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Background: Accurate preoperative prediction of the invasiveness of lung nodules on computed 
tomography (CT) can avoid unnecessary invasive procedures and costs for low-risk patients. While previous 
studies approached this task using cross-sectional data, this study aimed to utilize the commonly available 
longitudinal data of lung nodules through sequential modellingbased on long short-term memory (LSTM) 
networks.
Methods: We retrospectively included 171 patients with lung nodules that were followed-up at least 
once and pathologically diagnosed with adenocarcinoma for model development. Pathological diagnosis 
was the gold standard for deciding lung nodule invasiveness. For each nodule, a handful of semantic 
features, including size intensity and interval since first discovery, were obtained from an arbitrary number 
of CT scans available to individual patients and used as input variables to pre-operatively predict nodule 
invasiveness. The LSTM-based classifier was optimized by extensive experiments and compared to logistic 
regression (LR) as baseline with five-fold cross-validation. 
Results: The best LSTM-based classifier, capable of receiving data from an arbitrary number of time 
points, achieved better preoperative prediction of lung nodule invasiveness [area under the curve (AUC), 
0.982; accuracy, 0.924; sensitivity, 0.946; specificity, 0.881] than the best LR (AUC, 0.947; accuracy, 0.906; 
sensitivity, 0.938; specificity, 0.847) classifier. 
Conclusions: The longitudinal data of lung nodules, though unevenly spaced and varying in length, can 
be well modeled by the LSTM, allowing for the accurate prediction of nodule invasiveness. Given that the 
input variables of the sequential modelling consist of a few semantic features that are easily obtained and 
interpreted by clinicians, our approach is worthy further investigation for the optimal management of lung 
nodules.
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Introduction

Lung cancer is the leading cause of death among all 
malignancies, with a 5-year survival rate of no more than 
20% (1). National prospective clinical trials have confirmed 
that lung cancer screening by low-dose computed 
tomography (LDCT) can reduce the mortality rate by 
20% compared with chest X-rays (2). Lung nodules are 
the early radiological signs of lung cancer on LDCT 
scans. Numerous radiological societies have established 
guidelines for managing these nodules on the basis of their 
characteristics at baseline, and more importantly, on their 
changing attributes on follow-up scans (3-5). Longitudinal 
imaging profiling of pulmonary nodules can identify fast 
growing nodules with a high suspicion of being malignancy 
requiring further management, which involves invasive 
procedures such as biopsy or surgical resection. However, 
fast growth is only indicative, not conclusive, and post-
operative pathological diagnosis may deem the invasive 
procedures unnecessary. Lung adenocarcinoma is the most 
common type of lung cancer, and usually presents as pure 
ground-glass nodules (pGGN) or subsolid nodules on CT 
scans. Less invasive adenocarcinomas, including atypical 
adenomatous hyperplasia (AAH), adenocarcinoma in situ 
(AIS), and minimally invasive adenocarcinoma (MIA), 
have an excellent prognosis with surveillance alone, while 
invasive adenocarcinoma (IAC) has a poor prognosis, and 
is better managed by surgical resection (6). Therefore, to 
facilitate optimal management, pre-operative determination 
of both the growth patterns of pulmonary nodules and their 
invasiveness is desirable. 

Various approaches for the preoperative imaging-
based prediction of nodule invasiveness on CT scans have 
shown promising results, including conventional machine 
learning, radiomics, and more recently, deep learning (7-9).  
Both conventional machine learning and radiomics try to 
map manually defined features to classification targets using 
classifiers including logistic regression (LR) and random 
forests, and differ in the inputs that they accept. The 
inputs to the conventional machine learning are usually 

semantic features that are limited in number, but can be 
interpreted by experts and are commonly used by clinicians 
to characterize lung nodules. Examples of these features 
include size, attenuation pattern, and lobulation (10).  
The inputs to radiomics methods consist of hundreds 
of radiomic features, which are much less intuitive and 
interpretable, and are extracted from three-dimensional 
regions of nodules on CT images using algorithms 
based on predefined mathematical formulae (7,8). Deep 
learning, which is built on multiple stacked layers of neural 
networks, can map raw data signals (from CT images in our 
case) directly to targets and learn discriminative features 
during the supervised training process, without requiring 
human input to direct this learning process (11). As in 
other domains, deep learning has achieved remarkable 
performance in medical imaging analysis, and has reached 
a level of performance close to that of radiologists in 
discerning the lung nodule phenotypes (9). Despite their 
success, these efforts remain suboptimal, as they only focus 
on a ‘snapshot’ of a nodule, neglecting the rich longitudinal 
data that clinicians routinely acquire during follow-up, 
and which can track growth patterns. Lung nodules may 
change morphologically over time via interaction with the 
human immune system, and a snapshot may be insufficient 
to capture the necessary information and make accurate 
predictions. 

The recurrent neural network (RNN) is a well-
known sequential modelling method that can handle 
longitudinal data. First proposed in 1997, the long short-
term memory (LSTM) network (12) is a go-to RNN that 
is being increasingly adopted for sequential modelling 
in multiple fields, including natural language processing, 
image captioning, and medical imaging (13,14). Numerous 
classification studies have demonstrated that sequential 
modelling accepting longitudinal or time-series data as 
inputs outcompeted cross-sectional modelling that only 
received data from a single time point. These classification 
tasks include abnormalities detection on chest X-ray (15),  
focal liver lesion classification (16), identification of 
coronavirus disease 2019 (COVID-19) patients prone 
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to malignant progression (17), and prediction of nodule 
malignancy on CT (18). Sequential modelling using an 
LTSM has also been used to predict the invasiveness of 
pulmonary nodules using consecutive serial CT images (19).  
However, this study only included CT images from two 
consecutive time points as inputs, excluding the remaining 
longitudinal data that is commonly available for patients 
with lung nodules. Therefore, the full potential of 
sequential modelling has not yet been realized, at least in 
terms of predicting tumor invasiveness. 

In this study, we aimed to harness the sequential 
modelling abilities of an LSTM to build a high-performance 
classif ier,  in order to pre-operatively predict the 
invasiveness of lung nodules using semantic features that are 
commonly used in clinics and were taken from all historical 
examinations available for each individual patient (Figure 1). 
The patients could differ in the number of CT examinations 
they underwent for their lung nodules, as well as the 
intervals between any two consecutive CT examinations. 
We chose semantic features (mainly size and intensity) 
for the modelling because they are easy to obtain and are 
routinely used by clinicians to assess growth patterns with 
decent accuracy. In contrast, radiomic features often depend 
on the delineation of nodule contours, while deep learning 

requires the registration of multiple series of CT scans 
to locate the same nodule. We explored ways to optimize 
the LSTM-based classifier by tuning the model hyper-
parameters and experimenting on different combinations 
of time-invariant and time-varying nodule features. To 
showcase the superiority of sequential modelling by LSTM, 
we also built LR classifiers for comparison purposes. We 
present the following article in accordance with the STARD 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-22-319/rc).

Methods

Data collection

This prediction accuracy study was approved by the 
Institutional Review Board of Shanghai Chest Hospital 
(No. KS1956). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). Given the 
retrospective nature of the analysis, the Board waived the 
requirement for patients’ written consent, and anonymity 
was ensured for all patient data.

We retrospectively reviewed the records of patients who 
were found to have pulmonary subsolid nodules on CT 

Figure 1 Flowchart of the clinical pipeline for managing lung nodules. The red box indicates that the sequential model harnesses all of 
the follow-up data collected in radiology to predict the preoperative invasiveness of lung nodules and to potentially save patients with non-
invasive cancer from undergoing invasive procedures such as needle biopsy and surgical resection.
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scans, were followed-up at least once, and finally underwent 
video-assisted thoracoscopic surgery (VATS) together with 
postoperative pathological diagnosis of nodules at Shanghai 
Chest Hospital between September 2009 and April 2018. 
The inclusion criteria for this study were as follows: (I) 
patients’ lung nodules should have a major-axis length of 
≥5 mm but ≤3 cm on the initial CT scan; (II) the initial and 
follow-up CT images of the patients should have a section 
thickness ≤1 mm; and (III) the postoperative pathological 
diagnosis of the nodules should be lung adenocarcinoma. 
The exclusion criteria were as follows: (I) patients who 
received any anti-cancer treatment such as chemotherapy 
and targeted therapy during follow-up; (II) patients who 
only received a contrast-enhanced scan during any CT 
examination visit; and (III) patients with a history of 
previous or concurrent malignancy. A flow chart of the 
inclusion and exclusion process is shown in Figure 2.

The pathological diagnosis was performed by two 
experienced pathologists according to the 2015 World 
Health Organization (WHO) classification of lung tumours. 
On the basis of the presence of invasive components and 
the degree of invasion, the samples were divided into two 
groups. The first group included AIS (with no invasive 
features) and MIA (≤5 mm invasion), and the second group 
was IA (>5 mm invasion).

Image acquisition

The included patients were scanned with multi-detector 
CT scanners (Brilliance 64, Ingenuity CT128, Brilliance 
iCT256; Philips Medical Systems, Cleveland, OH, USA) 

using the following CT parameters: tube voltage, 120 kVp; 
tube current, 250 mA; pitch, 0.984; and thickness, 1 mm. 
CT images were reconstructed at 1.0 mm thickness and  
1 mm interval using a sharp reconstruction kernel (C filter). 

Modelling

To characterize the nodules in the study, two pulmonary 
radiologists with over 5 years of experience identified the 
morphological types of the nodules and measured their size 
and intensity on the CT scans of each examination using 
ITK-SNAP software (version 3.8.0; http://www.itksnap.
org), according to the recommendations of the Fleischner 
Society (20). The longitudinal data of a typical patient in 
our study are presented in Figure 3. The morphological 
types were solid, part solid, and GGN. For the size of 
the nodules, the major axis length (Lmajor) and minor axis 
length (Lminor) on the axial view were obtained on both the 
lung window (LW; level, −520 HU; width, 1,450 HU) and 
mediastinal window (MW) settings (level, 50 HU; width, 
400 HU). For intensity, we roughly drew a sphere-like 
region of interest of the nodules and then recorded the 
mean CT value (I) inside it. We approximated the volume 
(V) of the nodules at a particular time point based on the 
Lmajor and Lminor on the lung window settings according to the 
following formula: 

 ( )1/12 major minor major minorV L L L Lπ= × × × × +  [1]

For each nodule, we also computed the time interval 
(T) in days since the initial discovery for every examination 

Figure 2 Flowchart of the inclusion and exclusion process for the study population. NSCLC, non-small cell lung cancer; VATS, video-
assisted thoracoscopic surgery; CT, computed tomography.
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visit. The time interval at baseline examination was taken 
as zero. Using the Vinital at baseline examination, Vfinal at 
preoperative examination, and the duration between the 
two time points (T2ends), we computed the volume doubling 
time (21) according to the following formula: 

 
 ( ) ( )2Volume Doubling Time 2 f inal initialVDT log T ends log V V= × ÷

 [2]
In total, we obtained seven time-specific features for a 

nodule at a particular time point, including four lengths 
consisting of Lmajor and Lminor on both LW and MW, intensity 
(I) of the mean CT value, time interval (T) since initial 
discovery, and approximate volume (V). The seven time-
varying features, together with the four time-invariant 
features of nodule location, morphology, patient age, and 
gender, formed a pool of semantic features used to build 
the classifiers for distinguishing less invasive nodules (IAC) 
(AAH, AIS, and MIA) from IAC. 

To provide baseline models for comparison, we 
developed three LR-based classifiers using nodule features 

at baseline, pre-surgery, and the two-ends of the follow-
up sequence. To sequentially model the longitudinal data, 
we trained an LSTM-based classifier using nodule features 
measured on two or more examinations available to each 
patient. An architectural overview of the LSTM classifier 
is depicted in Figure 4. The LSTM classifier consisted 
of one fully connected (FC) layer, followed by a batch 
normalization layer, three LSTM layers, and finally a 
projection head outputting two scores as prediction. We 
applied the following equations iteratively from t=1 to T to 
update the hidden states: 

 ( )1t g f t f t ff W x U c bσ −= + +  [3]

 ( )1t g i t i t ii W x U c bσ −= + +  [4]

 ( )1t g o t o t oo W x U c bσ −= + +  [5]

 ( )1t t t t c c t cc f c i W x bσ−= + +   [6]

 ( )t t h th o cσ= 
 [7]

where i, o, f, and c are the input gate, output gate, forget 

Figure 3 The imaging history and hematoxylin & eosin staining (H & E, ×200) of a 56-year-old male patient with a part-solid lung nodule 
confirmed as invasive adenocarcinoma. The nodule and its surroundings are displayed using a lung window (upper row) and a mediastinal 

window (lower row) for three unevenly temporally-spaced CT scans, as indicated by the axis at the bottom.  C
tiX  represents the C-dimensional 

imaging features extracted at time point ti [i∊(0,1,2)], and Y2 represents the invasiveness of the nodule in one-hot format (see Figure 4 for 
more information). CT, computed tomography.

0
C
tX

0
C
tX

1
C
tX

1
C
tX

2
C
tX

2
C
tX

Y2



Tao et al. Longitudinal prediction of lung nodule invasiveness850

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2022;11(5):845-857 | https://dx.doi.org/10.21037/tlcr-22-319

gate, and cell activation vectors, respectively; σ is the 
sigmoid function; g is the cell input activation function; and 
h is the cell output activation function. Wf,Wi,Wo,Wc denote 
the weight matrices, and bf,bi,bo,bc denote the bias vectors. 

Since the seven nodule features differed in scale, we 
normalized them separately using their individual mean and 
standard deviation over all of the training samples, so as to 
achieve better generalization. 

Statistical analysis

We also conducted chi-square tests of independence to 
examine the relationship between nodule invasiveness 
and other categorical variables, including nodule location, 
nodule morphology, number of CT scans, and the patient’s 
gender. For the seven time-specific features, we performed 
independent t-tests to evaluate the differences between 
the IAC group and the less-IAC group. With limited data 
samples, we applied five-fold cross validation to test the 
performance of the proposed classifiers, which is considered 
more robust than a single split of the whole dataset into 
training and testing set. The area under the curve (AUC) 
of the receiver operating characteristics (ROC) curve is 
used as the main indicator of the performance of all of the 
classifiers. The Delong’s test was employed to deciding if 
the difference of AUC between models reaching statistical 
significance (22). All open-source packages modelling and 
statistical analyses were run in Python 3.8 using open-

source packages PyTorch (v1.7.1 + cu110) (23), Pytorch-
lightning (v1.3.8), Scikit-learn (v0.24.2), and Researchpy 
(v0.3.2). 

Results 

In total, 171 patients were finally included, consisting of 58 
men and 113 women with a mean age of 59.04±10.17 years. 
Each patient had one valid lung nodule for analysis. All 
nodules were followed up at least once over an average of 
784.64±537.44 days. At baseline, the mean sizes of the nodules 
were 1.03±0.62 cm in the major axis and 0.80±0.41 cm  
in the minor axis, with an intensity of −428.41±249.94 HU. 
Postoperative biopsy identified 59 less-invasive cancers 
and 112 invasive adenocarcinomas. These two invasiveness 
groups differed significantly in terms of gender, age, nodule 
morphology, nodule size, and intensity (see Table 1). As 
shown in Figure 5, the temporal changes in the sizes of 
individual nodules across all CT examination visits are 
presented separately for the less-invasive and invasive 
groups.

When training the conventional LR for binary 
classification of nodule invasiveness, we attempted to use 
all 11 nodule features as input variables, but found that 
volume measured using the lung window setting (Vlw) failed 
to fit the model, and therefore, we only used the other 10 
variables in the modelling. In the cross-validation, the LR 
model built using nodule variables at baseline (LR_N10@

Figure 4 Model architecture of the LSTM-based recurrent neural network that receives the semantic features ( C
tiX ) of length C 

(C-dimensional input) from an arbitrary number of timepoints (tn) and predicts the probabilities of a nodule being invasive or less invasive 

(P2, indicating two classes). CE was used to compute the loss between the model prediction and ground truth Y2.  K
tiF  represents the output 

feature vector of length K at time point ti from the corresponding LSTM layer. We experimentally investigated either the  K
tfF  vector at the 

final time point or the mean of all F at all available timepoints as inputs for the FC head. The FC head consisted of a batch normalization 
layer, fully connected layer, and a SoftMax layer projecting the length K vector to length two vectors as a prediction. LSTM, long short-
term memory; FC, fully connected; CE, cross entropy. 
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Table 1 Characteristics of the lung nodules 

Characteristics Less invasive cancers Invasive cancers Statistics (𝜒2/t test)

Gender (N)  9.38**

Male 11 47

Female 48 65

Age (years) 56.14±12.24 60.56±8.56 −2.76**

Nodule location 1.71

Left upper 14 33

Left lower 7 10

Right upper 26 42

Right middle 3 9

Right lower 9 12

Nodule morphology 15.70**

Solid 1 20

Part-solid 0 9

Pure ground-glass 58 83

Nodule feature on baseline

Lmajor on lung window (cm) 0.84±0.44 1.13±0.67 −3.07**

Lminor on lung window (cm) 0.70±0.35 0.85±0.43 −2.22*

Lmajor on mediastinal window (cm) 0.01±0.08 0.28±0.68 −3.07**

Lminor on mediastinal window (cm) 0.01±0.06 0.20±0.45 −3.18**

V on lung window (cm3) 0.47±1.13 1.07±2.90 −1.52

I (mean CT value in manual ROI) −506.43±169.04 −387.30±275.33 −3.03**

Volume doubling time (years Approx.) 41.54±57.32 21.71±45.46 2.47*

Duration of follow-ups (days) 703.88±556.66 827.18±524.56 −1.43

Number of follow-ups (N) 4.39

1 1 1

2 14 16

3 6 20

4 13 21

5 7 18

6 18 36

*, P<0.05; **, P<0.01. Lmajor and Lminor are the nodule lengths in the major axis and minor axis on the axial view. CT, computed tomography; 
ROI, region of interest. Values are mean ± standard deviation. 
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1, D1 indicates unidirectional LSTM and D2 indicates bidirectional.
2, Fmean represents the model in which the LSTM-embedded features of all time points are averaged first and then sent to the FC head, 
whereas Flast indicates that only the LSTM-embedded features from the last time point were sent to the FC head for classification.

Figure 5 Scatter plot of the size (mean of the major axis length and minor axis length using a lung window setting) of individual nodules 
during each CT examination visit in the invasive group (A) and less-invasive group (B). CT, computed tomography.

Figure 6 ROC curves of all classifiers for nodule invasiveness developed in this study. (A) Comparison of three logistic regression-based 
classifiers built on nodule features from different time points. (B) Comparison of several LSTM-based classifiers built with different 
hyperparameters. The details of these models can be found in the results section. (C) Comparison between the best logistic regression model 
and the best LSTM model. LR, logistic regression; AUC, area under the curve; LSTM, long short-term memory; ROC, receiver operating 
characteristics. 

Baseline) performed significantly worse than the LR model 
built using variables at preoperative CT scan (LR_N10@
Final) (AUC 0.716 vs. 0.885, respectively, P<0.001). The 
LR_N10@Final model in turn performed significantly 
worse than the LR built using features from both time 
points (LR_N10@2Ends; 0.885 vs. 0.947, respectively, 
P<0.001) (see Figure 6A). 

To optimize the LSTM-based classifier, we evaluated 
several hyper-parameters, including the directionality 
of LSTM layers (D1 or D21), and experimented with 
how to use the LSTM embedded feature vectors from a 
mutable number of time points for classification (Fmean or 
Flast2), which data points to include in the modelling(the 
baseline and pre-surgery visits or all visits), and which 

Invasive group
6

5

4

3

2

1

0

N
od

ul
e 

si
ze

, c
m

0            500         1000         1500        2000
Days since baseline scan

6

5

4

3

2

1

0

N
od

ul
e 

si
ze

, c
m

0        500      1000    1500     2000     2500
Days since baseline scan

Less-invasive group
A B

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

1.0        0.8         0.6        0.4        0.2        0.0
Specificity

LR_N10@2Ends (AUC: 0.947)
LR_N10@Final (AUC: 0.885)
LR_N10@Baseline (AUC: 0.716)

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

1.0        0.8         0.6        0.4        0.2        0.0
Specificity

LSTM_D2Flast_N6@All (AUC: 0.982)
LSTM_D2Flast_N6@2Ends (AUC: 0.871)
LSTM_D2Fmean_N11@2Ends (AUC: 0.676)
LR_N10@2ENDS (AUC: 0.947)

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

1.0        0.8         0.6        0.4        0.2        0.0
Specificity

LSTM_D2Flast_N6@All (AUC: 0.982)
LSTM_D2Flast_N7@All (AUC: 0.977)
LSTM_D2Flast_N10@All (AUC: 0.951)
LSTM_D2Flast_N11@All (AUC: 0.955)
LSTM_D2Fmean_N11@All (AUC: 0.910)
LSTM_D1Fmean_N11@All (AUC: 0.753)

A B C



Translational Lung Cancer Research, Vol 11, No 5 May 2022 853

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2022;11(5):845-857 | https://dx.doi.org/10.21037/tlcr-22-319

nodule variables to use for input to the models (11, 10, 
7, or 63). The performance measures of all LSTM-based 
classifiers experimented with are summarized in Table 
2. Nodule variables at the baseline and preoperative 
visits did not produce a high-performing LSTM-based 
classifier (LSTM_D2Fmean_N11@2End), with an AUC 
of only 0.676, which was significantly worse than the LR-
based classifier (LR_N10@2Ends). Therefore, we used 
nodule variables from all examination timepoints in the 
remaining LSTM models. Within the LSTM models, 
the bidirectional LSTM performed better than the 
unidirectional LSTM (AUCs: 0.910 versus 0.753), and 
Flast performed better than Fmean (AUCs: 0.955 versus 
0.910). Four unchanging nodule features, including nodule 

location, nodule morphology, as well as the patient’s gender 
and age, were unhelpful in the LSTM models (0.955 versus 
0.977 for LSTM_D2Flast_N11@All and LSTM_D2Flast_
N7@All, respectively). The LSTM-based classifier worked 
slightly better without Vlw as an input variable (0.977 versus 
0.982 for LSTM_D2Flast_N7@All and LSTM_D2Flast_
N6@All, respectively). The ROC curves of these LSTM 
models are shown in Figure 6B. 

Finally, the best LSTM model (LSTM_D2Flast_N6@
All) surpassed the best LR model (LR_N10@2Ends) in the 
binary classification task of nodule invasiveness, and the 
difference was statistically significant (0.982 versus 0.947, 
P<0.05). The ROC curves of both models are shown in 
Figure 6C. 

3, 11 represents all variables available in this study; 10 includes all variables except for the volume on lung window setting (Vlw); 7 means that 
four variables unchanging across follow-up (nodule location, nodule morphology, patient gender, and patient age) were discarded; 6 signifies 
that Vlw was discarded from the set of 7.

Table 2 The performance of all classifiers experimented with in this study. 

Classifiers
Input variables

AUC (95% CI)d Accuracy Sensitivity Specificity
Number of variablesc Timepoint(s)

Logistic regression 11 Baseline Failed to fit

10 Baseline 0.716 (0.636–0.795)* 0.678 0.804 0.441

10 Pre-surgery 0.885 (0.831–0.939)* 0.807 0.848 0.729

10 Two ends 0.947 (0.908–0.986)* 0.906 0.938 0.847

LSTM

D1a; Fmeanb 11 Two ends 0.676 (0.595–0.756)* 0.585 0.688 0.390

D1; Fmean 11 All visits 0.753 (0.680–0.826)* 0.673 0.759 0.508

D2; Fmean 11 All visits 0.910 (0.868–0.951)* 0.825 0.893 0.695

D2; Flast 11 All visits 0.955 (0.927–0.982)* 0.871 0.893 0.830

D2; Flast 10 All visits 0.951 (0.922–0.981)* 0.883 0.929 0.780

D2; Flast 7 All visits 0.977 (0.961–0.994)* 0.900 0.920 0.864

D2; Flast 6 All visits 0.982 (0.966–0.997)* 0.924 0.946 0.881
a, D1 stands for unidirectional LSTM; D2 stands for bidirectional LSTM; b, means that the embedding features to the LSTM from all time 
points were averaged first and then sent to the FC head, while Flast indicates that only the embedding features from the last time point 
were sent to the FC head for classification; c, each nodule was characterized by the 11 variables specified in the Methods section. Using 
logistic regression, only 10 variables were found to fit the model, and the volume on lung window setting (Vlw) was excluded. For the 
LSTM, we experimented with four combinations of variables: all 11 variables, 10 variables with Vlw removed, seven with the four unchanging 
ones (nodule location, nodule morphology, patient gender, and patient age) removed, and 6 variables with Vlw also removed from the set of 
seven variables; d, Delong’s test was used to compare the AUC (95% CI) performance of all classifiers with that of the logistic regression 
using 10 feature inputs from both the baseline visit and the preoperative visit (LR_N10@2Ends). Statistically significant differences were 
labeled as: *, P<0.001. AUC, area under the curve; CI, confidence interval; LSTM, long short-term memory.
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Discussion

Preoperative prediction of the invasiveness of lung nodules 
can avoid unnecessary invasive procedures for patients 
with a good prognosis, and has attracted research attention 
amid the excitement generated by advances in artificial 
intelligence. Most previous studies have attempted to make 
predictions based on data from a single time point, with 
the hope of minimizing the number of follow-ups as well 
as the associated radiation risk and economic burden (7,8). 
However, the goal of accurate prediction might not be so 
achievable, and the precision of such an approach cannot 
be guaranteed, with follow-ups being essential for clinicians 
to characterize the growth patterns of indeterminate lung 
nodules and recommend management strategies. A study 
has attempted to exploit follow-up data through sequential 
modellingfor phenotyping lung nodules (21). Continuing 
this line of research, we conducted extensive experiments 
to push the performance limit using semantic features 
that are easily obtained in clinics and represent the entire 
imaging history of each individual patient. Through cross-
validation, we found that a bidirectional LSTM with time-
varying features from all available time points as input 
(LSTM_D2Flast_N6) performed best in predicting the 
invasiveness of lung nodules. Confirming our hypothesis, 
this optimal LSTM-based classifier also outperformed the 
best LR models, which did not possess such sequential 
modellingcapacities. Through further verification using 
a larger dataset, we found that our LSTM system has 
the potential to be integrated into the clinical pipeline of 
nodule management, so as to reduce unnecessary invasive 
procedures and costs.

In this study, we selected a range of lung nodule features 
that are commonly measured in the clinic (mainly size and 
intensity measures) to build an imaging biomarker (24)  
for nodule invasiveness. As shown in Table 1, most of the 
features at baseline examination were associated with 
nodule invasiveness, as shown in previous studies (7,8). 
For instance, a study has reported that a rapid change in 
nodule intensity was associated with faster growth in lung 
nodules (25). Studies also demonstrated that the VDT 
of invasive lung adenocarcinoma (showing as a subsolid 
nodule on CT) was significantly shorter than that of its 
non-invasive counterpart (21,26). The high performance 
of the models built in this study supports the idea that 
these simple, interpretable, and easy-to-obtain imaging 
features are capable of building accurate classifiers for 
nodule phenotyping. Previous study has also shown 

that the semantic features of nodules are not inferior to 
radiomic features for building accurate classifiers of nodule 
malignancy (27). 

The use of these simple features also alleviates the 
challenge of sequential modellingof irregular longitudinal 
data, which occurs because the follow-up for lung nodules 
is often not regularly spaced, and the total number of 
examinations can vary from patient to patient (Figure 3). 
A naive LSTM network expects regularly sampled data 
and does not consider the varying interval between data 
points (15). Our study treated the time elapse of each 
follow-up since baseline examination as a nodule feature 
that could be directly input into the LSTM, thereby 
achieving promising results. This intuitive approach was 
feasible in our study because we only used a small number 
of semantic features at any particular time point, and the 
interval feature could therefore exert a significant influence. 
To the contrary, previous studies on sequential modelling 
used high-dimensional discriminative features, usually 
involving hundreds of dimensions, extracting them using a 
convolutional neural network, and a single interval feature 
could easily be overwhelmed (15,18). The solution offered 
in previous studies was to incorporate the time into the 
computational process of the LSTM as weighting factors 
for the high-dimensional feature vector. Although less 
intuitive, such methods also have merit, and are worthy of 
investigation in future studies (15,18).

Our study also demonstrated the superiority of using the 
entire imaging history available for each patient (LSTM_
D2Flast_N6@All) over only using data from a fixed number 
of timepoints (LSTM_D2Flast_N6@2Ends). This finding 
is consistent with a previous treatment response study that 
also used serial CT data (28), and another deep learning 
study that predicted the future contours of the tumor after 
radiation therapy (14). Xu et al. explored the same task of 
preoperative determination of nodule invasiveness as the 
present study, and only used CT scans at two time points 
as inputs into their sequential model, without considering 
the interval in between them (19), which might have 
contributed to their suboptimal performance. Similarly, 
Gao et al. built a Convolutional Neural Networks (CNN)-
LSTM hybrid sequential model to predict the likelihood of 
nodule malignancy and explored ways to model temporal 
dependency for both regular and irregular longitudinal 
data (18). However, they only used two time points in 
their modelling, fixed and limited. Sacrificing parts of 
the longitudinal data of some patients to accommodate 
others with less data points might have resulted in the less 
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promising performance of their model. Again, our method 
considered all of the longitudinal data available for each 
patient and thus achieved higher accuracy.

Follow-up data are essential for managing lung nodules 
found on CT scans, in terms of both guidelines and in 
clinical practice. Our study provides further empirical 
evidence illustrating that such sequential lung nodule data 
can be modelled by LSTMs for classification purposes, 
and we were able to improve on the performance of a 
conventional LR classifier by a significant margin (AUC 
0.982 versus 0.947). To make the comparison rigorous, we 
developed three baseline models using LR. Within these 
baseline models, some interesting observations were made. 
First, the preoperative LR (LR_N10@Final) performed 
better than the baseline LR (LR_N10@baseline), which 
made sense because the preoperative examination was 
temporally closer to the nodule’s pathological diagnosis 
compared to the baseline examination, and the cellular 
composition of the nodules would evolve over time. 
Digumarthy et al. also found that radiomic features 
measured from lung nodules on preoperative CT were 
more predictive for nodule malignancy than the same 
radiomic features measured on baseline CT (29). Second, 
the LR_N10@2Ends model, which combined both baseline 
and preoperative CT image features, achieved the highest 
accuracy among the three LR models, which suggests that 
although LR is incapable of sequential modelling, it could 
benefit from additional information from more time points. 

When optimizing the LSTM-based classifiers, we made 
some interesting findings that may be helpful for futures 
studies on sequential modelling. The last embedded feature 
was more discriminative than the averaged embedded 
features from all time points. Also, the exclusion of 
time invariant features, namely nodule location, nodule 
morphology, patient gender, and patient age, also boosted 
performance. The estimated VDT did not contribute to the 
model performance. 

Our study has several limitations that should be noted. 
First, we did not use external data to evaluate our models, 
which may have hindered the generalizability of our method. 
In this study, we only evaluated the performance of our 
model on positive samples with confirmed early-stage lung 
cancer; thus, the behavior of our model on negative samples 
is unknown and should be investigated in future studies. 
Secondly, the semantic features used in our study were 
obtained by radiologists and may have been influenced by 
subjectivity and individual bias, and may therefore suffer 
from interobserver variability. Despite being diagnostic, 

these features were limited in number and might not have 
fully captured characteristics that are useful for discerning 
nodule invasiveness. Future studies can explore ways to 
integrate more features into the LSTM system, including 
radiomic features and CNN-extracted features, as reported 
by Fang et al. (17). Thirdly, some nodules in our study that 
were confirmed as early stage lung cancer did not increase 
in size or grew very slowly over a long period, as shown in 
Figure 5, and therefore deviated from the exponential growth 
pattern described in previous studies (26,30). Since the focus 
of our study was on the sequential modelling, we did not 
make efforts to analyze these nodules using indolent growth 
patterns, although this is worth exploring in future studies.
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