
© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2022;11(5):910-919 | https://dx.doi.org/10.21037/tlcr-21-698

Introduction

To achieve precision cancer prevention across the lifespan, 
we need to predict personal risk for cancer. In risk 
prediction for complex diseases, there is a growing interest 
in utilizing polygenic risk scores (PRSs) both in clinical 
practice and population screening. Simply defined, a PRS 
is a sum of an individual’s germline genetic risk alleles for a 

trait, weighted by the allele’s corresponding effect sizes as 
estimated from a genome-wide association study (GWAS). 
It therefore provides a single score that summarizes an 
individual’s genetic risk of developing the disease. To 
construct a PRS, approaches vary from including only 
those variants that surpass stringent GWAS thresholds, to 
inclusion of all genome-wide variants. Several recent studies 
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have utilized PRSs to identify high-risk individuals for 
complex disease (1-4), which have motivated calls for their 
integration into clinical practice (5,6). However, as others 
have described in detail, a strong statistical association 
between a PRS and disease does not mean that a score can 
easily discriminate between healthy individuals and those 
with the disease in question; thus translation of such scores 
into clinically relevant prediction models is a challenge (7,8).

Here, we discuss the clinical utility of cancer PRSs for 
predicting personalized cancer risk. We argue that the 
clinical actions that can be taken in response to a PRS, or its 
actionability, determine its clinical utility. This actionability, 
in turn, depends on three aspects: (I) its discriminative 
power; (II) its performance in comparison to existing 
known risk factors; and (III) available preventive actions (see 
Figure 1). We describe the strengths and challenges in each 
of these aspects for utilizing a PRS, as well as what is still 
needed to integrate cancer PRSs to the clinic. Furthermore, 
we argue that the clinical utility of PRSs may not be limited 
to predicting risk in precision prevention for healthy 
individuals: there is also great potential for building and 
using PRSs in precision oncology for personal prediction 
of disease progression or drug resistance in individuals with 
cancer.

Discriminative power

In predicting germline genetic risk for complex disease, 
a PRS can only be useful if it adequately distinguishes 
between people at high and low risk. Just as numerous 
studies have shown that highly penetrant single germline 
rare pathogenic variants can lead to familial cancer 
syndromes that span cancers in multiple tissues, it is 
plausible to build PRSs that asses shared etiology across 
multiple cancer types (9-12). However, germline genetic 
factors that impact cancer are typically tissue-dependent (13) 
and current cancer PRSs are typically cancer-site specific. 
Thus, we consider here only site-specific cancer PRSs. 

A PRS can bring added value to an existing cancer risk 
model in the clinic if it presents information independent of 
established clinical, environmental or lifestyle risk factors, 
and therefore improves the predictive power more than 
incrementally. Early reports on large-scale national biobanks 
support this. Data from the Finnish FinnGen biobank study 
has shown that PRSs provide additional value in clinical 
prediction of breast and prostate cancer risk (14). Similarly, 
in a study on germline genetic risk for 16 different cancers 
using UK BioBank data, PRSs have presented lower added 

value for cancers with strong modifiable risk factors (e.g., 
lung cancer risk in smokers), but higher in those without 
them (e.g., lung cancer risk in never-smokers) (15), with the 
greatest benefit for prostate, testicular and thyroid cancers, 
as well as leukemias and melanomas (15). It is also worth 
noting that a PRS can still be used if there is some overlap 
with existing factors. For example, the CanRisk model 
attenuates the PRS score in the context of a family history 
of breast cancer (16,17).

In reporting the predictive power of a cancer PRS, the 
standard epidemiological literature should be consulted 
to consider the relative merits of different reporting 
metrics, as these essentially have the same issues as for 
any predictor of disease or trait. Typically, a regression 
model is performed on the target sample, with the PRS as a 
predictor of the target trait or outcome, and covariates are 
included as appropriate. The metric that is most sensible to 
use is based on the context and the question being asked. 
To make quantifying the difference with other published 
studies more consistent, most studies use the incremental 
R2, where the effect of the PRS is separate from the effect 
of other covariates. However, if the model includes many 
covariates, then the incremental R2 may be higher because 
those other covariates will have explained a good fraction 
of the trait variance and thus some caution in this regard is 
warranted. For example, when a popular measure, the Net 
Reclassification Index (NRI) (18) is calculated on a large test 
dataset, it is likely to be positive even when the addition of 
the PRS to an existing model has no predictive information. 
A good discussion on measurements of PRS analysis results, 
plots, interpretation, predictive accuracy and power, as well 
as avoidance of over-fitting is provided in a recent study by 
Choi et al. [2020] (19).

In considering for which cancers a PRS may best 
discriminate germline genetic risk, the heritability of 
a cancer provides a natural upper limit to what can be 
solely achieved by a PRS. Twin studies may guide which 
cancers have sufficient genetic factors that a PRS could be 
of potential clinical utility (20,21). Note that this natural 
upper limit is higher than what can be estimated from 
current genome-wide association studies of cancer risk (22), 
as it includes yet to be resolved genetic associations such 
as the inclusion of rare variants. However, even for cancers 
where heritability is lower and modifiable risk factors 
are dominant, such as in lung cancer, a PRS can present 
clinical utility, as it could be used to modify screening 
guidelines. For instance, high PRS individuals could be 
added to screening protocols at younger ages than the 
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standard recommendations, and screened more frequently, 
potentially saving lives (23). 

One drawback to current PRSs is that their development 
is largely derived from individuals of European ancestry. 
This limits their applicability (24) and precision (25) for 
non-European populations and also exacerbates health 
inequalities. While genetic risk patterns are broadly similar 
across major population groups, and many common risk 
alleles discovered in one population group are detectable 
in others, allele frequencies and linkage disequilibrium 
(LD) may vary substantially. Consequently, how PRS 
information translates across various ancestries with 
different background genetic architecture—both in terms 
of allele frequencies, LD, and effect sizes—is critical 
(25,26). Genotyping will soon become widespread in 
high- and middle-income countries, further contributing 
to these health disparities. Including individuals of non-
European ancestry in building PRSs not only reduces health 
disparities, but also generates better PRSs for individuals 

of European descent as well (27). It is notable that a recent 
paper on prostate cancer substantially improved risk 
prediction in non-European populations by including a 
modest fraction of non-Europeans (28). To better account 
for and utilize ancestry information, we need more diverse 
population allele frequency databases (29,30) disease 
association studies with other ancestral backgrounds, and 
new computational approaches (31). 

Potential utility of PRS in practice

The practical clinical utility of a PRS that predicts personal 
cancer risk depends on how it compares to standard of 
care and existing risk prediction approaches rather than a 
null model of no risk prediction. We assume the PRS will 
be measured by the germline genetic analysis of a single 
blood draw. From a cost perspective, even if whole genome 
sequencing (WGS) of every patient is necessary for the 
cancer PRS, this will be performed only once in a person’s 

Figure 1 Criteria for utilizing personal polygenic risk scores (PRSs) in the cancer clinic.
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lifetime. As genetic sequencing becomes more common, 
these types of sequencing data will become available for 
screening for many different health outcomes. Hence, from 
the health system perspective, the cost will not be a major 
factor in utilizing PRSs at population level. We are already 
seeing efforts to that effect in research enterprises such as the 
Million Veteran Program (MVP) that plans to sequence a 
million veterans (32); national-level studies including the UK 
Biobank (33,34) and hospital-level efforts such as the BioMe 
Biobank of Icahn School of Medicine at Mount Sinai (35). 

If the PRS were to be utilized to risk-stratify individuals 
for altered screening regimens, its utility would be 
guided by the relative expense and invasiveness of current 
screening modalities. For instance, in breast cancer, a PRS 
could theoretically be used to guide recommendations of 
frequency of mammography, which is a more involved 
procedure than a blood draw. In contrast, in prostate 
cancer screening, the existing standard of care when 
screening is desired is the prostate specific antigen 
(PSA) blood test. It has even been proposed that a single 
protein-based blood test at mid-life can be a predictor of 
clinically important prostate cancer in a man’s lifetime 
(36,37). Beyond comparison to existing screening and risk 
prediction approaches, care must be given to associations 
between elements of the PRS and other factors used in 
risk prediction. For instance, while a naïve PRS for lung 
cancer risk would include variants associated with smoking 
behavior (38), the performance of a PRS that includes 
such variants would need to be first carefully compared to 
those of existing clinical models that are based on asking 
individuals about their personal smoking history. 

Available preventive actions

Finally, for a cancer risk PRS to be useful there must be some 
clinical action that can be taken in response to knowledge. 
In other words, it should lead to prevention (5). Similar to 
testing of single genes in monogenic cancer predisposition 
syndromes, a PRS may be able to identify a subset of 
high-risk individuals who would benefit from existing 
preventative actions. The thresholds of positive and negative 
predictive values for such a test will naturally depend on 
how invasive the preventive interventions being considered 
are. For example, currently in breast cancer prevention, the 
existence of a highly penetrant BRCA1/2 variant, together 
with other clinical factors, family history and patient 
preferences guide radical action such as double mastectomy. 
If a PRS is to be utilized for such radical preventive action 

with or without a BRCA1/2 variant, its accuracy thresholds 
need to be extremely stringent. However, less stringent 
thresholds may be considered for those individuals at 
high breast cancer risk but are instead only considering 
chemoprevention with a daily intake of selective estrogen 
receptor modulators (SERMs) or aromatase inhibitors. 
Furthermore, those at high-risk for colon cancer based on 
their PRS may simply undergo frequent screening and take 
a daily aspirin, affording even less stringent thresholds (39). 

PRSs can also be useful in the context of modifiable 
environmental causes of cancer. For example, while smoking 
is a modifiable risk factor for lung cancer, most smokers are 
unable to quit. However, individuals are starting to access 
their complete genomic information (and risk) at ever-
younger ages, which we anticipate will shift clinical utility 
from modifying established risky behaviors to prevention. 
Further research is needed in this area, on for example 
whether a high PRS for lung cancer will impact young 
never-smokers’ future smoking decisions, shifting focus 
from supporting smoking cessation to smoking prevention 
on high PRS individuals before they even start smoking. 

Research is also needed on the impact of cancer PRS 
information on possibly altering the modifiable behaviors 
of individuals. There is already research in this direction 
in other complex diseases. For example, in coronary heart 
disease research, a smart phone app that calculates people’s 
PRSs from their combined genetic profile, mobile health 
and questionnaire data is being used to monitor changes 
in their health-related behaviors afterwards (mygenerank.
scripps.edu). Similar studies and user-friendly technologies 
in the cancer domain are needed to better understand 
individual responses to high cancer risk PRS information. 

So far, studies suggest that when individuals are 
confronted with their own genetic risk data, their 
preventive behavioral responses are impacted by multilevel 
sociocultural and policy-related factors (40). While 
limited, studies on communicating DNA-based disease 
risk estimates have reported little or no effect on smoking 
or physical activity, and a small effect on self-reported diet 
and on intentions to change behavior in the short term 
(41,42). However, users of direct-to-consumer of genetic 
testing services (who tend to self-select for individuals of 
higher educational levels), were reported to adopt long-
term changes into healthier diets (43). In addition, a 
recent personalized genetically informed risk tool showed 
to promote progress towards smoking cessation (44). 
Furthermore, a recent melanoma clinical trial reported 
that while personal genomic risk information did not 
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influence sun exposure patterns, it did improve some skin 
cancer prevention and early detection behaviors (45). 
Finally, multiple studies have reported that personal risk 
information is potentially useful for shared and informed 
decision-making in the clinic (46), and that individuals at 
high cancer risk tend to take preventive action. Of note, 
women’s health behavior tended to change after receiving 
breast cancer risk estimates with tailored screening and 
prevention recommendations, highlighting the importance 
of effective risk communication (47). 

In the absence of concrete actions that can be taken, 
there is a debate as to whether knowledge of individual 
risk is useful. While some individuals still prefer to know 
their risk for lethal disease to prepare for treatment and 
to understand the potential impact of disease on their 
future (48), just having the knowledge without available 
actions can be harmful in certain cases (49). We need to 
develop guidelines on how best to educate individuals 
and the medical community on what a PRS is: that a high 
score does not mean an individual will definitely develop 
cancer, and a low score does not mean freedom from 
disease; and that all individuals should adopt healthy habits 
such as eating less, exercising more, or quitting smoking, 
regardless of their personal PRS. We will need considerable 
education of both the public and medical community on the 
interpretation of PRS results, and to integrate the patients 
into the discussions, whenever a risk score is to be given to 
an individual.

Are we ready?

Though PRSs show much promise, several challenges 
remain. First, building a PRS requires accessible data on 
a large number of individuals that exhibit the phenotype. 
For most cancers, germline genetic risk is shared across 
thousands of mostly common variants with individually 
modest effects on population risk. The largest current 
resources for building a PRS include national-level 
biobanks such as UK Biobank (though individuals in this 
databank are healthier than average) (33); all of Us Research  
Program (50); Million Veteran Program (32); NHLBI 
The Trans-Omics for Precision Medicine (TOPMed) 
program (51), as well as individual hospital system biobanks 
integrated with electronic health record (EHR) data (35). 
Thus, PRSs built for common cancers with GWAS data 
in large cohorts are likely to be more ready for the clinic. 
However, as these cohorts have relatively few individuals 
with specific rare cancers compared to dedicated case-

control studies, PRSs for such rare cancers will need to wait 
for larger genetic epidemiology studies, though the low 
frequency of these cancers means the benefit of population-
level PRS screening would be reduced as there would be less 
cases to detect. For example, so far there has been a limited 
number of genetic epidemiology studies solely devoted 
to understanding the risk for the relatively rare small cell 
lung cancers. This problem is exacerbated by the use of 
ICD billing codes to determine diagnosis in biobanks. For 
instance, an ICD code will distinguish between a right or a 
left lung, yet, it will not distinguish between squamous cell 
carcinoma, adenocarcinoma, or small cell carcinoma of the 
lung. Heterogeneity between the cohorts is another barrier 
to pooling data among studies. Similarly, as discussed 
above, to be broadly applicable, PRSs need to be developed 
using cohorts of diverse ancestry; the focus of many of the 
large studies on individuals of European ancestry remains a 
problem for developing generally applicable PRSs.

Second, current cancer PRSs typically only consider 
common genetic variants; however, to improve predictive 
accuracy, we need to integrate variants over the continuous 
spectrum of risk alleles, across a range of frequencies and 
effect sizes observed within a population. Notably, rare 
deleterious variants (RDVs) can play key roles in risk, as 
they tend to have high penetrance. Multiple studies have 
identified RDVs in DNA damage repair genes with large 
or moderate effect sizes in cancer risk (52,53) (e.g., Fanconi 
Anemia genes in lung squamous cancers; ATM gene in 
lung adenocarcinomas). Furthermore, variants that impact 
outcome independent of risk may also improve clinical 
risk models of lethal cancers. For example, RDVs in DNA 
repair genes have been shown to increase risk for aggressive 
prostate cancers (54,55). To incorporate RDVs into 
PRSs, large population-based sequencing studies for gene 
detection (56) are needed for their systematic and unbiased 
functional assessment, in addition to a better understanding 
of their complex interplay with polygenic background. For 
example, individuals at highest risk by PRS can yield the 
equivalent risk of RDVs (5). The polygenic background 
itself can also impact RDV penetrance (57). For example, it 
has been shown that individuals with moderately penetrant 
CHEK2 RDVs can be better advised about their risk in light 
of their PRSs (58). Thus, PRSs that extend into including 
RDVs will add value to clinical risk models.

Third, genetic risk often depends on clinical, lifestyle 
and environmental risk factors, which should be carefully 
integrated with demographic and clinical factors. For 
example, biological females clearly will not develop prostate 
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cancer, no matter how high their PRS, and risk for all 
cancers increases with age. Clearly, there is a benefit for 
measuring PRS earlier in life, so as to understand modifiable 
factors to decrease disease risk. This is where additional 
clinical data from EHR (age, gender, smoking and alcohol 
history, viral infections, blood tests, etc.) will come into 
play. More research is needed to understand how best to 
integrate PRS with existing risk models (17). In addition, 
benefits of measuring PRS early in life must be carefully 
balanced against the potential risks of stigmatization and 
discrimination, as well as implications for parents having 
this information for their children (59).

Fourth, any meaningful translation of independent 
research studies into clinical practice will require 
standardization of all aspects of PRS measurement. PRSs 
are generally developed from panels of whole-genome 
SNP genotyping or sequencing which are then processed 
using statistical imputation approaches to fill in missing 
data. How such statistical approaches will fit into the 
regulatory frameworks guiding clinical tests remains an 
open challenge. Similarly, it is important to report PRS with 
standardized nomenclature so that there is no confusion as 
to the identity of the SNPs used in the PRS, direction of 
effect for each allele, and specific algorithm for summing 
across the SNPs (i.e., how to deal with negative weights on 
some alleles). The recent review from the Clinical Genome 
Resource (ClinGen) Complex Disease Working Group and 
the Polygenic Score (PGS) Catalog is an important step 
towards such standardization (60).

Fifth, the clinical success of PRSs will depend on their 
uptake—both adoption by clinicians and acceptance by 
patients. To that end, a recent clinical trial on a prostate 
cancer PRS is informative (61). This study aimed to 
recruit men, measure them for a prostate cancer PRS, and 
perform intensive screening (MRI and biopsy) in those 
men with a PRS in the top decile. Interestingly, only 26% 
of men invited to participate by letter chose to participate, 
suggesting that uptake of PRS-based screening may be low. 
Further studies on this issue will be needed, however, as 
there is a difference between being invited to participate in 
a research study by letter and a screening recommendation 
made by your primary care physician in person. 

Finally, with the advent of new technologies, it remains 
to be seen whether we can improve PRSs based on the 
incorporation of additional genetic factors, such as those 
associated with methylation-based “age acceleration”, 
clonal hematopoiesis and/or telomere length (62), as well as 

germline human leukocyte antigen (HLA) typing in cancers 
where these factors play important roles.

Beyond risk prediction—PRS in prognosis and 
treatment response

Beyond their immediate use in risk prediction and cancer 
prevention, it is possible that germline genetic information 
could also be utilized to build PRSs that predict clinically 
significant end-points such as cancer metastasis, death or 
treatment response. For example, in prostate cancer, while 
various PRSs were developed for the endpoint of incident 
prostate cancer (9,28,63), this is not the endpoint of most 
clinical interest because many incident prostate cancers 
are indolent. Thus, a PRS that predicts incident prostate 
cancer will suffer from the same problem of over-diagnosis 
as existing prostate cancer screening approaches. In fact, 
SNPs associated with prostate cancer risk do not appear 
to correlate with survival or outcome (64,65). In contrast, 
separate SNPs have been identified that are associated 
with prostate cancer survival (66). Thus, it would be worth 
exploring if PRSs could be designed to predict the most 
clinically significant endpoint in cancers such as prostate 
cancer where risk-stratifying cases is as important, if not 
more important, than predicting risk of incident cancer. 

In cardiology, studies show that a PRS can have 
diagnostic utility in identifying individuals who can benefit 
most from a treatment (67). However, in the precision 
oncology domain, research is still needed to understand 
the utility of PRSs in better predicting personal resistance 
or response to treatment. For this purpose, we would need 
to build PRSs to match drugs to individuals who are most 
likely to benefit from them. Briefly, germline genotype data 
can be pooled from multiple medical centers on participants 
of a clinical trial for maximum statistical power to build 
PRSs and to test their predictive ability in stratifying 
patients that are most likely to resist or respond to a specific 
treatment. If successful, such approaches would have 
high impact on clinical trials by focusing on individuals 
with highest response PRSs to a specific treatment, or by 
removing those with high resistance PRSs. These can be 
further combined with additional information such as those 
from mining EHR databases, to test whether even more 
powerful treatment response models can be developed. 
In support of the idea that germline genetic variation can 
influence treatment response, we note that PARP inhibitors 
are approved for several cancer indications on the basis 
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of the presence of either a germline variant or a tumor 
mutation in DNA repair genes.

Conclusions

In summary, PRSs have great potential to play a key role 
in cancer screening, prevention, early detection, as well 
as in precision oncology. Their eventual clinical use will 
depend on the cancer type, other existing risk markers, 
clinical parameters, and available preventive actions. 
Towards this end, beyond continuing to genotype large 
numbers of individuals at population or hospital-scale for 
all cancer types and ancestries, we need to focus research 
on considering where PRS may be most discriminative 
and impactful at the population level, which will greatly 
aid in the development of new methods to overcome the 
challenges described here. 
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