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Background and Objective: Deep learning (DL) algorithms have been developed for various tasks, 
including lung nodule detection on chest radiographs or lung cancer computed tomography screening, 
potential candidate selection in lung cancer screening, malignancy prediction for indeterminate pulmonary 
nodules, lung cancer staging, treatment response prediction, prognostication, and prediction of genetic 
mutations in lung cancer. Furthermore, these DL algorithms have been applied in various clinical settings 
in order for them to be generalized in real-world clinical practice. Multiple DL algorithms have been 
corroborated to be on par with experts or current clinical prediction models for several specific tasks. 
However, no article has yet comprehensively reviewed DL algorithms dedicated to lung cancer research. 
This narrative review presents an overview of the literature dealing with DL techniques applied in lung 
cancer research and briefly summarizes the results according to the DL algorithms’ clinical use cases.
Methods: we performed a narrative review by searching the Embase and OVID-MEDLINE databases for 
articles published in English from October, 2016 until September, 2021 and reviewing the bibliographies 
of key references to identify important literature related to DL in lung cancer research. The background, 
development, results, and clinical implications of each DL algorithm are briefly discussed. Lastly, we end this 
review article by highlighting future directions in lung cancer research using DL techniques.
Key Content and Findings: DL algorithms have been introduced to show comparable or higher 
performance than human experts in various clinical settings. Specifically, they have been actively applied to 
detect lung nodules in chest radiographs or computed tomography (CT) examinations, optimize candidate 
selection for lung cancer screening (LCS), predict the malignancy of lung nodules, stage lung cancer, and 
predict treatment response, patients’ prognoses, and genetic mutations in lung cancers.
Conclusions: DL algorithms have corroborated their potential value for various tasks, ranging from lung 
cancer screening to prognostication of lung cancer patients. Future research is warranted for the clinical 
application of these algorithms in daily clinical practice and verification of their real-world clinical usefulness.
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Introduction

Lung cancer is the leading cause of cancer mortality 
and the second most common type of newly diagnosed 
cancer worldwide, with 2.2 and 1.8 million patients being 
diagnosed and dying in 2020, respectively (1-3). In the past 
decades, lung cancer research has led to the development 
of various diagnostic and therapeutic options and methods 
capable of accurately predicting patients’ prognoses and 
treatment outcomes (4,5). Thanks to progress in lung 
cancer research, patients with lung cancer have a longer life 
expectancy and higher quality of life than was previously the 
case, without significant physical health consequences (6). 
The number of newly diagnosed lung cancers has continued 
to decline, as has mortality due to lung cancer; as a result, 
the 5-year relative survival rate has improved to 21.7% (2,7).

In recent years, deep learning (DL) techniques have 
staked out a place in various fields of medicine, and lung 
cancer research is no exception (8-12). Specifically, DL 
techniques have been actively applied to detect lung 
nodules in chest radiographs or computed tomography (CT) 
examinations, optimize candidate selection for lung cancer 
screening (LCS), predict the malignancy of lung nodules, 
stage lung cancer, and predict treatment response, patients’ 
prognoses, and genetic mutations in lung cancers (13,14). 
DL algorithms have often shown comparable or higher 
performance than human experts in the aforementioned 
clinical settings (13,14).

This narrative review presents an overview of the DL 
algorithms that have been applied in lung cancer research 
according to their clinical use cases. In addition, we discuss 
their strengths and limitations, and highlight future 
directions of lung cancer research using DL techniques. We 
present the article in accordance with the Narrative Review 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-21-1012/rc).

Methods

Search strategy and terminology

We searched the Embase and OVID-MEDLINE databases 
to identify relevant publications with combinations of the 
following search terms: deep learning, machine learning, 
artificial intelligence, lung cancer, lung malignancy, image, 
CT, computed tomography, and chest radiographs. The 
timeframe for the search was from October 2016 until 
September, 2021. An additional review of the bibliographies 
of key references was performed to ensure that all important 

literature was included. We only reviewed articles published 
in English without any limits on the publication year  
(Table 1).

The terminology of the datasets discussed in this review 
article is defined as follows: a development dataset consists 
of training, validation, and internal test sets (15,16). We 
defined training and validation datasets as data used to 
train and optimize the parameters for a model (training 
dataset) and to monitor and search for the best performance 
(validation dataset) (15,16). An internal test dataset was 
defined as data used to evaluate the performance of a DL 
model by using previous questions in the training and 
validation dataset (15,16). Therefore, the internal test 
may substantially overestimate the performance of a DL 
algorithm (15,16). In contrast, an external test dataset is 
defined as separate data not used for model development, 
and it is of vital importance to demonstrate a model’s 
robustness and generalizability (15-18).

DL applications in lung cancer research

The following paragraphs deal with the details of DL 
algorithms applied to lung cancer research: lung nodule 
detection on chest radiographs, lung cancer screening with 
low-dose CT, malignancy prediction for indeterminate lung 
nodules, lung cancer staging, prognostication of patients 
with lung cancer, prediction of treatment response, and 
prediction of genetic mutations in lung cancer (Figure 1).

Lung nodule detection on chest radiographs

LCS should be implemented using a screening tool with 
a high detection performance for pulmonary nodules or 
masses in high-risk individuals (19-22). In this regard, 
although chest radiography is one of the most common 
diagnostic imaging examinations (23), it has not been 
considered the optimal tool for lung cancer screening 
(20,24). The sensitivity of chest radiography for detecting 
lung cancer has been reported to be highly variable, ranging 
from 20% to 92%, with radiologists’ perceptual errors 
being the most common cause of failure to diagnose lung 
cancer on chest radiographs (25-28). The application of 
a computer-assisted detection (CADe) system for lung 
nodules on chest radiographs has been reported to improve 
sensitivity (29,30), which may be a game-changer for lung 
nodule detection tasks.

Nam et al. developed a DL-based automatic detection 
algorithm with 43,292 chest radiographs and externally 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-21-1012/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-21-1012/rc
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Table 1 The search strategy summary

Items Specification

Date of search September 29, 2021

Databases and other sources searched Embase and OVID-MEDLINE databases

Search terms used Search terms: deep learning, machine learning, artificial intelligence, lung cancer, lung 
malignancy, image, CT, computed tomography, and chest radiographs

Search strategy of Embase and OVID-MEDLINE database: (deep learning OR machine 
learning OR artificial intelligence) AND (lung cancer OR lung malignancy) AND (image OR CT 
OR computed tomography OR chest radiographs)

Timeframe From October, 2016 until September, 2021

Inclusion and exclusion criteria •  Inclusion criteria:

(I)  English-language article;

(II) � Article types were randomized controlled trials, prospective or retrospective cohort 
studies, and case-control studies

•  Exclusion criteria:

(I) � Article not published in English

(II) � Article types were editorial comments, abstracts, conference materials, case reports or 
series, review articles, guidelines, consensus statements, or study protocol

Selection process Study selection and full-text articles were assessed by two authors in consensus (Jong Hyuk 
Lee and Chang Min Park)

Any additional considerations, if applicable None

Figure 1 Deep learning (DL) applications in lung cancer research. The tasks of DL applications in lung cancer research include nodule 
detection on chest radiographs or lung cancer CT screening, potential candidate selection in lung cancer screening, malignancy prediction 
in indeterminate pulmonary nodules, lung cancer staging, treatment response prediction, prognostication, and prediction of genetic 
mutations in lung cancer.
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tested it for malignant nodule detection (31). They 
reported that the DL algorithm achieved a sensitivity 
of 71–91%, a specificity of 93–100%, and an area under 
the receiver operating characteristic (ROC) curve (AUC) 
of 0.92–0.99 in their external test datasets, which were 
superior to those of most physicians in the reader study (31). 
Furthermore, all physicians showed improvement in lung 
nodule detection performance with assistance of the DL 
algorithm, as demonstrated by a 0.043 mean enhancement 
of the Jackknife alternative free-response ROC figure of 
merit (31). Sim et al. performed a similar task of detecting 
malignant lung nodules on chest radiographs with another 
commercially available DL software (Auto Lung Nodule 
Detection, version 1.00, Samsung Electronics) (32). Using 
the DL algorithm improved radiologists’ sensitivity from 
65.1% to 70.3% and decreased the false-positive (FP) 
findings per image from 0.2 to 0.18 for detecting lung 
cancer (32). These studies suggested the potential of DL 
technology for lung cancer detection on chest radiographs. 
However, they had clear limitations in that their test 
datasets were composed of disease-enriched datasets, not 
reflecting real-world clinical practice (with lung cancer 
prevalence of 60–68% and 75% in the studies of Nam et al. 
and Sim et al., respectively) (31,32).

Thereafter, Lee et al. deployed a commercially available 
DL algorithm (Lunit Insight, version 4.7.2., Lunit) for lung 
nodule detection in Korea’s real-world health check-up 
population with a lung cancer prevalence of 0.2% among 
50,098 individuals (33). The model showed comparable 
sensitivity and negative predictive value to that of board-
certified radiologists, with only 3% of chest radiographs 
having potentially positive results (33). These results 
suggested the possibility of using the DL algorithm as a 
stand-alone or first screening tool in resource-constrained 
environments where there is often a lack of trained 
radiologists (34).

Lung cancer screening with low-dose CT

The National Lung Screening Trial (NLST) revealed 
that low-dose chest CT (LDCT) LCS could reduce lung 
cancer mortality in high-risk populations by 20%, leading 
to the recommendation of LCS with LDCT for high-risk 
populations (19). Since then, nationwide screening programs 
have been implemented in multiple countries worldwide 
(19,21,35,36). However, the large volume of LDCT scans 
in LCS imposes a substantial burden on radiologists, and 
the high FP rate is another problem, leading to unnecessary 

diagnostic tests and invasive diagnostic procedures 
(19,22,35,37-41). To address this issue, a CADe system with 
LDCT has been introduced. However, before applying the 
DL technique, the CADe system showed unsatisfactory 
detection performance (sensitivity of 70% or lower) for 
lung nodules and a substantially high FP rate, which was 
insufficient for clinical implementation (42-44). In addition, 
CADe continues to serve only as the second reader, it is 
uncertain whether CADe will eventually improve clinical 
care efficiency (45,46).

Performance improvements have recently been achieved 
with the application of convolutional neural network 
(CNN)-based DL models (47-49). In 2016, the LUng 
Nodule Analysis (LUNA) challenge was held for the 
purpose of nodule detection and FP reduction based on 888 
annotated images (49). The best model that participated 
in this challenge achieved a sensitivity of 93%, and the 
combined models had a sensitivity of 95% at an FP rate of 
lower than 1 per scan (49). Since the introduction of the 
DL technique, ongoing efforts have been made to work 
towards the clinical application of this state-of-the-art 
system d (46). Li et al. tested a commercially available DL-
based CADe tool (DL-CAD) in 346 LCS participants (50).  
The DL-CAD had a significantly higher detection rate of 
lung nodules than that of double reading by two thoracic 
radiologists (86.2% vs. 79.2%) with an FP rate of 1.53 
per CT examination. However, although this FP rate was 
significantly lower than that of CADe without the DL 
technique (e.g., 17 per CT examination) (51), it was still 
higher compared to that of the radiologists (0.13 per CT 
scan) (50); thus, further research to reduce the FP rate is 
warranted.

Ciompi et al. trained a DL algorithm to classify 
pulmonary nodules into solid, calcified, part-solid, non-
solid, perifissural, and spiculated nodules, using a dataset 
of 943 subjects with 1,805 nodules from the Multicentric 
Italian Lung Detection (MILD) trial (52). Subsequently, 
they tested this DL algorithm using 468 subjects with 639 
nodules from the Danish Lung Cancer Screening Trial 
(DLCST), and 162 nodules of those nodules were included 
in the reader performance test. For the task of classifying 
nodules into the six categories listed above, the DL system 
had comparable agreement (Cohen’s kappa value, 0.54–0.67 
for the DL algorithm vs. 0.59–0.75 for the human readers) 
and classification performance (69.6% for the algorithm vs. 
72.9% for the human readers) to the four human readers. 
For all 639 nodules in the external test set, the algorithm 
showed a positive predictive value and sensitivity of 89.2% 
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and 82.2%, 88.9% and 82.8%, 43.6% and 64.9%, 87.4% 
and 87.4%, 78.4% and 60.4%, and 32.7% and 54.3% 
for solid, calcified, part-solid, non-solid, perifissural, and 
spiculated nodules, respectively. Despite the relatively low 
detection performance of part-solid nodules, this study 
suggested that a DL system can help consistently classify 
nodule type, which determines the management strategy for 
LCS participants (53).

Ardila et al. constructed a three-dimensional CNN 
model that performed end-to-end analyses of whole LDCT 
volumes for lung cancer detection (54). In the internal 
test set composed of NLST data, the model had AUCs of 
0.944 and 0.873 for predicting the risk of lung cancer in 
1 year and 2 years, respectively (54). In the reader study 
with the external dataset, the model had higher sensitivity 
and specificity for lung cancers than radiologists when only 
a single LDCT was available and comparable diagnostic 
performance when serial LDCTs (prior and current 
LDCTs) were available (54).

Meanwhile, Huang et al. proposed a DL algorithm 
(DeepLR) for predicting the 3-year lung cancer risk after 
two screening CT examinations, using the NLST datasets as 
a training cohort and the Pan-Canadian Early Detection of 
Lung Cancer (PanCan) study as an external test cohort (55).  
It demonstrated good discrimination, with 1-year, 2-year, 
and 3-year time-dependent AUC values for cancer diagnosis 
of 0.968, 0.946, and 0.899, respectively (55). Furthermore, 
individuals categorized as high risk by the DeepLR had 
a higher risk of lung cancer diagnosis and mortality (55). 
Based on these results, the authors asserted the potential 
that a DL algorithm could be used for accurate guidance of 
clinical management after two consecutive screening CT 
scans (55).

Other than lung nodule detection or classification, a 
DL algorithm (CXR-LC) to identify high-risk candidates 
for LCS was recently developed and tested by Lu et al., 
for which the authors used the NLST and Prostate, Lung, 
Colorectal, and Ovarian Cancer Screening (PLCO) Trial 
datasets (56). Interestingly, the model used only easily 
obtainable inputs (e.g., age, sex, smoking status, and a chest 
radiograph image) and showed a significantly higher AUC 
value (0.755 vs. 0.634) and sensitivity (74.9% vs. 63.8%) 
than the Centers for Medicare & Medicaid Services (CMS) 
eligibility criteria, while missing 30.7% fewer incident lung 
cancers than the CMS eligibility criteria (56).

Indeed, sufficient test steps with external datasets, which 
are independent of the model development and reflect 
daily clinical practice, are indispensable to guarantee the 

generalizability and applicability of models in clinical 
practice (57,58). In this regard, a limitation of these 
previous studies is that they were based on publicly available 
datasets (e.g., the NLST or PLCO datasets) (54-56). Future 
research should include external validation studies applying 
these DL models in a cohort including heterogeneous races 
from a variety of countries.

Malignancy prediction for indeterminate lung nodules

Early diagnosis for lung cancer can indubitably improve 
patients’ outcomes and reduce lung cancer mortality (59). 
However, since most detected pulmonary nodules are 
benign regardless of the source of the detection (e.g., LCS 
CT or an incidental finding in an unrelated examination) 
(19,21), most of these indeterminate lung nodules without 
a malignancy risk-based optimization approach receive 
unnecessary diagnostic work-ups involving invasive 
procedures (e.g., needle biopsy or surgery), leading to 
increased medical expenditures (19,22,35,60). Conversely, 
however, an overly conservative approach may delay or miss 
the diagnosis, leading to upstaged cancers (36-38,61). The 
current management options for indeterminate pulmonary 
nodules are based on qualitative or quantitative estimates of 
the malignancy risk of those nodules (53,62-64). The prime 
examples are Lung-RADS by the American College of 
Radiology, guidelines by the Fleischner Society and British 
Thoracic Society, and logistic regression-based models (e.g., 
the Brock or Mayo risk models) (53,62-64).

Massion et al. addressed this issue using a DL model 
(LCP-CNN) that was developed to classify benign 
and malignant nodules from indeterminate pulmonary  
nodules (65). In an internal test with the NLST dataset, the 
model had a significantly higher AUC (0.921) than those 
of the Brock model (0.856) and Mayo model (0.852). In 
an external test with two independent cohorts, the model 
showed comparable or higher AUCs than those of the Mayo 
model (0.919 vs. 0.819 and 0.835 vs. 0.781, respectively). 
The authors additionally reported the results of the two-
way reclassification analysis by calculating the fraction of 
cancers classified by the LCP-CNN model and the Mayo 
model. As a result, the overall net reclassifications for cancer 
and benign nodules in the two external test cohorts were as 
high as 0.34 and 0.58 compared to the Mayo model. That 
is, nodules that were malignant but classified as benign, and 
those that were benign but classified as malignant by the 
Mayo model were more accurately reclassified by the LCP-
CNN model as malignant and benign, respectively. Finally, 
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the LCP-CNN model showed a sensitivity of 96.8–98.4% 
and specificity of 44.2–64.3% with a model threshold of 5%, 
indicating higher specificity and comparable sensitivity to 
those of the Mayo model (sensitivity, 98.4–100%; specificity, 
3–11.5%), and sensitivity of 36.5–70.3% and specificity 
of 78.8–97.5% with a model threshold of 65%, showing 
higher sensitivity and comparable specificity to those of the 
Mayo model (sensitivity, 4.8–25%; specificity, 90.4–99.8%). 
It is noteworthy that the LCP-CNN model was externally 
validated with three hospitals from the UK in another  
study (66). For 1,187 patients with indeterminate pulmonary 
nodules with a lung cancer prevalence of 19.3%, the LCP-
CNN showed a significantly higher AUC (0.896) than that 
of the Brock model (0.868). The model also had higher 
discrimination performance for malignancy and lower false-
negative (FN) rates than the Brock model.

Ohno et al. approached this issue by calculating the 
volume change and volume doubling time of pulmonary 
nodules, assisted by the DL technique applied to computer-
aided detection of volume (CADv) measurements (67). 
They reported that the AUC and accuracy of total volume 
change per day calculated by the CADv with the DL 
method (AUC, 0.94; accuracy, 90%) were significantly 
higher than those of the volume doubling times with CADv 
using the DL method (AUC, 0.67; accuracy, 83%), and 
CADv not using the DL method (total volume change per 
day: AUC, 0.69 and accuracy, 67%; volume doubling time: 
AUC, 0.58, and accuracy, 65%) (67).

Lung cancer staging

As with other types of cancer, lung cancer staging is 
essential for planning the treatment strategy, predicting the 
prognosis, and evaluating treatment results (5). Accurate 
staging leads to survival benefits by multidisciplinary 
treatment combining surgery and chemoradiation  
therapy (68).

In most cases, subsolid lung nodules that persistently 
present in chest CT examinations pathologically represent 
preinvasive lesions, such as atypical adenomatous 
hyperplasia (AAH) or adenocarcinoma in situ (AIS), or 
lung cancers such as minimally invasive adenocarcinoma 
(MIA) or invasive adenocarcinoma (53,69). Among these 
categories, AIS and MIA are staged as T categories of 
Tis and Tmi according to the eighth-edition staging 
system (70,71). Prior studies have investigated the use of 
DL algorithms to discriminate among these entities and 
identify early-stage invasive adenocarcinoma (72,73). Zhao 

et al. developed their DL algorithm model (DenseSharp 
Network) to differentiate the AAH-AIS group, MIA group, 
and invasive adenocarcinoma group with 651 nodules ≤10 
mm in size (72). They conducted an external test with 128 
pathologically proven nodules and compared the model’s 
diagnostic performance with that of four radiologists. The 
model showed a higher F1 score [defined as the harmonic 
mean of the precision and recall; F1 score = 2 · precision · 
recall/(precision + recall)] than that of four radiologists for 
the task of three-group classification (AAH-AIS vs. MIA 
vs. invasive adenocarcinoma groups). The DL algorithm 
achieved AUCs of 0.788 and 0.880 for the subtasks of 
classification of the invasive adenocarcinoma-MIA group 
from the AAH-AIS group and the invasive adenocarcinoma 
group from the AAH-AIS-MIA group, respectively (72).

The eighth-edition staging system by the American 
Joint Commission on Cancer adopted the solid portion 
size on CT and the invasive component size on pathology 
to determine the clinical and pathologic T category, 
respectively, because the solid portion size or invasive 
component size is a better prognostic predictor than the 
total tumor size (70,71,74). Ahn et al. externally tested a 
commercially available DL algorithm (MedLungCT AI, 
version 1.0.0; VUNO) to segment the entire nodule and 
solid portion of subsolid nodules using 448 patients with 
surgically resected lung adenocarcinomas (75). They found 
that the inter-reader agreement between the radiologists 
and the MedLung CT AI was good [intraclass correlation 
coefficient (ICC) range, 0.82–0.89] and was par on with 
the agreement level between the radiologists (76). Both 
the algorithm and radiologists commonly had a tendency 
to underestimate the invasive portion size relative to the 
pathologically proven invasive component size (75). 

Visceral pleural invasion (VPI) by lung cancer is an 
isolated T2 descriptor due to its adverse prognostic 
implication after adjustment for the pathologic T  
category (77). Choi et al. developed an in-house DL 
algorithm to predict VPI, using 676 patients with clinical 
stage 1A lung adenocarcinoma (78). In an external test 
consisting of 141 patients, the model had an AUC of 0.75 
for VPI, comparable to the three thoracic radiologists’ 
evaluations (AUC range, 0.73–0.79). At the cutoffs that 
showed 90% sensitivity and specificity in the internal test 
set, the algorithm had comparable to higher sensitivity 
and higher specificity than the radiologists (78). Finally, 
the model’s output was an independent predictor for VPI 
in multivariate logistic regression in conjunction with the 
clinical stage and nodule type (77,78).
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The clinical significance of lung cancer with a nodal 
category of N2 or higher is that multidisciplinary 
management is offered due to its survival benefits (68). 
However, despite routine imaging workups including CT, 
positron emission tomography (PET), and endobronchial 
ultrasonography to correctly diagnose N2 disease before 
treatment, the sensitivity is still limited, and up to 8.5% of 
clinical N0 lung cancers were found to have N2 metastasis 
at pathologic examination (5,79,80). Recently, Zhong et al. 
developed a DL signature to predict N2 disease in clinical 
stage I non-small cell lung cancers (NSCLCs) using chest 
CT images of 2,663 patients (81). The authors performed 
rigorous external tests using open-source data (n=133) and 
CT datasets prospectively collected from four institutions 
(n=300). Notably, the prevalence of N2 disease in these 
external datasets, ranging from 10% to 10.7%, was similar 
to the real-world prevalence of N2 disease (80). The model 
had a significantly higher AUC (0.81) than those obtained 
using the three currently used clinical models (the Veterans 
Affairs model, Fudan model, and Beijing model; the range 
of AUCs, 0.61–0.68) and the maximum standardized 
uptake value on PET (AUC, 0.57). In addition, the authors 
suggested the biological basis for this DL signature by 
verifying the association of the model’s risk score with gene 
expression patterns [e.g., epidermal growth factor receptor 
(EGFR) or anaplastic lymphoma kinase mutations]. The 
fact that the authors investigated the association between 
the model findings and radio-genomics through a gene 
alteration analysis and gene set enrichment analysis helps 
readers and researchers understand the biological basis of 
the model and alleviate its black-box characteristics, which 
is one of the well-known drawbacks of DL techniques (82).

Prognostication of patients with lung cancer and prediction 
of treatment response

An accurate prediction of the prognosis of patients with 
lung cancer allows clinicians to evaluate tumor progression, 
facilitates communication between physicians and patients, 
and helps establish appropriate treatment strategies 
(74,83,84). Prognostic stratification and the consequent 
treatment strategy have been primarily determined based on 
cancer staging (85). However, even in patients with the same 
cancer stage, the prognosis varies due to heterogeneous 
treatment responses (86). To solve this issue, DL techniques 
have been investigated for predicting the prognosis of 
patients with lung cancer and their response to treatment.

Kim et al.  developed a DL algorithm to extract 

prognostic information from preoperative CT examinations, 
using 800 patients with surgically resected T1-4N0M0 
lung adenocarcinoma (87). In an external test with  
108 patients with clinical stage I adenocarcinomas, the 
model’s probability had comparable prognostic performance 
to the clinical T category for disease-free survival. In 
addition, the output of the DL model was an independent 
prognostic factor for disease-free survival in conjunction 
with other clinical factors, including clinical T category and 
smoking status. Meanwhile, the DL signature developed 
by Zhong et al., which proposed risk scores for N2 disease, 
significantly stratified overall and recurrence-free survival 
in patients with clinical stage I NSCLCs (81). In the Cox 
regression analyses, the signature’s risk score turned out to 
be a significant prognostic factor for both overall survival 
and recurrence-free survival with other factors including 
age, sex, nodule type (subsolid nodule), and pathologic 
nodal stage. Their DL model also predicted the benefits of 
adjuvant chemotherapy in patients with moderate-to-high 
risk scores (81).

As for radiotherapy, Lou et al. developed a multi-task 
DL network (Deep Profiler) for predicting time-to-event 
treatment outcomes, using CT images of 849 patients who 
received stereotactic body radiotherapy for stage IA to 
IV lung cancers (88). In an external test with 95 patients, 
a high Deep Profiler score was a significant predictor of 
3-year cumulative local treatment failure. In addition, a 
model combining the Deep Profiler score with clinical 
variables had better prediction performance than classical 
radiomics or clinical variable-based models alone. Notably, 
radiation dose reduction could be achieved in 23.3% of 
the patients with this combined model. Considering the 
current clinical practice in which radiotherapy continues to 
be delivered regardless of individual tumor characteristics, 
this study suggested that the DL algorithms could guide 
the individualization of radiotherapy (88). Another study 
proposed using DL algorithms, developed using CT 
images, to predict overall survival for patients with stage I 
to IIIb NSCLC who had radiotherapy or surgery (89). In 
external tests, the algorithms showed AUCs of 0.70 and 
0.71 for the 2-year overall survival after each treatment, 
respectively, and significantly stratified patients’ survival 
probabilities according to the models’ output. The 
algorithms significantly outperformed a clinical model 
(using age, sex, and TNM stage) and a random forest 
model based on engineered features (using tumor shape, 
voxel intensity information, and patterns) and imaging 
parameters. Interestingly, the area that contributed most 
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to survival prediction by the model’s activation mapping 
was the interface between the tumor and stoma, especially 
uninterrupted areas of higher CT density. The phenotypes 
captured by the algorithm were also correlated with the cell 
cycle and transcriptional processes (89).

Advanced lung cancers treated with nonsurgical 
modalities such as radiotherapy or chemotherapy require 
monitoring of the treatment response using follow-up 
imaging studies over time (70,90,91). This clinical response 
has been assessed using tumor size measurements, such as 
in the RECIST criteria (91). Regarding this point, using 
pre- and post-treatment CT images at 1, 3, and 6 months 
of follow-up in 179 patients with stage III NSCLC treated 
with chemoradiation, Xu et al. developed and tested a 
CNN model to predict various survival outcomes and 
cancer-specific events (i.e., 1-year, 2-year, and overall 
survival; progression; distant metastasis; and logo-regional 
recurrence) (90). The performance of the model for 
predicting these outcomes was continuously enhanced with 
additional CT images. For example, with pre-treatment CT 
alone, the model only showed an AUC of 0.58 for 2-year 
overall survival, and by adding post-treatment CT after 1, 
3, and 6 months, the value was significantly increased to 
0.64, 0.69, and 0.74, respectively. In addition, the model 
predicted the pathologic response after treatment and had 
added value to the simple pathologic volume change after 
radiation treatment.

Prediction of genetic mutations in lung cancer

EGFR genotyping is critical for determining the treatment 
strategy for patients with lung adenocarcinoma because 
EGFR tyrosine kinase inhibitors that target specific EGFR 
mutations have resulted in survival benefits (92-95).  
Although mutational sequencing of biopsy specimens is 
the gold standard for confirming EGFR mutation, tissue 
sampling is not always possible, and there may be potential 
risks of biopsy-related complications or irrelevant results 
from tissue sampling errors (96,97). To address this issue, 
Wang et al. developed and tested a DL algorithm to predict 
EGFR-mutant lung adenocarcinoma in 844 patients 
(development dataset, n=603; external test dataset, n=241) 
whose lung cancers’ EGFR mutation status had been 
proven (98). In the external test, the algorithm had an AUC 
of 0.81, which was significantly higher than those of clinical, 
CT semantic, and radiomics models (0.61, 0.64, and 0.64, 
respectively). Interestingly, the authors suggested that 
visualizing tumor areas that were identified as suspicious for 

EGFR mutation in the model might enable more accurate 
biopsy targeting, thereby avoiding FN results caused by 
intra-tumor heterogeneity (98).

The tumor mutational burden (TMB), which emerged 
through next-generation gene sequencing, is a predictor 
of NSCLC patients’ response to immune checkpoint 
inhibitors (99-101). However, as with other biomarkers, 
it requires invasive biopsy procedures and labor-intensive 
laboratory tests. To address this issue, He et al. developed 
a TMB radiomic biomarker (TMBRB) using the DL 
technique to distinguish high and low-TMB, using CT 
images of 327 patients with NSCLC (102). In an external 
test dataset composed of 123 NSCLC patients, the 
TMBRB discriminated high- and low-TMB with higher 
accuracy (AUC, 0.81) than the histologic subtype (AUC, 
0.71) and radiomic model alone (AUC, 0.74). In addition, 
the discrimination of high- and low-TMB NSCLC by 
the TMBRB was a significant predictor of overall survival 
and progression-free survival. Based on these findings, the 
authors proposed a noninvasive biomarker for TMB based 
only upon CT images, which will help physicians decide 
whether to use immune checkpoint inhibitors. 

Summary

In this review, we briefly summarized the various DL 
algorithms applied to lung cancer research to date, covering 
the detection of lung nodules on chest radiographs and LCS 
CT, malignancy prediction in indeterminate pulmonary 
nodules, lung cancer staging, treatment response prediction, 
prognostication, and prediction of genetic mutations in 
lung cancers. Numerous papers have reported promising 
and exciting results regarding the performance of DL 
algorithms. However, the following two issues should be 
addressed in the future. First, evidence is lacking on the 
eventual outcomes of applying the DL algorithms to real-
world clinical practice. To confirm these outcomes, more 
rigorous real-world testing will be needed in settings 
covering various countries, races, and medical environments, 
and then, there must be a careful consideration of the 
advantages and disadvantages of applying DL models. 
Second, it is necessary to clearly define how to utilize 
DL models in heterogeneous clinical scenarios. Although 
it is commonly accepted that DL algorithms bring an 
added value thanks to their higher diagnostic or predictive 
performance (103,104), human-DL collaboration to achieve 
certain goals remains poorly understood (105,106), and 
further research is warranted to investigate this interaction 
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to maximize the usefulness of the DL algorithms.
In conclusion, DL algorithms have demonstrated 

potential value for various tasks from lung cancer screening 
to prognostication of lung cancer patients. Future research 
is warranted to clarify the clinical application of these 
models in daily clinical practice and to verify their real-
world clinical usefulness.
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