 36 (9.0) 54 (19.1)

Vascular tumor emboli (%) <0.001

Yes 230 (57.6) 185 (65.6)

No 169 (42.4) 97 (34.4)

Visceral pleural invasion (%) 0.015

PL0 171 (42.9) 91 (32.3)

PL1 200 (50.1) 172 (61.0)

PL2 28 (7) 19 (6.7)

Table 1 (continued)
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Table 1 (continued)

Characteristics Without occurrence (n=399) With occurrence (n=282) Mann-Whitney U test (P value)

Dissected lymph nodes (%)

0–14 100 (25.1) 83 (29.4) 0.633

≥15 285 (71.4) 182 (54.5)

Mean ± SD 20±10 21±10 –

role of macrophages in TN (Figure 3A). We further cut the 
expression levels of CD68-related biomarkers into high- 
and low- value subtypes, and Kaplan-Meier curves were 
plotted to evaluate their prognostic significance (Figure 3).  
Multivariate Cox regression analysis with adjustments 
for age, sex, T stage, N stage, VTE, and number of 
lymph nodes resection further supported that pan-
macrophages (OR 1.03, 95% CI: 1.01–1.05, P<0.001) and 
M1 macrophages (OR 1.04, 95% CI: 1.01–1.06, P<0.001) 
rather than M2 macrophages (OR 1.05, 95% CI: 0.99–1.10, 
P=0.081) were independent prognosticators of worse DFS. 
Interestingly, we found that the prognostic impacts of CD68 
varied from low fluorescence intensity (+) to high fluorescence 
intensity (+++). For instance, the prognosis effects of 
intratumoral CD68++ (OR 1.10, 95% CI: 1.02–1.19, P=0.015) 
were more significant than CD68+ (OR 1.05, 95% CI: 
1.02–1.09, P=0.002) and CD68+++ (OR 1.07, 95% CI: 1.00–
1.15, P=0.053), implying that the fluorescence intensity may 
represent the different developmental or functional states of 
macrophages (Figure 3B). Finally, a total of 29 biomarkers both 
in TN and TS, including 7 CD68-related biomarkers and 22 
other biomarkers, which were independent prognosticators of 
DFS from multivariate Cox regression analysis, were selected 
as the candidate factors (Figure S1).

CD68-based immune-related risk score construction and 
its validation

Stratified sampling was utilized to divide 681 cases 
into a testing cohort (n=204, 20%) and a training 
cohort (n=477, 70%). The RF algorithm, with optimal 
parameter settings (mtry =3, ntree =368), was utilized to 
screen for the most important variables according to the 
expression levels of 29 candidate factors (Figure 4A). The 
importance of variable is ranked based on the %IncMSE, 
and the higher the %IncMSE, the more important a 
prognosticator is. Seven most significant predictors 
(i.e., %IncMSE >4), including intrastromal CD8+, 

intrastromal CD8+CD133−, intrastromal CD4+FOXP3+, 
intratumoral CD68+PDL1−, intrastromal CD4++, 
intratumoral CD68++, and intratumoral CD68+CD163− 
were identified and selected (Figure 4B). Subsequently, 
the IRRS of each patient was calculated using the 
formula: IRRS = ln (0.875) * (intrastromal CD8+)% + ln 
(0.945) * (intrastromal CD8+CD133−)% + ln (0.689) * 
(intrastromal CD4+FOXP3+)% + ln (1.035) * (intratumoral 
CD68+PDL1−)% + ln (0.836) * (intrastromal CD4++)% 
+ ln (1.103) * (intratumoral CD68++)% + ln (1.035) * 
(intratumoral CD68+CD163−)%. 

With an optimal cut-off value (IRRS =−0.03), the 
Kaplan-Meier curve suggested patients with high IRRS 
were associated with a worse DFS than patients with low 
IRRS (median DFS survival: 899 vs. 2,415 days, P<0.001) 
in the training cohort (Figure 4C). Both univariate (OR 
2.67, 95% CI: 2.03–3.60, P<0.001) and multivariate Cox 
regression analysis (OR 2.80, 95% CI: 1.87–3.98, P<0.001 
in the training cohort; OR 2.40, 95% CI: 1.37–4.22, 
P=0.002 in the testing cohort; OR 2.52, 95% CI: 1.89–3.38, 
P<0.001 in the entire cohort) revealed an independently 
predictive role of IRRS in DFS of NSCLC (Table 2). The 
IRRS system also performed well in differentiating between 
patients with high-risk or low-risk recurrence (AUC 
=0.718, 95% CI: 0.668–0.768) (Figure 4D). We further 
implemented the time-dependent ROC curve analysis to 
evaluate its predictive performance, resulting in relatively 
high prediction accuracy (AUC =0.670, 0.709, 0.695 of 1-, 
3-, and 5-year DFS survival, respectively) (Figure 4E). The 
AUC values exhibited that the prediction performance of 
the IRRS model was superior to a single marker (0.718 vs. 
0.500–0.654) (Figure 4F). 

The same formula and cutoff value of IRRS model were 
subsequently applied to the testing cohort and the entire 
cohort. Consistent with the findings from the training 
cohort, the high-IRRS subgroup had a significantly lower 
DFS compared with the low-IRRS subgroup (median 
DFS survival: 1,073 vs. 2,355 days, P<0.001 in the testing 

https://cdn.amegroups.cn/static/public/TLCR-21-916-supplementary.pdf
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Figure 1 Spearman’s rank correlation between CD68-related biomarkers and other biomarkers in tumor nest and tumor stroma. (A) 
Spearman’s rank correlation matrix and corresponding P value between CD68-related biomarkers and various biomarkers in tumor and 
stroma. *, P<0.05; **, P<0.01; ***, P<0.001. (B) Merged immunofluorescence images show the expression profile of three biomarkers, 
including PDL1, CD8, and CD68. The dotted line graphs illustrate the correlations between (C) intratumoral CD68+PDL1+ and 
intratumoral CD8+CD133−; (D) intratumoral CD68+PDL1+ and intratumoral CD8 (POS). (E) Merged immunofluorescence images show 
the expression profile of three biomarkers, including CD68, CD163, and PDL1. The dotted line graphs illustrate the correlations between (F) 
intratumoral CD68+CD163+ and intratumoral PDL1 (POS); (G) intrastromal CD68+CD163+ and intrastromal PDL1 (POS). (H) Merged 
immunofluorescence images show the expression profile of two biomarkers, including CD68 and CD133. The dotted line graphs illustrate 
the correlations between (I) intratumoral CD68+CD163-PDL1− and intrastromal CD133 (POS); (J) intratumoral CD68+ and intratumoral 
CD133 (POS). Magnification of B,E,H: ×200.
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Figure 2 Disparities of CD68-related biomarkers and their relationship with clinical data. Disparity of the proportion of CD68-
related biomarkers in tumor nest (A) and tumor stroma (B) among different clinical stage. Disparity of the proportion of CD68-positive, 
CD68+CD163−, and CD68+CD163− PDL1-biomarkers in tumor nest and stroma in patients with (C-E) and without relapse (F-H). *, 
P<0.05; **, P<0.01. ns, not significant.
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Figure 3 The prognostic values of CD68-related biomarkers. (A) Univariate Cox regression analysis and (B) multivariate Cox regression 
analysis evaluating the prognostic significance of CD68-related biomarkers for disease-free survival. Kaplan-Meier curves illustrate the 
prognostic implications of the proportion of CD68-related biomarkers (high vs. low) within tumor nest (C-M) and tumor stroma (N,O) for 
disease-free survival.

cohort; median DFS survival: 1,022 vs. 2,415 days, P<0.001 
in the entire cohort). ROC curve further confirmed its 
relatively great sensitivity and specificity in DFS prediction 

(AUC =0.676, 95% CI: 0.595–0.757 in the testing cohort; 
AUC =0.704, 95% CI: 0.661–0.747 in the entire cohort)  
(Figures S2,S3).
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Figure 4 Construction the immune-related risk score (IRRS) by random forest (RF) model in the training cohort. (A) The importance of 
various variables within tumor nest and tumor stroma, evaluated by the value of Mean Decrease Accuracy (%lncMSE). (B) The importance 
feature map demonstrated the first rank of CD68-related biomarker in tumor nest. (C) Kaplan–Meier estimate of the disease-free survival 
based on IRRS (high IRRS group vs. low IRRS group) in the training cohort. (D,E) Time-dependent receiver operator characteristic (ROC) 
curves and area under curve (AUC) values indicated the accuracy of the IRRS model. (F) Comparison of the predictive performance between 
IRRS and single biomarkers using ROC curve analysis. (G) Immune landscape of two IRRS subgroups (high vs. low) illustrates distinct cellular 
characteristics. Infiltration disparities of two immune-related risk score subgroups (high vs. low) in tumor nest (H) and tumor stroma (I). 
Disparities of patients’ clinical characteristics of two IRRS subgroups (high vs. low) (J-P). IRRS, immune-related risk score; RF, random forest; 
%lncMSE, Mean Decrease Accuracy; ROC, receiver operator characteristic; AUC, receiver operator characteristic; ns, not significant; TPR, 
true positive rate; FPR, false positive rate.

Cellular and clinical characteristics of immune-related risk 
score

The discrepancies of cellular characteristics between the 
high-IRRS and low-IRRS groups in the training cohort 
were illustrated by a sweeping landscape (Figure 4G). K-W 
tests revealed the expression levels of intratumoral CD68-
related biomarkers, including CD68+, CD68+PDL1−, 
CD68+CD163−, and CD68+CD163−PDL1−, were 
significantly higher in the high-IRRS group than the low-
IRRS group (Figure 4H). However, the expression levels of 
intrastromal biomarkers, including CD4+, CD4++, CD4+++, 
CD38+, CD4+FOXP3+, CD4+FOXP3−, CD8+, CD8++, 
CD8+CD133−, and PDL1+ were significantly higher in 
the low-IRRS group than the high-IRRS group, implying 
immune-activated microenvironment in the low-IRRS 
subtype (Figure 4I). Chi-square tests showed that the clinical 
stage (P<0.05) and T stage (P<0.05) were more advanced in 
the high-IRRS group compared with the low-IRRS group 
whereas the N stage, VPI, and VTE were not (Figure 4J-4P). 

In the testing dataset, analogously, the expression 
levels of CD68++, CD68+PDL1−, CD68+CD163−, and 
CD68+CD163-PDL1− were significantly higher while CD4+, 
CD4++, CD4+++, CD38+, CD4+FOXP3+, CD4+FOXP3−, 
CD8+, CD8++, and CD8+CD133− were significantly 
lower in the high-IRRS group than the low-IRRS group  
(Figure S2C,S2D). The T stage (P<0.05) was more advanced, 
and patients’ age (P<0.05) was older in the high-IRRS group 
than the low-IRRS group (Figure S2E-S2K).

Establishment of relapse prediction system for individual 
NSCLC patients

To construct a quantitative tool and personalize risk 
assessment to predict DFS, a nomogram integrating IRRS 
and clinicopathological characteristics, including sex, age, 
VTE, TNM stage, and the number of resected lymph 
nodes, was proposed utilizing the training dataset. The 
IRRS contributed slightly less to the risk points than the 

https://cdn.amegroups.cn/static/public/TLCR-21-916-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-21-916-supplementary.pdf
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Table 2 Construction and validation of immune-related risk score for predicting disease-free survival of non-small cell lung cancer

Variables
Univariate analysis

Multivariate analysis

Training cohort Testing cohort Entire cohort

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Age 1.01 (1.00, 1.02) 0.055 1.02 (1.01, 1.04) 0.007 1.00 (0.98, 1.03) 0.908 1.02 (1.00, 1.03) 0.013

Sex

Male Ref. Ref. Ref. Ref.

Female 0.70 (0.54, 0.90) 0.005 0.73 (0.52, 1.04) 0.080 0.79 (0.44, 1.41) 0.419 0.76 (0.56, 1.02) 0.066

T stage

T1 Ref. Ref. Ref. Ref.

T2 1.05 (0.77, 1.41) 0.770 0.75 (0.50, 1.14) 0.174 0.90 (0.45, 1.81) 0.766 0.80 (0.57, 1.13) 0.206

T3 1.64 (1.16, 2.32) 0.005 1.51 (0.93, 2.46) 0.098 1.52 (0.68, 3.40) 0.310 1.45 (0.97, 2.18) 0.069

T4 2.85 (1.93, 4.22) <0.001 1.64 (0.94, 2.84) 0.081 2.87 (1.14, 7.22) 0.025 1.88 (1.18, 2.99) 0.007

N stage

N0 Ref. Ref. Ref. Ref.

N1 2.85 (2.03, 4.00) <0.001 2.38 (1.44, 3.95) 0.001 2.57 (1.21, 5.46) 0.014 2.37 (1.57, 3.58) <0.001

N2 3.40 (2.56, 4.52) <0.001 2.87 (1.92, 4.30) <0.001 5.91 (2.99, 11.68) <0.001 3.43 (2.45, 4.81) <0.001

Visceral pleural invasion

PL0 Ref. Ref. Ref. Ref.

PL1 1.45 (1.11, 1.90) 0.006 1.16 (0.78, 1.71) 0.471 1.01 (0.54, 1.87) 0.981 1.12 (0.81, 1.53) 0.498

PL2 1.26 (0.76, 2.11) 0.370 1.27 (0.64, 2.52) 0.496 1.26 (0.29, 5.59) 0.759 1.24 (0.68, 2.28) 0.487

Vascular tumor emboli

No Ref. Ref. Ref. Ref.

Yes 2.05 (1.58, 2.65) <0.001 1.45 (0.99, 2.12) 0.054 1.56 (0.83, 2.92) 0.170 1.47 (1.06, 2.02) 0.019

Resected lymph nodes 1.00 (0.98,1.01) 0.613 0.98 (0.96, 1.00) 0.017 0.98 (0.95, 1.01) 0.123 0.98 (0.97, 0.99) 0.005

Immune-related risk score

Low Ref. Ref. Ref. Ref.

High 2.67 (2.03, 3.60) <0.001 2.80 (1.87, 3.98) <0.001 2.40 (1.37, 4.22) 0.002 2.52 (1.89, 3.38) <0.001

HR, hazard ratio.

clinical stage, while similar to the prognostic effects of 
the number of resected lymph nodes (Figure 5A,5B). The 
calibration plots fitted well to the ideal curve in 1-year 
DFS, whereas it was not observed in 3- or 5-year DFS  
(Figure 5C-5E). The C-index of nomogram system (C-index 
=0.74, 95% CI: 0.70–0.78) was higher than the standard 
TNM stage (C-index =0.67, 95% CI: 0.64–0.71) and the 
IRRS model (C-index =0.60, 95% CI: 0.57–0.63), suggesting 
the nomogram algorithm improved the effectiveness of 

predictive model (Table 3). We further implemented the 
DCA, indicating that the nomogram added more benefit to 
predict patients’ DFS than IRRS system and TNM stage 
(Figure 5F-5H). Great calibrations were also illustrated for 
the probability of recurrence in 1-year DFS in the testing 
and entire cohort. Analogously, the prognostic nomogram 
showed better predictive capability than the standard TNM 
stage and the IRRS model (C-index =0.81 vs. 0.74 vs. 0.60 
in the testing cohort; C-index =0.76 vs. 0.69 vs. 0.60 in the 
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Figure 5 Construction of nomogram for predicting the disease-free survival in the training cohort. (A) The nomogram was constructed 
with the immune-related risk score in the training cohort. (B) Forest plot of the multivariate Cox regression analysis. Calibration plot and 
decision curve analysis of the nomogram in terms of agreement between the predicted and observed (C,F) 1-, (D,G) 3- and (E,H) 5-year 
outcomes.VCE, vascular cancer embolus; IRRS, immune-related risk score; LNs, lymph nodes; VPI, visceral pleural invasion; AIC, Akaike 
information criterion; DFS, disease-free survival. 

Table 3 Harrell’s concordance indexes of TNM stage, immune-related risk score, and nomogram system

Cohort TNM stage (95% CI) IRRS (95% CI) Nomogram (95% CI)

Training 0.67 (0.64, 0.71) 0.60 (0.57, 0.63) 0.74 (0.70, 0.78)

Testing 0.74 (0.68, 0.80) 0.60 (0.56, 0.64) 0.81 (0.76, 0.86)

Entire 0.69 (0.66, 0.73) 0.60 (0.54, 0.66) 0.76 (0.73, 0.79)

IRRS, immune-related risk score; CI, confidence interval.
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entire cohort) (Table 3, Figures S4,S5). Based on the above-
mentioned findings, the IRRS model might be employed to 
reinforce the prognostic ability of the TNM approach.

Discussion

The high heterogeneity of TAMs, characterized as the 
variability of their constituents depending on clinical stage, 
cancer types, and intratumor heterogeneity, has been studied 
by numerous researchers, revealing their vital role in cancer 
development, progression, and recurrence (24-27). CD68, 
considered as the significant biomarker for quantifying 
macrophage amounts, is generally associated with prognosis 
and correlated with resistance to cancer treatment in solid 
tumors, especially lung cancer, which is the deadliest cancer 
worldwide (28). Based on the mIF approach, for the first 
time, we delved into the clinical significance of CD68-
related biomarkers in TME of stage I to III NSCLC and 
appraised their correlations with other biomarkers. Further, 
an effective CD68-based IRRS system based on seven 
immune biomarkers was constructed by the RF algorithm. 
Moreover, integrating the IRRS, our nomogram model was 
able to provide a personalized prognosis tool for NSCLC 
patients.

Based on univariate Cox regression and survival analysis, 
the proportion of intratumoral and stromal CD68-
related biomarkers were principally the risk factors for 
DFS in lung cancer, consistent with previous findings 
(29,30). Furthermore, the multivariate Cox regression 
illustrated the intratumoral proportion of CD68 (including 
CD68+, CD68++, CD68+PDL1−, CD68+CD163−, 
and CD68+CD163−PDL1−), alongside its H-score, 
were the independent prognostic indicators for poorer 
DFS. Characterized as one of the main contributors of 
tumorigenesis and a major component of the malignant 
microenvironment, CD68+ macrophages are involved in 
a wide variety of mechanisms related to tumorigenesis (31). 
During the early formation of NSCLC, aggregation of 
TAMs took place nearby the tumor cells, thereby promoting 
the invasiveness and epithelial-mesenchymal transition 
(EMT). Likewise, they induce a potent regulatory T cell 
response that restrains adaptive antitumor immunity (32). 
This correlation is well demonstrated in our study, that 
M2 macrophages were significantly correlated with PD-
L1 positive cells in TS (r2=0.31, P<0.001) and TN (r2=0.28, 
P<0.001) respectively, thereby directly inhibiting the 
antitumor response through cell-cell interaction with 
cytotoxic T cells and the production of immunosuppressive 

cytokines such as transforming growth factor-β (TGF-β) 
and IL-10 (33). 

Besides, we found a close relationship between 
intratumoral CD68 and intratumoral CD133 (r2=0.30, 
P<0.001), supporting the bidirectional crosstalk between 
cancer stem cells and TAMs, which contributes to a pro-
tumorigenic and immunosuppressive contexture (34), 
leading to the poorer prognosis of the patients with higher 
pan-macrophages infiltration in TME. In fact, our findings 
supported that the proportion of pan-macrophages, 
mainly M1 macrophages, were higher In TN among the 
recurrence group, while this disparity was not found in the 
non-recurrence group, further supporting the vital role for 
CD68 in the progression and recurrence of lung cancer. 
Interestingly, PD-L1-positive pan-macrophages, especially 
M1 macrophages, were prone to associate with longer 
DFS according to the multivariate Cox regression analysis, 
which is similar to the findings of a previous study (35). 
Simultaneously, the level of intratumoral PDL1-positive 
pan-macrophages was found to associate with the level of 
CD8-positive T cells significantly (r2=0.31, P<0.001) in 
our study, suggesting a connection between high PD-L1 
and immune-inflamed tumors, namely “hot tumors.” Yet, 
the innate mechanisms remained uncertain and warranted 
further investigations. 

However, not all the studies were consistent. An 
improved survival in NSCLC patients was confirmed in a 
multiplex immunohistochemistry (mIHC) based research 
by Rakaee et al. aimed at investigating the prognostic value 
of macrophages (36). Specifically, this study suggested an 
improved NSCLC-specific survival with high M1 and M2 
infiltration levels in both TN and TS (36). The source of 
the discrepancies may originate from three aspects. Firstly, 
due to the methodological variation between both studies, 
inconsistent antibodies were used for targeting biomarkers, 
leading to the possible disparity of precise definition of 
the immunophenotyping of macrophages (37). Secondly, 
given the assay of different methodologies, namely mIHC 
and mIF, mIHC has a limited dynamic range of most 
chromogenic substrates, and only very few can be combined 
for studying marker co-expression. In contrast, a more 
extensive linear dynamic range can be detected using mIF, 
which facilitates the comprehensiveness and precision 
when quantifying various biomarkers on a single slide (37).  
Thirdly, it was worth mentioning that the survival outcomes 
of the study by Rakaee et al. differed from ours, in which 
disease-specific survival (DSS) was used as the endpoint 
with longer follow-up time (median follow-up was  

https://cdn.amegroups.cn/static/public/TLCR-21-916-supplementary.pdf
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86 months) (36). In this case, we hypothesize that although 
more macrophages infiltration in TME was associated 
with tendency of cancer recurrence at an earlier time, they 
might have a positive impact on the survival of patients 
who have relapsed, as evidence suggested that TAMs could 
improve the response to chemotherapy of LC patients 
and extent their survival (24,38,39). Albeit chemotherapy 
was traditionally considered immunosuppressive due to 
potential immune cells depletion, chemotherapy could 
promote immunogenic cell death in cancer and conduce 
type-1 IFN signaling, thereby enhancing the recruitment 
of antigen presenting cells to the TME and facilitating 
efficient T cell priming (40,41).In the field of epidermal 
growth factor receptor (EGFR)-mutant LC patients, the 
prognostic value of macrophages has been a research focus 
in recent years. Saxon et al. reported that epithelial NF-κB 
signaling sustained carcinogenesis in EGFR-mutant LC by 
recruiting pro-tumorigenic macrophages (42). Wang et al. 
further found that EGFR oncogene–dependent progression 
was correlated with the expansion of alveolar macrophages 
and the presence of activated signature of macrophages 
indicated unfavorable OS in patients receiving resection for 
EGFR-mutant LUAD (43). Yin and colleague showed that 
nanomedicine remodeling the tumor microenvironment 
(e.g., M2-macrophage repolarization) could reverse the 
resistance of EGFR-tyrosine kinase inhibitor and enhance 
treatment outcomes in mouse model (44). As for the effect 
of how neoadjuvant therapy influences TAMs within 
the tumor environment, Parra et al. (45) discovered that 
the density of CD68+ TAMs was higher in neoadjuvant 
chemotherapy (NCT) NSCLC than in non-NCT-NSCLC 
cases. Besides, a recent study conducted by Gaudreau 
et al. (46) also revealed that patients with NSCLC who 
received NCT followed by surgery, as compared with 
patients who received upfront surgery (US), had overall 
higher levels of immune infiltration, including higher 
densities of CD68+TAMs in their tumors. As suggested by  
Blankenstein (47), in the tumor epithelial and stromal 
compartments, the activation of TAM class M1 and helper 
T cells (CD3+ CD4+) mediate tumor suppression factors 
in NCT-treated NSCLC patients. Considering the highly 
functional heterogeneity of macrophages in TME, extensive 
efforts are still required to corroborate our hypothesis.

Meanwhile, several limitations in previous reports should 
also be noted, such as small sample size and homogeneous 
cohorts (i.e., utilizing a specific TNM stage), which may 
lead to the contradictory findings. Moreover, the wide 
variation of methods used in evaluating the infiltrating 

patterns of TAMs in previous studies made it difficult to 
draw a definitive conclusion concerning their associations to 
prognosis. Despite that immunohistochemistry (IHC) is a 
helpful tool in diagnostic settings and has been widely used 
for decades, some drawbacks limit its ability to assess the 
complex components in TME. For instance, the subjectivity 
in the interpretation of IHC stain by pathologists may 
significantly affect the reproducibility of CD68 expression 
levels (48). Additionally, although multiplex IHC (mIHC) 
can simultaneously identify colocalized markers, it is 
limited by quantitative assessment (i.e., appraise expression 
levels as positive vs. negative simply or a semiquantitative  
H-score) (49). The mIF approach is an emerging and 
powerful approach, based on the principle that various 
protein targets can be dyed apiece by a particular antibody 
labeled with a disparate fluorophore (37). Given that the 
fluorophores have a sizeable dynamic scope and be captured 
in situ by the multispectral microscope, the mIF tool can 
characterize cells phenotypically and facilitate quantitative 
and spatial analysis.

As evidence from current and previous studies suggests 
that CD68-associated biomarkers have significant 
implications as prognostic markers for clinical outcomes of 
NSCLC, in order to access the value for cancer relapse and 
the underlying therapeutic implications, it is essential to 
develop a helpful tool for prognosis prediction. In this study, 
the RF algorithm was implemented, and the proportion of 
intratumoral CD68+PDL1−, CD68++, CD68+CD163−, 
and intrastromal CD8+, CD8+CD133−, CD4+FOXP3+, 
CD4++ were selected and combined to construct an IRRS 
model for predicting DFS. This CD68-based prognostic 
model has not been reported and may represent a novel 
prognostic factor for NSCLC. The AUCs for the total 
and 1-, 3-, and 5-year DFS rates for the IRRS were 0.718, 
0.670, 0.709, and 0.695 respectively in the training cohort 
(n=477). For providing a personalized scoring system for 
the prognosis of each NSCLC patient, we established a 
nomogram combining the IRRS and clinicopathological 
characteristics, including sex, age, vascular tumor emboli 
(VTE), TNM stage, and the number of resected lymph 
nodes). This nomogram system could further improve 
the stratification ability of the prognosis, as the C-index 
of which was 10.1% higher than the standard TNM stage 
(C-index =0.76 vs. 0.69) for the entire cohort (n=681). 

Since our IRRS model presents prominent prognostic 
implications, we further probed into the characteristics of 
the immune landscape between the high and the low IRRS 
groups. The infiltration disparities of immune biomarkers 
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could provide clues for the difference in recurrence and 
survival prognosis. The proportion of CD38+, CD4-related 
biomarkers (including CD4+, CD4++, CD4+++, and CD4), 
CD8-related biomarkers (including CD8+, CD8++, and 
CD8+CD133−) in TS were higher in the low IRRS group. 
Instead, the high IRRS group demonstrated a significantly 
higher proportion of CD68-related biomarkers infiltration 
( including CD68+,  CD68++,  CD68+PDL1−,  and 
CD68+CD163−). Besides, high IRRS group was associated 
with a more advanced T stage and clinical stage, as a higher 
amount of CD68+ macrophages were positively correlated 
with tumor growth and metastasis, consistent with the 
conclusions of previous studies (24,50). These findings are 
reasonably consistent with the clinical practice. It is well 
studied that CD4+ and CD8+ T cells were inhibited by the 
maintenance of strong immunosuppressive TME due to 
T cell immune checkpoint ligands expressed or cytokines 
secreted by TAMs (51). In the context of the success 
of ADAURA (52) and IMPower 010 (53) that adjuvant 
therapies brought pronounced benefit for resected early-
stage NSCLC cases, targeting TAMs is emerging as an 
attractive and effective strategy (ClinicalTrials.gov identifier: 
NCT05053750, NCT01765790, NCT00317603, etc.) for 
therapeutic intervention (54). During the course of therapy, 
the efficacy of macrophages depletion is constantly relying 
upon the function and enhanced recruitment of cytotoxic 
CD8+ T cells (55), allowing an effective antitumoral 
immune response. One of the most studied therapeutic 
targets, the macrophage colony stimulating factor-1 (CSF-
1), was revealed to recruit inflammatory monocytes into the 
cancer site. Due to the presence of cytokines such as IL-
10 and IL-13, they subsequently differentiate into TAMs, 
which contribute to the formation of a complex TME that 
promotes malignant transformation and cancer progression. 
After the inhibition of CSF-1, the infiltration of TAMs 
was abrogated, and the recruitment of CD8+ T cells was 
enhanced, thereby restricting tumor growth (56). 

Several limitations need to be mentioned in our study. 
First, it is worth noting that our study was based on the 
percentage of immune biomarkers in pathological slices. 
Therefore, spatial variables, for example, the proximity 
effects between immune cells were not fully considered 
in our study. Second, due to the research design, we did 
not realize the validation of the above biomarkers and risk 
model on NSCLC patients’ DFS from external cohorts. 
Third, only cytological analyses were provided in the 
current study. Hence, multi-omics studies are needed to 
clarify the regulatory mechanism between macrophages and 

other components in the TME of NSCLC.
Nevertheless, considering the therapeutic and prognostic 

value of CD68, based on the mIF assay, the IRRS model 
and nomogram system were valuable signatures for their 
correlations with immune landscapes of NSCLC. Besides, 
the association between DFS and the CD68-based IRRS 
model in the comprehensive set of 681 patients indicated 
its powerful prognostic marker for NSCLC. Our study 
may help define the prognosis of NSCLC patients further, 
provide enlightenment for further exploration of the 
role of macrophages in TME, and effectively support the 
exploration of TAMs-related therapeutic approaches in 
NSCLC.
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Figure S1 Multivariate Cox regression analysis investigating the prognostic significance of immune biomarkers.
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Figure S2 Validating the immune-related risk score (IRRS) model in the testing cohort. (A) ROC curves and AUC values indicated the 
accuracy of the IRRS model. (B) Kaplan–Meier estimate of the disease-free survival based on IRRS (high IRRS group vs. low IRRS group). 
Infiltration disparities of two immune-related risk score subgroups (high vs. low) in tumor nest (C) and tumor stroma (D). Disparities of 
patients' clinical characteristics of two immune-related risk score subgroups (high vs. low) (E-K). IRRS, immune-related risk score; ROC, 
receiver operating characteristic; AUC, area under the curve.
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Figure S3 Validating the immune-related risk score (IRRS) model in the entire cohort. (A-B) Time-dependent ROC curves and AUC 
values indicated the accuracy of the IRRS model. (C) Kaplan–Meier estimate of the disease-free survival based on IRRS (high IRRS group 
vs. low IRRS group). (D) Comparison of the predictive performance between IRRS and single biomarkers using ROC curve analysis. IRRS, 
immune-related risk score; ROC, receiver operating characteristic; AUC, area under the curve.
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Figure S4 Construction of nomogram for predicting the disease-free survival in the testing cohort. (A) The nomogram was constructed with 
the immune-related risk score in the testing cohort. (B) Forest plot of the multivariate Cox regression analysis Calibration plot and decision 
curve analysis of the nomogram in terms of agreement between the predicted and observed (C-D) 1-, (E-F) 3- and (G-H) 5-year outcomes.
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Figure S5 Construction of nomogram for predicting the disease-free survival in the entire cohort. (A) The nomogram was constructed with 
the immune-related risk score in the entire cohort. (B) Forest plot of the multivariate Cox regression analysis. Calibration plot and decision 
curve analysis of the nomogram in terms of agreement between the predicted and observed (C-D) 1-, (E-F) 3- and (G-H) 5-year outcomes. 
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