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Background: Small cell lung cancer (SCLC) is an aggressive lung malignancy with high relapse rates and 
poor survival outcomes. Ferroptosis is a recently identified type of cell death caused by excessive intracellular 
iron accumulation and lipid peroxidation, which may mediate tumor-infiltrating immune cells to influence 
anti-cancer immunity. But prognostic value of ferroptosis-related genes and its relationship with the 
treatment response of immunotherapies in SCLC have not been elucidated. 
Methods: The RNA-sequencing and clinical data of SCLC patients were downloaded from the cBioPortal 
database. A ferroptosis-related prognostic risk-scoring model was constructed based on univariable 
and multivariable Cox-regression analysis. Kaplan-Meier (K-M) survival curves and receiver operating 
characteristics (ROC) curves were constructed to assess the sensitivity and specificity of the risk-scoring 
model. And the correlations between ferroptosis-related prognostic genes and immune microenvironment 
were explored. The IC50 values of anti-cancer drugs were downloaded from the Genomics of Drug 
Sensitivity in Cancer (GDSC) database and the correlation analysis with the key gene thioredoxin-interacting 
protein (TXNIP) was performed. In addition, immunohistochemistry (IHC) staining was employed to 
detect the expression of TXNIP in 20 SCLC patients who received first-line chemo-immunotherapy. 
Immunotherapeutic response according to iRECIST (Response Evaluation Criteria in Solid Tumours for 
immunotherapy trials) were recorded. 
Results: We constructed a risk-score successfully dividing patients in the low- and high-risk groups (with 
better and worse prognosis, respectively). The area under the curve (AUC) of this risk-scoring model was 
0.812, showing it had good utility in predicting the prognosis of SCLC. Moreover, ferroptosis-related 
genes were associated with the degree of immune infiltration of SCLC. Most importantly, we found 
that the TXNIP expression was highly correlated with the degree of immune invasion and the efficacy of 
chemotherapy in combination with immunotherapy in SCLC patients.
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Introduction

Smal l  ce l l  lung  cancer  (SCLC) i s  an  aggress ive 
neuroendocrine tumor with a poor prognosis, takes up 15% 
of total lung cancers approximately (1). The combination 
therapy composed of PD-L1 antibody, platinum-based 
chemotherapy has become the standard first-line therapy for 
extensive-stage small cell lung cancer (ES-SCLC), based on 
the results of the IMpower133 and CASPIAN trials (2,3). 
However, only a small of SCLC patients can benefit from 
immune checkpoint blockade. And no feasible genetic model 
associated with immune microenvironment to predict SCLC 
patients’ prognosis. There is an urgent need to explore the 
mechanisms influencing immunotherapy drugs resistance and 
immune infiltration in SCLC. The predictive ability of PD-
L1 molecule is limited and affected by many factors, such as 
the spatio-temporal heterogeneity of tumors and the variety 
of diagnostic anti-PD-L1 antibodies. Although gene profiling 
studies have provided biological insight into the genomic, 
epi-genomic, and proteomic landscapes to indicate the 
prognosis and efficacy to immunotherapy in SCLC, many 
crucial gaps are still existing in selecting ideal biomarkers. 
Therefore, it is urgency to identify novel molecules associated 
with SCLC prognosis and immunotherapy drug resistance to 
guide clinical practice.

Ferroptosis, mainly characterized by ferroin and lipid 
peroxide accumulation on the membrane, is a novel mode 
of iron-dependent cell death (4,5). Recent studies have 
shown that ferroptosis has a key role on tumorigenesis and 
has become a new target for cancer therapies. Ferroptosis in 
cancer cells can induce an increase of immunosuppressive 
factors, such as PEG2, and suppress anti-tumor immunity, 
which may promote tumor growth (6,7). On the other hand, 
activation of ferroptosis inhibits tumor growth and contributes 
to chemotherapy resistance (8). Several small molecules have 
been found to be inducers of ferroptosis in tumor cells, such as 
erastin (5), sorafenib (9), and RAS-selective lethal (RLS3) (10).  

Some classical tumor-related transcription factors, such as 
tumor protein p53 (TP53) (11) and nuclear factor erythroid 
2-related factor 2 (NRF2) (12), are also involved in the process 
of iron death. In lung cancer, research has found that erastin/
sorafenib sensitizes tumor cells to cisplatin by inhibiting the 
NRF2/light chain of System xc

− (xCT) pathway, which then 
inhibits tumor growth (13).

Most importantly, studies have reported that CD8+ 
T cells activated by PD-L1 inhibitors have the ability to 
facilitate lipid peroxidation and susceptibility to ferroptosis 
of tumor cells (14). The therapeutic alliance of ferroptosis 
and PD-L1 blockade efficiently inhibits the growth of 
melanoma and lung metastasis of breast cancer (15). While 
ferroptosis tolerance cancer cells were unresponsiveness 
to PD-L1 blockade, inhibition of ferroptosis resulted in 
resistance to immunotherapy treatment (16). However, 
the exact role of ferroptosis in SCLC is unknown, and it is 
unclear whether ferroptosis-related molecules can predict 
the prognosis, immune infiltration, and sensitivity to 
treatments of SCLC.

Here, we systematically studied RNA-sequencing data 
and clinical characteristics in patients with SCLC. We 
developed a risk-scoring model on the basis of 5-ferroptosis-
related gene signatures, filtered out by univariate and 
multivariate Cox regression. In addition, we quested for the 
potential correlation between the ferroptosis-related genes, 
immune infiltration, and efficacy of immunotherapy in 
SCLC. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-22-408/rc).

Methods

Research design

First, we constructed and evaluated risk-scoring system 
based on 5 ferroptosis-related genes. Subsequently, we 
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investigated the correlation of the 5 ferroptosis-related 
genes with the tumor immune microenvironment in SCLC, 
and identified a key gene TXNIP (thioredoxin-interacting 
protein) which most related to immune infiltration. Finally, 
we used Genomics of Drug Sensitivity in Cancer (GDSC) 
database to analyze the relationship between TXNIP and 
anti-tumor drug resistance, and preliminatively explore the 
relationship between TXNIP and immunotherapy response 
in SCLC patients receiving immunotherapy.

Patient data collection

RNA-sequencing data and clinical characteristics of SCLC 
patients were obtained from the cBioPortal (dataset: U 
Cologne, Nature 2015). Seventy-seven patients whose 
RNA-sequencing data and survival time were available 
in the dataset were enrolled in this study. All individuals’ 
clinical informations were summarized in Table 1. The 
relationship between gene expression and survival time was 
assessed. 

We screened SCLC patients who were treated with 
first-line chemo-immunotherapy and evaluated their best 
clinical response. The stratification of their response to 
complete response (CR), partial response (PR), stable 
disease (SD) and progressive disease (PD), was performed 
by investigators according to the iRECIST (Response 
Evaluation Criteria in Solid Tumours for immunotherapy 
trials). Ten patients with good response (CR or PR) and 10 
with a poor response (SD or PD) to chemo-immunotherapy 
were randomly selected and they were divided into the 
Response and Non-Response groups. The data of 20 SCLC 
patients treated with first-line chemo-immunotherapy was 
collected retrospectively from medical files. 

Identification of ferroptosis-related genes in SCLC

FerrDb database provided the human ferroptosis-
related genes (17). Ferroptosis-related genes in SCLC 
and their expression levels were obtained by integrating 
intersection genes from the SCLC transcriptome and 
human ferroptosis-related genes. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) were 
used to evaluate the function of ferroptosis-related genes  
in SCLC.

Development of the risk-scoring system and nomogram

By univariate Cox regression analysis (P<0.05), prognostic 
genes were identified from these ferroptosis-related 
genes. And multivariate Cox regression analysis was used 
to establish an optimal prognostic risk-scoring model 
and predict the regression coefficients (α) of the model. 
Then, a prognostic risk-scoring system based on 5 genes 
was established, where risk-score = (α1 × expression of 
Gene1) + (α2 × expression of Gene2) + … + (αn × expression 
of Genen). Based on the median score of risk-scores, we 
divided SCLC patients into low- and high-risk groups. 
Participants with missing data on any predictors were 
excluded. 

The assessment of the risk-scoring model

Kaplan-Meier (K-M) survival curves and receiver operating 
characteristics (ROC) curves were constructed to assess 
the sensitivity and specificity of the risk-scoring model. 
The independent prediction of the model was verified by 
Univariate and multivariate Cox analyses. The generality 
of the model was tested using stratified analysis of clinical 
variables. Then we constructed a nomogram prognostic 
map combined with clinical factors and prognostic 
ferroptosis-related genes to predict the 1-, 2-, and 3-year 
overall survival (OS) of SCLC patients.

Acquisition of SCLC immune infiltration

For investigating the role of ferroptosis-related genes in 
the local tumor microenvironment (TME) of SCLC, we 
obtained various immune cell infiltration data in SCLC 
patients using ImmuCellAI (http://bioinfo.life.hust.edu.cn/
ImmuCellAI), which can estimate the abundance of immune 
cell infiltration based on RNA-seq or microarray data.  

Table 1 The clinical characteristics of 77 SCLC patients from the 
cBioPortal dataset

Variable Number of samples

Gender (male/female) 54/23

Age at diagnosis (≤65/>65) 41/36

Stage (I-II/III-IV) 47/30

T (T1/T2-4/NA) 30/39/8

M (M0/M1/NA) 57/8/12

N (N0/N1-3/NA) 34/36/7

SCLC, small cell lung cancer.
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Drug resistance analysis

Cancer Cell Line Encyclopedia (CCLE) database provided 
gene expression profiles in SCLC cell lines (https://sites.
broadinstitute.org/ccle/). And GDSC database provided 
50% inhibition concentration (IC50) values of anti-cancer 
drugs (https://www.cancerrxgene.org/). 

Immunohistochemistry (IHC) staining

Human SCLC tissue samples were collected from the 
patients hospitalized in the First Affiliated Hospital 
of Guangzhou Medical University. The expression of 
TXNIP and PD-L1 was determined by IHC staining. After 
deparaffinizing, hydrating, and being treated with 0.3% 
H2O2, the slides were incubated with goat serum for blocking 
the nonspecific binding. Next, the slides were incubated with 
the TXNIP antibody (1:200, Polyclonal, Boster Biological 
Technology, A01409-1) or PD-L1 antibody (1:250, E1L3N, 
Cell Signaling Technology, USA,18634T) overnight at 4 ℃, 
then incubating with secondary antibodies. The positive 
staining was visualized by staining with 3,3'-diaminobenzidine 
tetra-hydrochloride. After hematoxylin counter staining and 
hydrochloric acid alcohol differentiation, the images were 
captured. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was approved 
by institutional ethics board of the First Affiliated Hospital of 
Guangzhou Medical University (No. 2021-K-24). Informed 
consent was taken from all the patients.

Statistical analysis

An independent-samples t-test was used to analyze 
continuous variables. Chi-square (χ2) or Fisher’s exact test 
was used to assess differences in categorical variables. R 
4.1.0 was used for statistical analysis. P<0.05 (two-tailed) 
was considered statistically significant: *P<0.05, **P<0.01, 
***P<0.001, and ****P<0.0001. The threshold value of the 
area under the curve (AUC) is 0.7. 

Results

Enrichment analysis of ferroptosis-related genes in SCLC

Seventy-seven ferroptosis-related genes were selected from 
SCLC transcriptome data and human ferroptosis-related 
genes. GO (Figure 1A) and KEGG (Figure 1B) analysis 
of these genes were demonstrated. The GO analysis 
showed that the biological process (BP) was involved in 

the cellular response to oxidative stress, chemical stress, 
and the metabolism of metal ions. We found that cellular 
component (CC) mainly participated in the synthesis of 
the outer membrane of organelles and the synthesis of a 
variety of protease complexes, such as the protein kinase 
complex and the target of rapamycin complex 2 (TORC2). 
Furthermore, the GO analysis also showed that molecular 
function (MF) mainly regulated iron ion binding and 
antioxidant activity, specifically related to the activity of 
oxidoreductase, peroxidase, and hydro-lyase. The KEGG 
results manifested that the ferroptosis-related genes were 
mainly in relation to ferroptosis, PD-L1 expression and 
the programmed cell death receptor-1 (PD-1) checkpoint 
pathway in cancer, the tumor necrosis factor (TNF) 
signaling pathway, autophagy, the interleukin-17 (IL-17) 
signaling pathway, pathways of neurodegeneration, and the 
mammalian target of rapamycin (mTOR) signaling pathway.
 

Construction of the risk-scoring evaluation system based 
on ferroptosis-associated genes

Univariate Cox analysis revealed that 8 ferroptosis-related 
genes were related to survival time (Table 2); Multivariate 
Cox analysis showed that 5 of these 8 ferroptosis-related 
genes were independent prognostic predictors of SCLC 
(Table 3). Therefore, risk-scores were calculated and the 
risk-signature based on the 5 ferroptosis-related genes were 
developed. Risk-score = (0.519 × expression of CISD1) 
+ (0.350 × expression of TXNIP) + (−0.405 × expression 
of SLC7A5) + (−0.744 × expression of SLC2A8) + (0.555 
× expression of HILPDA). We plotted the 5 identified 
ferroptosis-associated genes expression levels, risk-score 
distributions, and survival status profiles in high-risk and 
low-risk groups. The scatter diagrams (Figure 2A,2B) 
illustrated that the survival time and rate of SCLC patient 
exacerbated progressively as their risk-score increased. The 
heatmap showed the expression profiles of the 5 identified 
ferroptosis-associated genes (Figure 2C). 

The independent predictability of the risk-scoring model 

K-M survival analysis revealed that the OS in the high-
risk group was shorter than that in the low-risk group  
(Figure 3A). The prediction efficiency of the risk-scoring 
model was tested by ROC curve. While the age curve (AUC 
=0.545), gender curve (AUC =0.593), and stage curve (AUC 
=0.566) were calculated, the AUC value of risk-score was 
0.812, suggesting that the risk-score was better in predicting 
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the survival time of patients (Figure 3B). In addition, the 
AUC values of the risk-scoring model based on 5 identified 
ferroptosis-associated genes were 0.812, 0.820, and 0.851 in 
predicting 1-, 2-, and 3-year OS, respectively (Figure 3C). 
The univariate and multivariate Cox analysis confirmed that 
the risk-score can be used as an independent predictor of 
SCLC patients’ prognosis (Figure 3D,3E). These findings 
validate the predictive power of the risk-scoring model 
and show that it is a promising model for predicting the 
prognosis of SCLC patients.

The generality of the risk-scoring model and the predictive 
nomogram

To verify the generality of the risk-scoring model, stratified 
analyses were performed in the basis of clinical variables. 
The risk-scoring model had prognostic significance in most 
subgroups (Figure 4A-4F), including age (≤65, >65), gender 
(female, male), T stage (T1, T2–4), N stage (N0, N1–3), 

clinical-stage (I–II, III–IV), and chemotherapy (chemo, no-
chemo), except the OS between the M0 and M1 subgroups 
(Figure 4G) with the small size of the cohort. Patients in 
the high-risk group had a less favorable prognosis. To 
better combine our findings with clinical management 
and treatment, we present a hybrid nomogram showing 
the clinical characteristics and risk-score and deriving the 
predicted survival (Figure 5). The predictive nomogram 
combines risk-scores of 5 ferroptosis-associated genes 
and clinical characteristics, including age, tumor stage, 
and chemotherapy, to predict a patient’s 1-, 2-, and 3-year 
survival rate accurately and consistently. 

Ferroptosis-associated genes signatures were correlated 
with immune infiltration in SCLC

To explore the specific effect of ferroptosis-associated genes, 
we analyzed the immune infiltration in SCLC patients 
using infiltration scores from ImmuCellAI (Figure 6A). 
The results showed that the TXNIP gene was significantly 
related to a variety of immune cells infiltration (Figure 6B).  
TXNIP was negatively correlated with naive CD4+ T 
cells, naive CD8+ T cells, and NKT cells infiltration, and 
positively correlated with infiltration degree of cytotoxic T 
cells, type 1 regulatory T cells (Tr1), induced regulatory T 
cells (iTreg), central memory T cells, macrophages, CD4+ T 
cells, and infiltration score. In addition, 4 other genes were 
also associated with immune infiltration.

Expression of TXNIP is correlated with the prognosis and 
drug sensitivity of SCLC patients

Meanwhile, our study found differences in the SCLC 
patients’ prognosis between the TXNIP-high and TXNIP-
low groups. Specifically, SCLC patients with TXNIP-high 
expression exhibited a better survival rate (Figure 7A,7B). 
To further explore the possible mechanism, we obtained 
the gene expression of the SCLC cell line and the anti-
cancer drug IC50 from the CCLE database and the GDSC 
database, respectively. Then, we divided SCLC cell lines 
into the TXNIP-high group and the TXNIP-low group and 
compared the IC50 value of anti-cancer drugs. The high 
TXNIP group had a higher IC50 values of several anti-
cancer drugs, such as Uprosertib (an AKT inhibitor) and 
dabrafenib (a Raf inhibitor) (Figure 7C). This indicated 
that SCLC patients with high TXNIP expression may be 
resistant to these anti-cancer drugs. And the IC50 values 
of AMG-319 (a phosphoinositide-3 kinase inhibitor) and 

Table 2 The univariate Cox analysis

Gene HR HR.95L HR.95H P value

CISD1 1.535 1.099 2.144 0.012 

SESN2 0.623 0.451 0.860 0.004 

TXNIP 1.496 1.097 2.039 0.011 

SLC7A5 0.597 0.426 0.838 0.003 

SETD1B 0.621 0.455 0.847 0.003 

SLC2A8 0.545 0.381 0.779 0.001 

HMGB1 1.331 1.017 1.742 0.037 

HILPDA 1.567 1.092 2.249 0.015 

HR, hazard ratio; HR.95L, low 95% confidence interval of HR; 
HR.95H, high 95% confidence interval of HR.

Table 3 The multivariate Cox analysis

Gene Coef (α) HR HR.95L HR.95H P value

CISD1 0.519 1.681 1.171 2.412 0.005 

TXNIP 0.350 1.420 1.025 1.966 0.035 

SLC7A5 –0.405 0.667 0.449 0.991 0.045 

SLC2A8 –0.744 0.475 0.325 0.695 0.000 

HILPDA 0.555 1.741 1.211 2.503 0.003 

Coef (α) represents regression coefficient of each gene. HR, 
hazard ratio; HR.95L, low 95% confidence interval of HR; 
HR.95H, high 95% confidence interval of HR.
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Topotecan (topoisomerase I inhibitor) decreased in the high 
TXNIP group (Figure 7D,7E). The above results showed 
that patients with high TXNIP expression are relatively 
sensitive to AMG-319 and Topotecan treatment. 

TXNIP may have the ability to predict the efficacy of 
immunotherapy

To further explore whether TXNIP is associated with the 
efficacy of immunotherapy, we collected pre-treatment 
baseline information and tumor specimens from 20 SCLC 
patients treated with first-line immunotherapy (Table 4). 
Then, we divided the patients into the Response and Non-
Response groups (P<0.001) based on the best clinical 
response following first-line immunotherapy (Table 5). 
Analysis of the IHC score based on TXNIP and PD-L1 
expression (Figure 8) showed that TXNIP scores were 
higher in the Response group, which indicated that patients 
with high TXNIP expression might respond better to 
immunotherapy (Figure 8A). There was no statistically 

significant even if the PD-L1 tended to be highly expressed 
in the Response group (Figure 8B), which suggested that 
TXNIP may have a better ability to predict the efficacy of 
immunotherapy than PD-L1. 

Discussion

Atezolizumab or durvalumab combined with chemotherapy 
represent a major step forward for ES-SCLC. However, 
no consistent predictive biomarkers can accurately guide 
the use of immune checkpoint inhibitors for SCLC 
patients (18). Recent evidence suggests that activation 
of ferroptosis can overcome tumor development and 
reduce the sensitivity of the tumor to chemotherapy (8). 
Ferroptosis has been reported to modulate the TME 
to inhibit tumor progression and improve prognosis 
(19,20). Our study first developed a novel risk-scoring 
model based on 5 ferroptosis-related prognostic genes 
from SCLC data from the cBioPortal dataset. Then, we 
examined the relationships between 5 ferroptosis-related 

Time, months Time, months

Time, monthsTime, months

Time, months Time, months

Time, months

Time, monthsTime, months

Time, months

Time, months

Time, months

Time, months

Time, months

T2-4 N1-3

M1M0

Stage I, II Chemo

N0

MaleAge >65

T1

Stage III, IV

Age ≤65

no-Chemo

Female

P=0.0033 P<0.0001

ns.P<0.0001

P=0.0003 P=0.0016

P=0.0097

P=0.001P=0.0002

P=0.0061

P=0.001

P=0.0015

P=0.0106

P=0.0007

Low risk (n=16)
High risk (n=23)

Low risk (n=18)

High risk (n=17)

Low risk (n=3)

High risk (n=5)

Low risk (n=28)

High risk (n=29)

Low risk (n=25)

High risk (n=22)

Low risk (n=27)

High risk (n=23)

Low risk (n=15)

High risk (n=19)

Low risk (n=26)

High risk (n=28)
Low risk (n=18)

High risk (n=18)

Low risk (n=17)

High risk (n=13)

Low risk (n=14)

High risk (n=16)

Low risk (n=21)

High risk (n=20)

Low risk (n=6)

High risk (n=12)

Low risk (n=13)
High risk (n=10)

100

50

0

100

50

0

100

50

0

100

50

0

100

50

0

100

50

0

100

50

0

100

50

0

100

50

0

100

50

0

100

50

0

100

50

0

100

50

0

100

50

0

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l
P

er
ce

nt
 s

ur
vi

va
l

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l
P

er
ce

nt
 s

ur
vi

va
l

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l

20 40 60 80 1000 20 40 60 80 1000

20 40 60 800100 150 2000 50

100 150 2000 50 100 150 2000 50

100 150 2000 50

100 150 2000 50100 150 2000 50

100 150 2000 50

100 1500 50

100 1500 50

100 1500 50

20 40 60 80 1000

A B

C D

E F

G

Figure 4 The generality of the risk-scoring model. Stratified analyses based on clinical variables, including (A) age, (B) gender, (C) T stage, (D) 
N stage, (E) clinical stage, (F) chemotherapy, and (G) M stage.



Li et al. A risk-scoring model of SCLC1388

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2022;11(7):1380-1393 | https://dx.doi.org/10.21037/tlcr-22-408

prognostic genes and TME of SCLC. We have established 
an independent predictive model and identified potential 
biomarkers and therapeutic targets from the ferroptosis 
signaling pathway. 

We built a prognostic risk-scoring model with 5 
ferroptosis-related genes screened by univariate and 
multivariate COX analyses, including CISD1, TXNIP, 
HILPDA, SLC7A5 and SLC2A8. CISD1 is an iron-
containing outer mitochondrial membrane protein 
required to regulate iron and reactive oxygen species (ROS) 
homeostasis in cells. CISD1 is a suppressor that prevents 
ferroptosis-induced cancer cell death (21). Previous studies 
have shown that CISD1 can inhibit lipid peroxidation 
by limiting mitochondrial iron uptake and suppressing 
ferroptosis with cysteine assistance (22). As a target gene of 
the protein disulfide isomerase (PDI) inhibitor, the TXNIP 
expression can be suppressed by a nanomolar PDI inhibitor 
(35G8), and 35G8-induced cell death proceeds via a mixture 
of autophagy and ferroptosis (23). In clear-cell carcinomas, 
HILPDA (hypoxia-inducible, lipid droplet-associated 
protein) was deemed to be a top re-sensitization factor, 
which could enrich polyunsaturated lipids to promotes 
glutathione peroxidase 4 (GPX4) inhibitor sensitivity and 

ferroptosis sensitivity downstream of hypoxia-inducible 
factor (HIF)-2α (24). It is noteworthy that HILPDA is also a 
target gene of HIF-1α, which has been found to re-sensitize 
HIF-2α-null cells to ferroptosis (24). Existing study also 
shows that the etoposide- and cisplatin-induced iron 
reduction and stemness of SCLC cells were consequent 
on HIF-1/ferritin axis which reduced the lysosome iron 
concentration (25). In our risk-assessment model, we found 
higher expression of HILPDA in the high-risk group, which 
included SCLC patients with a poorer prognosis than the 
low-risk group. Based on previous studies, we hypothesized 
that if HILPDA could also be a biomarker predicting 
sensitivity to GPX4-targeting agents for SCLC patients, 
then the patients in high-risk groups might have better 
prognosis following treatment with ferroptosis inducers. 
It may also be a potential target to benefit patients with 
recurrent SCLC. Moreover, solute carrier family 7 member 
5 (SLC7A5) is an amino acid transporter, and SLC2A8 
is a glucose transporter, both of which play a role in the 
biological process of ferroptosis (26,27).

Results also showed that the 5 ferroptosis-related genes 
correlated with immune infiltration in SCLC, suggesting 
that ferroptosis plays an important role in immune 
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Table 4 Characteristics of SCLC patients at baselines

Characteristics Response (%) (n=10) Non-Response (%) (n=10) P value

Age (y)

Median [range] 65.5 [50–72] 65.5 [53–73] 0.615

<60, n (%) 3 (30.0) 2 (20.0) 1.000

Sex (male/female) 10/0 9/1 1.000

Smoking status, n (%) 0.474

Current/former 10 (100.0) 8 (80.0)

Never 0 (0.0) 2 (20.0)

ECOG PS, n (%) 0.584

0 8 (25.0) 5 (25.0)

1 2 (75.0) 4 (75.0)

2 0 (0.0) 1 (10.0)

Disease status, n (%) 1.000

II/III 3 (30.0) 3 (30.0)

IV 7 (70.0) 7 (70.0)

SCLC, small cell lung cancer; ECOG PS, Eastern Cooperative Oncology Group Performance Status.
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infiltration of SCLC. SCLC has recently been divided into 
neuroendocrine (NE) and non-neuroendocrine (non-NE) 
subtypes, showing decreased and increased immune cell 
infiltration, respectively (28,29). A study has found that 
non-NE SCLC is highly sensitive to ferroptosis induction 
therapy, while NE SCLC demonstrates selective addiction 
to the TRX redox pathway of ferroptosis (30). In our study, 
TXNIP was mostly positively correlated with immune cell 
infiltration in SCLC, indicating that ferroptosis inducers 
may have better efficacy in patients with high TXNIP 
expression. 

The degree of immune invasion is related to the efficacy 
of chemotherapy and immunotherapy, so we investigated 
the role of the TXNIP gene in the therapeutic efficacy of 
SCLC patients. Through comparing the IC50 value of 
SCLC cell lines between the high and low TXNIP group, 
we found that TXNIP expression level was related to 
the sensitivity of anti-tumor drugs, including AMG-319 
and Topotecan. In addition, TXNIP overexpression was 
observed in lung cancer patients who continued to respond 
to immunotherapy but was decreased in patients who did 
not respond to immunotherapy. 

Table 5 Response to first line chemo-immunotherapy of SCLC patients

The best clinical benefit Response (%) (n=10) Non-Response (%) (n=10) P value

CR 1 (10.0) 0 <0.001

PR 9 (90.0) 0

SD 0 7 (70.0)

PD 0 3 (30.0)

SCLC, small cell lung cancer; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.
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In conclusion, the risk-scoring model based on 5 
ferroptosis-associated genes is a potentially powerful 
tool for predicting SCLC prognosis. TXNIP was found 
to be associated with the efficacy of immunotherapy and 
chemotherapy.
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