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Introduction

Small cell lung cancer (SCLC) and Ewing’s sarcoma (ES) 
represent highly aggressive malignancies that show extensive 
metastatic potential, high chemoresistance in advanced 
stages and a dismal prognosis. Treatment comprises an 
arsenal of conventional cytotoxic drugs in multimodal 

combination regimens due to the failure of novel drugs and 
targeted therapy for the last decades. Clearly, SCLC and ES 
are different tumor entities deriving from neuroendocrine 
and neuroendocrine/mesenchymal precursors, respectively. 
Whereas ES affects a very small population of mostly 
juveniles,  SCLC is responsible for the death of a 
considerable fraction of lung cancer patients. In order to 
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develop novel approaches, a comparison of the biological 
characteristics of SCLC and ES may help to identify the 
key mechanisms of chemoresistance. The distinct genomic 
changes found in these tumors converge to a phenotype 
distinguished by high proliferation, early dissemination 
and profound refractoriness to present regimens of 
chemotherapy, either primary or in advanced stages or in 
relapses. Chemotherapy regimens are similar for SCLC and 
ES with very low survival rates in metastatic patients.

The rationale of the present review is to compare the 
current knowledge of the cell biological characteristics 
of SCLC and ES and to derive from both tumor entities, 
distinguished by a dismal prognosis, clues in regard to the 
mechanisms of chemoresistance and possible improvements 
of the therapeutic regimens. In detail, characterization of 
the genomic landscape of both SCLC and ES has not led to 
therapeutic advances and this review aims at the discussion 
of the cell physiological-mediated chemoresistance at the 
tumor level as key barrier of effective treatment. I present the 
following article in accordance with the Narrative Review 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-22-58/rc).

Methods 

PubMed and Euro PMC were searched from January 
1st, 2012 to January 16th, 2022 using the following key 
words: “SCLC”, “Ewing’s sarcoma”, “Genomics” and 
“Chemoresistance” as well as own work (Table 1).

Characteristics of SCLC

Lung cancer is leading cancer mortality worldwide, with 
1.8 million deaths in 2018 and the histological lung cancer 
subtype SCLC is responsible for at least 200,000 deaths  

globally each year (1). SCLC is linked to tobacco consumption, 
occurring with a lag time of about 30 years of smoking, and 
has a dismal prognosis with 5-year survival rate for all stages 
of 7% (2-4). The SCLC tumor mutational profiling reveals 
smoking signature as direct evidence for the initiation of 
SCLC by tobacco carcinogens (5). The US Surveillance, 
Epidemiology, and End Results (SEER) SCLC registry 
data verify that for the 1983–2012 period the overall 
survival (OS) shows no improvement (6). Only one-
third of the SCLC patients present with localized disease, 
where cure may be achieved. Based on the expression 
of transcription factors, four major types of SCLC were 
defined as ASCL1 (SCLC-A), NEUROD1 (SCLC-N), 
POU2F3 (SCLC-P) or YAP1 (SCLC-Y) subtypes (7). 
Almost all cases of SCLC exhibit concurrent inactivation 
of the TP53 and RB1 suppressor genes (5). Rare cases of 
SCLC may develop through histological NSCLC-SCLC 
transformation of tyrosine kinase inhibitor (TKI)-treated 
lung adenocarcinomas in never-smokers (8).

The diagnosis of SCLC is usually established on biopsy 
or cytological samples leaving little tissue for research (9). 
In parallel to cytokeratins, pan-neuroendocrine markers 
are tested, with synaptophysin (SYP) and chromogranin A 
(CHGA) as first-choice markers, and CD56 and neuron-
specific enolase (NSE) as additions with limited specificity. 
The mutations of RB1 and TP53 in SCLC result in RB1 
loss and p53 overexpression in almost all samples (10). 
SCLC is thought to acquire distinct metastatic ability 
early in the course of tumor progression that affects 
predominantly the contralateral lung, the brain, liver, 
adrenal glands and bone (11). 

Genomics of SCLC 

Besides the loss of p53 and RB1 in SCLC, amplified genes 

Table 1 Details of the search method for this narrative review

Items Specification

Date of search 16.01.2022

Databases and other sources searched PubMed, Euro PMC, Own Work

Search terms used “SCLC”, “Ewing´s sarcoma”, with “Genomics” and “Chemoresistance”

Timeframe 01.01.2012–16. 01. 2022

Inclusion and exclusion criteria Original publications, reviews and abstracts

Selection process Selection by author

Any additional considerations, if applicable None

https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-58/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-58/rc
https://seer.cancer.gov/
https://seer.cancer.gov/


Translational Lung Cancer Research, Vol 11, No 6 June 2022 1187

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2022;11(6):1185-1198 | https://dx.doi.org/10.21037/tlcr-22-58

of the MYC family members, MYC, MYCL and MYCN, 
are found in a subset of primary tumors and in patient-
derived as well as circulating tumor cell (CTC)-derived 
xenografts (12,13). Furthermore, the loss of RB-related 
p107 or p130 proteins, alterations in the PTEN pathway 
and NOTCH receptors and of the chromatin regulator 
CREBBP as well as a high expression of Bcl-2 have all 
been held responsible for promoting growth and survival in 
SCLC. High expression of the stem cell transcription factor 
SOX2 has been suggested to cause plasticity in SCLC cells 
lineages (12). Chromatin modifiers are frequently mutated 
in SCLC, pointing to epigenetic regulation to cell-fate 
alterations (14). SCLC tumors are highly heterogenous 
and evasion of subpopulations of cancer cells may be an 
important mechanism that causes refractoriness to therapy 
(15,16). Targeting of plasticity of SCLC tumors may hinder 
the emergence of clinical resistance but the regulation 
of transcriptional changes in SCLC cells is poorly 
characterized (11). 

SCLC CTCs

In accordance with the high metastatic capacity, the 
concentration of CTCs in SCLC exceeds that of solid 
tumor with exception of inflammatory breast cancer by a 
wide margin (17). This high number of CTCs in SCLC 
lends itself to the study of the biology of metastatic 
seeding, including genomic preconditions and tumor 
cell heterogeneity (18,19). The isolation of CTCs from 
the blood of SCLC patients can compensate for the lack 
of tumor material of advanced tumors. Furthermore, 
this property of SCLC has been taken advantage of to 
establish a number of permanent SCLC CTC cell lines 
for detailed characterization (20,21). Adhesion between 
CTCs in small clusters of several cells has been suggested 
as important aspect of cell survival during metastasis, 
most likely by increasing removal of CTCs from the 
circulation and homing in small capillaries (22). The most 
distinguishing feature of permanent SCLC CTCs lines 
in vitro is the spontaneous formation of large spheroids, 
termed tumorospheres, a process that in other cancer 
cell lines has to be enforced by nonadherent cell culture 
conditions (20). However, both clinical and basic research 
are in need of controlled clinical trials collecting tumor 
samples to characterize drivers of SCLC and corresponding 
inhibitors. An alternative source of SCLC cells are pleural 
effusions that contain considerable numbers of tumor cells, 
especially at the advanced stage (21). Mouse models of 

SCLC using patient-derived xenografts (PDX) are limited 
by non-orthotopic growth of the tumor cells in a murine 
microenvironment and poor representation of the human 
tissues (23). 

Therapy of SCLC 

Care of SCLC by surgery and adjuvant platinum-based 
chemotherapy is feasible for a few very early-stage disease 
patients but in most cases, patients present with metastatic 
disease that is treated with systemic chemotherapy with 
or without immunotherapy (24). In the beginning, 
disseminated SCLC is highly sensitive to platinum/
etoposide combination therapy and response rates are 
well over 60% (25). However, for the majority of patients 
recurrent disease appears invariably leading to a median 
survival time of less than 2 years for patients with confined 
disease and of approximately 1 year for patients with 
extensive disease. Alterations in the local tumor stroma and 
in the immune microenvironment seem to contribute to 
SCLC tumorigenesis (2). 

Most chemotherapeutics for the therapy of SCLC 
comprise DNA-targeting agents, such as cisplatin, DNA 
topoisomerase inhibitors, such as etoposide or topotecan, 
or γ-radiation that impairs either DNA synthesis, DNA 
replication or repair. Local treatment options include 
surgery and radiotherapy and in non-metastatic SCLC 
5-year survival rates of 25–30% can be achieved. The 
standard 1st line chemotherapy regimen is cisplatin/
etoposide (EP), which has not changed for the past three 
decades. Other chemotherapeutic drugs studied have 
activity in these patients but failed to show superiority. The 
topoisomerase I inhibitor topotecan is the single approved 
agent for 2nd line therapy of recurrent or metastatic 
SCLC, but combinations of doxorubicin/epirubicin with 
cyclophosphamide and vincristine (ACO/ECO) are likewise 
in use. The EP therapy for SCLC comprises five courses 
of etoposide 100 mg/m2 IV and cisplatin 75 mg/m2 IV 
on day 1, followed by oral etoposide 200 mg/m2 daily 
on days 2–4 (26,27). Topotecan is applied at a dosage of  
1.5 mg/m2 IV daily for days 1–5 every 3 weeks. The CEV-
regimen consists of five courses of epirubicin 50 mg/m2, 
cyclophosphamide 1,000 mg/m2, and vincristine 2 mg, 
all applied IV on day 1 every 21 days. Furthermore, a 
combination of cisplatin, etoposide, and irinotecan has been 
administered successfully to sensitive relapsed SCLC (28). 
Lurbinectedin, an alkylating agent that binds to DNA and 
affects transcription, was approved after exhibiting a 35% 
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response rate in a phase II trial but failed to prolong the 
survival of SCLC patients (29). 

Intracranial metastases occur in >50% of patients with 
SCLC and, therefore, prophylactic cranial irradiation (PCI) 
is applied for patients with extensive-stage disease and a 
good response to initial systemic therapy. Patients with 
advanced SCLC show frequently refractory intrathoracic 
disease after chemotherapy and disease progression. SCLC 
is distinguished by invariable relapses and up to 75% of 
patients with locally advanced disease and over 90% of 
patients with metastatic disease exhibit progressive disease 
within 2 years. For patients with metastatic disease with 
limited life expectancy treatment-associated toxicity has to 
be balanced against the symptomatic benefit of treatment. 
Due to smoking, SCLC cells have a high tumor mutational 
burden (TMB) that is expected to be linked to a favorable 
response to immunological T cell responses. However, the 
response to immune checkpoint blockade using monoclonal 
antibodies is limited to approximately 15% of patients 
with SCLC (30,31). The anti-PD1 monoclonal antibodies 
nivolumab and pembrolizumab received accelerated 
approval for third-line use in SCLC but were withdrawn 
later on. Recently, four SCLC subtypes were identified 
revealing a new 17% subtype showing unique expression 
of numerous immune checkpoints and human leukocyte 
antigens (HLAs) genes leading to the designation of 
Inflamed gene signature SCLC-I type. This SCLC-I tumors 
exhibited the greatest benefit from immunotherapy—
chemotherapy combinations and should be enriched during 
recruitment for such therapy trials (32).

Chemoresistance of SCLC 

Cellular resistance to drugs
The molecular mechanisms driving chemoresistance 
in SCLC remains uncharacterized (33). Treatment of 
tumor-bearing experimental animals with conventional 
chemotherapeutics reduced tumor volumes, but a 
complete regression of tumors was not achieved (34). 
CTC Copy Number Alteration (CAN) profiles of five 
patients with initially chemosensitive disease failed to 
show a chemorefractory CNA profile, proving that the 
initial chemoresistance differs from that of acquired 
chemoresistance (18). Pathway analysis on differentially 
upregulated proteins from an advanced SCLC cohort 
revealed overexpression of the HIF-1 signaling pathway (35).  
Analyses of transcriptomic data of SCLC cell lines 
confirmed upregulation of PI3K/AKT and HIF-1 pathways 

in chemoresistant SCLC cell lines. These data suggest that 
treatment-resistance in SCLC is characterized by coexisting 
subpopulations of cells with heterogeneous gene expression 
leading to multiple, concurrent resistance mechanisms (15). 

Gains in the expression of the drug transporter ABCC1 
and deletions in MYCL and mismatch repair proteins 
MSH2, and MSH6 have been identified in relapsed SCLC 
samples. Recurrences also exhibit frequent mutations and 
loss of heterozygosity in regulators of WNT signaling. 
In two SCLC cell lines, DNA copy number, mRNA and 
protein levels of the cell cycle regulator Wee1 were increased 
and high Wee1 expression predicted a better prognosis but 
Wee1 inhibitor AZD1775 failed in clinics (36). Cisplatin-
resistant variants of SCLC NCI-H69 assayed in xenograft 
models in nude mice exhibited a higher expression of the 
MAPK regulator tribbles pseudokinase 2 (TRIB2) (37). 
Furthermore, protein ubiquitination and autophagy were 
more active in the SCLC H446/CDDP resistant cells (38). 
For example, minor or absent responses were obtained in 
clinical trials targeting antiapoptotic proteins like Bcl2 or 
Poly (ADP-ribose) polymerase (PARP) participating in DNA 
repair. These short lists of examples of markers of resistance 
of SCLC document variable and inconsistent findings in cell 
line models.

Thus, a host of inhibitors and modulators have 
been tried for the elimination of SCLC cells stemming 
from investigations using cell lines and patient-derived  
xenografts (39). So far, such findings could not translated 
successfully into clinical practice and SCLC has been 
designated as the “graveyard of drugs”. Some of these targets 
reported apply for minor population of patients only or did 
not play their suggested key role in vivo. An extensive review 
of the cellular targets and pathways for putative inhibition 
or killing of SCLC cells under discussion can be found 
in the recent review of Poirier et al. (39). Astonishingly, 
the mechanisms of chemoresistance for platinum 
compounds, topoisomerase I and II inhibitors as well as for 
camptothecines and other cytotoxic drugs that are known in 
great detail have not been fully reported in respect to their 
expression and function in SCLC cells (40,41).

Characteristics of ES

ES is a tumor triggered by a reciprocal translocation 
t(11;22)(q24;q12) involving EWSR1 and the ETS family 
transcription factor FLI1 (42,43). The N-terminal region 
of EWSR1 comprises a strong activation domain, causing 
aberrant transcription of a multitude of genes (44). 
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Additionally, EWS-containing fusion proteins are known to 
regulate epigenetic determination, splicing, and metabolism 

of cells. ES originates from bony structures of the chest wall 
and far less often from soft tissue (45,46). Development of 
transgenic ES mouse models is impaired by the lethal action 
of EWSR1-FLI1 to most cells (47). Germline mutations in 
genes regulating DNA damage repair pathways were found 
to be associated with an increased risk of developing ES (48). 
Studies of the genomic landscape of ES revealed a scarcity 
of recurrent somatic mutations in this cancer (48,49). 
Accordingly, initial experience with immune checkpoint 
blockade for ES has yielded few if any responses, but 
still many trials check this approach. Immunotherapy for 
ES cells is hampered by a lack of HLA class I expression 
and an immunosuppressive tumor microenvironment 
characterized by myeloid-derived suppressor cells (MDSCs), 
fibrocytes, and M2-type macrophages (50). Mutation or 
downregulation of CDKN2A is reported in 10–30% of 
ES cases (51). Disease courses vary significantly between 
patients, attributed to a heterogeneity in the epigenetic 
profile of the individual ES tumors (52). Based on 
methylation profiles, ES can be separated from other cancer 
types and normal tissue. Novel therapeutic approaches 
for the therapy of ES involve inhibiting EWS-FLI1 
itself, targeting DNA damage vulnerabilities or exploring 
immunotherapeutic strategies (53,54).

Chemotherapy of ES 

Tumor shrinkage in response to neoadjuvant chemotherapy 
and radiotherapy are employed to prevent amputation for 
ES patients, provided that a good response to chemotherapy 
with >90% necrosis is achieved (55). Prior to the 1970s, 
treatment of ES tumors with surgery and/or RT resulted 
in universal recurrences in nearly all patients (56,57). 
Subsequently trials established active agents against ES, 
comprising either of two combination therapies, consisting 
of vincristine and cyclophosphamide, or of vincristine, 
actinomycin-D, cyclophosphamide and doxorubicin (VACA) 
combinations (57). Various VACA-based regimens in form 
of adjuvant or neoadjuvant regimens achieved 5-year overall 
survivals between 49% and 79% (58-61). Short courses 
of VACA with higher dose intensity in three-week cycles 
resulted in equivalent or superior outcomes compared to 
lengthy regimens (62-65). Ifosfamide was established as an 
active agent against ES in the 1980s improving the response 
rates up to 25–94% for ifosfamide single drug or ifosfamide 
and etoposide (IE regimen), respectively (66). Subsequent 

trials incorporated IE into VACA-based chemotherapy 
therapies (62,63,67). The 5-year OS in these trials 
ameliorated to 60–70% for patients with non-metastatic 
disease. Now, the standard chemotherapy regimen for 
ES comprises vincristine (1.4 mg/m2, maximum 2 mg), 
doxorubicin (75 mg/m2), and cyclophosphamide (1.2 g/m2)  
(VDC) on day 1, alternating with ifosfamide (1.8 g/m2 
days 1–5) and etoposide (100 mg/m2, days 1–5) (IE) every 
3 weeks (68,69). Patients with localized disease currently 
have an overall event free survival of 60–70% (56,70,71). 
In the quarter of patients with primary metastatic disease 
the overall event free survival is as low as 20–30% (67,72). 
Addition of IE to VDC showed no benefit for patients 
with metastatic ES and reduction of IE cycles decreased 
toxicity (73,74). Nevertheless, approximately 23% of all 
ES patients present with intrinsic drug resistance (75). In 
North America, VDC/IE is the standard chemotherapy 
regimen for ES but recent European trials have combined 
VIDE induction with further VAI/VAC consolidation 
therapy (76). VDC/IE comprises vincristine, adriamycin, 
and cyclophosphamide alternating with ifosfamide 
and etoposide (VDC/IE) delivered every two weeks 
(70,77,78). For patients with metastatic disease, vincristine, 
actinomycin, cyclophosphamide, and adriamycin (VACA) 
alternating with IE did not improve outcomes for patients 
over VACA alone (72). Similarly, there was no improvement 
in survival with dose-intensified VDC/IE or with high-
dose melphalan, etoposide, total body irradiation (TBI), 
and autologous stem-cell transplantation (ASCT) and local 
control (79,80). 

Chemoresistance of ES

For the past 40 years, there has been no major progress in the 
successful treatment of metastatic and recurrent ES mainly 
because poor drug efficacy and high tumor resistance (81).  
So far, the mechanisms of drug resistance in ES are not  
clear (82). Most chemotherapeutics administered for ES 
damage tumor cell DNA. Cyclophosphamide and ifosfamide 
are alkylating agents producing DNA cross-links in tumor 
cells or alkylate guanines, causing DNA base mismatch (83).  
Doxorubicin and etoposide inhibit topoisomerase II 
indispensable for DNA replication and introduce DNA 
strand breaks. When tumor cells cannot repair DNA damage 
caused by chemotherapeutic agents, apoptosis is activated. 
However, cancer cells inhibit apoptosis by interfering with 
the proapoptotic pathway and by increasing the expression 
of antiapoptotic proteins (84). Increased drug efflux may 



Hamilton. Comparison of SCLC and ES1190

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2022;11(6):1185-1198 | https://dx.doi.org/10.21037/tlcr-22-58

play a role, but for ES the relationship between P-gp 
expression and prognosis is uncertain (75,85). Cytostatics 
may be inactivated by derivatization by cytochromes such as 
CYP3A4 that is otherwise expressed mainly in the liver and 
intestines (86). It metabolizes anticancer drugs administered 
to treat ES, including cyclophosphamide, doxorubicin, 
vincristine, ifosfamide, topotecan and etoposide. However, 
no correlation was found between CYP3A4 expression 
and prognosis. Similarly, glutathione S-transferases such 
as GSTM4 specifically expressed in ES may detoxify 
chemotherapeutics. It is controlled by EWS-FLI1 through 
a regulatory element in the GSTM4 promoter region and 
participates in ES tumorigenesis and drug resistance (87). 

Analyses of the genomic landscape of ES demonstrate 
a scarcity of characteristic mutations (49). No recurrent 
aberrations have been found that include kinase mutations or 
gene amplifications. Minor consistent genetic abnormalities 
comprise deletions of STAG2 (17%) or mutations/deletions 
of TP53 (10%). Kinase inhibitors have been tested in ES 
trials, but none of these inhibitors has shown significant 
activity in phase 2 studies, including agents directed to 
aurora kinase A (88), c-kit (89), or insulin growth factor-1 
receptor (IGF-1R) kinase. MET signaling has been 
demonstrated as requirement for ES tumorigenesis and 
VEGF signaling for growth and dissemination (90). Time 
to relapse is the key prognostic factor for ES, linking relapse 
within the first two years to an OS of less than 10% and the 
other patients to an OS of approximately 30%. (91). Newer 
camptothecin combinations are commonly administered 
for early relapses comprising, for example, for the rEECur 
trial topotecan and cyclophosphamide and irinotecan and 
temozolomide (92). Topotecan single agent was not active 
but yielded a response in 30% of patients with relapsed ES 
in combination with cyclophosphamide (93,94). 

Histology of ES

ES tumors consist of small round cells, most likely derived 
from neural crest or primordial bone marrow-derived 
mesenchymal stem cells, and with highest incidence at a 
median age of 15 years (95). These uniform small blue 
round cells exhibit cell surface expression of CD99/MIC2 
and reveal glycogen deposition in their cytoplasm (96,97). 
However, CD99 is a very sensitive but poorly specific 
diagnostic marker for ES in approximately 95% of ES cases 
(98-101). Detection of EWSR1 rearrangements by FISH 
or of ES-specific gene fusions by RT-PCR are used for 
diagnosis (102). Although circulating tumor cells (CTCs) 

have been demonstrated in ES no correlation to survival has 
been established (103,104). 

Dissemination of ES

The frequency of somatic mutations in ES is extremely low 
with on average of only 6–11 somatic mutations, most likely 
indicating a tumor initiation at an early age (49,105). Genetic 
differences of metastases from the primary tumor seem to 
preceed the first clinical presentation by 1–2 years (43). 
Obviously, cells carrying subclonal mutations at diagnosis 
become dominant at relapse, and recurrences accumulate 
new mutations (105). Chemotherapy-associated mutational 
signatures in advanced ES indicate that new mutations 
drive metastasis in ES (43). Accordingly, the mutation rates 
increased 3fold from primary tumors to recurrences (105).  
Intratumoral DNA-methylation showed increased 
heterogeneity in metastatic disease compared to localized 
tumors (52). In the rare cases of ES rebiopsies, similar 
numbers of divergent genes were reported, but the observed 
changes were no consistent from patient to patient. Frequent 
alterations of CXCR4 expression point to upregulation of 
this chemokine due to growth factor deprivation, hypoxia, 
and intratumoral pressure in the TME (106). 

Depletion of the EWS-Fli1 fusion product led to 
decreased proliferation but increased migration, invasion 
and dissemination of ES possibly due to epithelial-
mesenchymal transition (EMT), including upregulation 
of the expression of hypoxia-related genes (105,106). 
EWS-FLI1low ES cells exhibited higher chemoresistance, 
upregulated immune checkpoint proteins and started 
angiogenesis controlled by Wnts (107). These metastatic 
EWSR1-FLI1low tumor cells seem to exist in primary ES in 
low frequencies of 1–2% as part of the heterogenous SCLC 
tumors (108,109). Due to a shortness of untreated primary 
tumor material from diagnosis, most of these studies 
employed primary patient-derived lines and organoid 
models (110,111). 

Discussion: physiological chemoresistance of 
SCLC and ES

SCLC has been unresponsive to a host of diverse and 
unrelated anticancer drugs and in ES the majority of 
patients responded to highly aggressive multimodal 
chemotherapy, except for resistant patients and patients 
experiencing recurrent disease. During the last decades for 
both malignancies no new chemotherapeutics have been 
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introduced into clinics that would have led to superior 
outcomes. The reasons for this high chemoresistance 
have not been traced back to molecular mechanisms at the 
cellular level that would have been reversible by appropriate 
resistance modifiers. Successful cytotoxic anticancer therapy 
requires the delivery of sufficient concentrations of the 
active agent into the tumor tissue. Tumors restrict the 
release of compounds by irregular vascularization, cell-cell 
adhesion, increased intralesional pressure and cancer niches 
exhibiting hypoxic, acidic and nutrient-depleted regions. 
This type of chemoresistance is labeled as physiological 
resistance at the tumor tissue level (112,113).

Cellular aggregation, cell-cell adhesion, IL-6, IGF-
1, oxygen and nutrient supply, as well as interstitial 
acidification might be related to anticancer drug resistance 
(114,115). Angiogenesis plays vital roles in tumor growth 
and metastasis. Hypoxia and slow tumor cell growth 
are associated with poor response to chemotherapy and 
rapid recurrence of tumors (115,116). Tumor interstitial 
fluid pressure is higher than that of normal tissue and 
this characteristic impedes drug delivery to the target 
tumor tissue (117). As malignant tumor cells are remote 
from blood vessels, various anticancer drugs are unevenly 
distributed in them (115). ES exhibits resistance both to 

traditional chemotherapeutic agents and targeted drugs. 
The mechanisms of drug resistance are highly complex 
and influenced by numerous and diverse intracellular and 
extracellular factors (118,119).

Histopathological features of ES include the occurrence of 
small round tumor cells with a low cytoplasmic fraction and 
granular nuclear chromatin with normal nucleoli (120). With 
a median of 80 mitoses per mm2 ES shows an accelerated 
proliferation correlating with numerous apoptotic figures 
and eventually extensive necrosis. Densely packed tumor 
cells typically appear sheet-like with occasionally rosettes 
or groups of cells detached by stroma, or as parallel 
structures at the periphery of nests. In order to test novel 
therapeutics, classical 2D culture is widely used but may 
not truly reflect the cellular characteristics observed under  
in vivo conditions (119,121). ES cells growing on 3D 
scaffolds under shear stress showed an increased production 
of IGF1 and an altered response to IGF1R inhibitors (122). 
Cocultured ES and mesenchymal stromal cells (MSCs) 
showed mutually stimulation of proliferation and altered 
responses to various inhibitors (123). Thus, the high 
resistance of ES to chemotherapy agents seems in part due 
to their particular MSCs origin but also to its complex 
TME (124). The coculture of these ES spheroids in the 
bone matrix tissue simulated typical tumor characteristics, 
including the induction of a hypoxic and glycolytic 
phenotype and the triggering of angiogenesis. At aggregate 
sizes exceeding 400 µm, A673 ES spheroids displayed a 
gradient of necrotic cells from the interior of the spheroids 
to viable proliferating cells located at their peripheral rim. 
Another example is presented in Figure 1. showing spheroids 
of different sizes spontaneously formed during regular 
cell culture of the KAL ES cell line that has been initiated 
from a soft tissue metastasis of a relapsing patient (121). 
The distinct layers of larger spheroids and the gradients of 
oxygen and nutrients as well as the localization of hypoxic 
and necrotic cell regions are indicated in fig.1. Cancer 
cells in the interior of the spheroids are protected from 
chemotherapeutics and as whole this specific cell assembly 
displays high resistance. 

A similar investigation studied ES tumor cell lines under 
anchorage-independent conditions on agar-coated flasks 
resulting in marked up-regulation of E-cadherin and rapid 
formation of multicellular spheroids in suspension (125,126). 
Spheroid formation was accompanied by inhibition of cell 
proliferation and reduced expression of cyclin D1, the major 
D-type cyclin in ES (82). These cultures exhibited marked 
chemoresistance to diverse cytotoxic agents, including 

Figure 1 ES cell line KAL spheroids. KAL ES cells derived from a 
cutaneous metastasis form dense spheroids in tissue culture. Three 
KAL spheroids of different sizes as observed in light microscopy 
are shown in Figure 1. This growth occurs spontaneously and needs 
not to be enforced by nonadherent culture conditions. Spheroids 
exceeding a diameter of 400 µm are beyond the diffusion limit of 
oxygen and contain hypoxic and necrotic cells in their core with 
associated gradients of nutrients and accumulating waste products. 
Such spheroids inhibit the penetration of drugs, quiescent cells in 
the deeper layer of the aggregate are less sensitive to chemotherapy 
and cells in the more hypoxic regions are refractory to irradiation. 
ES, Ewing’s sarcoma.
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carboplatin, compared with 2D cultures, which could be 
reversed by suppression of E-cadherin. Identical results 
were observed with etoposide, melphalan, doxorubicin, or 
topotecan. Downregulation of ErbB4 expression by siRNA 
blocked Akt-mediated activation and cell survival and 
restored chemosensitivity of the spheroids. In conclusion, 
ES tumors exhibit signs of special cell arrangements in 
tumor tissues in combination with markers of hypoxia and 
the putatively corresponding ES spheroids demonstrate 
increased drug resistance.

Similar to ES, SCLC proved to be resistant to a host of 
chemotherapeutic drugs by mechanisms possibly related 
to physiological resistance at the tumor tissue level. SCLC 
tumors are covered by an extended stroma of extracellular 
matrix (ECM) and high levels of ECM correlated with a 
dismal prognosis (127). ECM via β1 integrin-mediated PI3-
kinase activation makes SCLC cells resistant to proliferation 
arrest and apoptosis induced by DNA damage. The 
excessive numbers of circulating tumor cells (CTCs) in 
SCLC allowed for the in vitro expansion of 5 CTC cell lines 
(BHGc7, 10, 16, 26 and UHGc5) from blood samples of 
patients with recurrent tumors (20). These cell lines exhibit 
the typical SCLC markers and all established CTCs lines 
develop spontaneously very large multicellular aggregates, 
termed tumorospheres. Ki67 as proliferation marker and 
carbonic anhydrase 9 (CAIX) as hypoxic marker staining 
of tumorosphere sections revealed quiescent and hypoxic 
cells located at the inner layers and in the core, respectively. 
Accordingly, chemosensitivity tests of CTC either as single 
cell suspensions or as tumorospheres proved increased 
resistance of the clusters against chemotherapeutics 
commonly used for treatment of SCLC (20). A report by 
Lee et al. showed the formation of aggregates by short-term 
cultivated SCLC CTCs consisting of large-sized, round-
shaped spheroids, small-sized cohesive irregular or round 
spheroids and “grape-like” spheroids (128). Chemoresistance 
against cisplatin and etoposide has been observed among 
the expanded CTCs. The expression of NOTCH pathway 
components, such es DLL3 (delta-like protein 3) has been 
described as prominent feature of SCLCs and targeted 
clinically using a specific antibody carrying a highly toxic 
payload, named Rovalpituzumab tesirine (21). However, 
despite promising preclinical and phase I trial activity, 
this antibody drug conjugate (ADC) failed in several 
advanced phase II-III clinical trials exhibiting low activity 
and high toxicity (129). DLL3 remains still an important 

target for SCLC but is has to be investigated whether 
the 3D-arrangement of SCLCs hamper the efficacy of 
ADCs. Similar approaches testing a range of diverse ADCs 
are ongoing for sarcomas (130). Therefore, despite all 
differences SCLC and ES display similar tumor tissue 
arrangements and cancer cells that spontaneously form large 
and highly chemoresistent spheroids.

Summary 

SCLC and ES share a dismal prognosis, especially in 
advanced disseminated stage due to low response to systemic 
chemotherapy linked to largely unknown mechanisms of 
chemoresistance. Both tumors exhibit high proliferation 
and metastatic potential triggered by tumor suppressor 
inactivation/mutations and a genetic rearrangement that 
result in complex alteration of the transcription of a host of 
genes. Whereas aggressive combination chemotherapy can 
save the majority of ES patients, almost all SCLC patients 
succumb to the disease within several years. Although 
actionable genetic defects were identified for SCLC 
and ES, the proposed inhibitors or modulators failed to 
improve outcomes in patients so far. A short comparison 
of the characteristics of SCLC and ES is shown in Table 2.  
Findings from genetic and histological studies point to 
a special arrangement of cells in tumor tissue leading to 
low-perfused hypoxic conditions. Primary cell cultures 
are distinguished by spontaneous formation of spheroids/
tumorospheres with high chemoresistance against a 
host of chemically unrelated drugs, triggered by special 
cellular mechanisms. Thus, efficient chemotherapy of 
SCLC and ES will require new approaches to increase 
the delivery of drugs to reach sufficient concentrations 
of drugs for the totality of tumor cells. Part of the 
failure to advance therapy of SCLC and ES has to be 
ascribed to the impairment of the delivery of the host 
of compounds studied in clinical trials. In relation to 
genetic studies and investigations using permanent 2D cell 
line models, research on complex tumor tissues and on 
improved drug delivery is lagging behind. Future research 
may concentrate on cell biology, cell-cell adhesion, 
organization and methods to disassemble 3D spheroids 
to aid drug delivery in clinics. So far, the heterogenous 
ES evades the most intensive conventional therapy and 
metastatic disease remains a major challenge for this 
tumor and SCLC (131).
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