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Introduction

Lung cancer accounts approximately for 20% of all cancer 
deaths, ranking as the leading cause of cancer related-death 
in Europe with more than 300,000 patients every year (1). 

Its prognosis is usually poor with a 5-year overall survival 
(OS) rate inferior to 20% in stage-IV patients. Non-small-
cell lung cancer (NSCLC) accounts for approximately 80% 
of all lung cancers, including adenocarcinoma (ADC) and 
squamous cell carcinoma (SCC).
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18F-FDG PET-CT is widely used in clinical practice, 
both as a qualitative tool for tumour staging and treatment 
response assessment but also as a quantitative tool. The 
18F-FDG uptake measurement via standardized uptake value 
(SUV) quantifies tumour metabolism (2) and reflects the 
tumor activity.

Since 2015–2016 immune check-point inhibitors (ICIs) 
have transformed the landscape in thoracic oncology, with 
a significant benefit on OS and on progression free survival 
(PFS) as first and second line treatments in NSCLC 
patients.

Intra-tumour heterogeneity (ITH) (3) is due to several 
factors such as somatic mutations with different clones of 
cancer cells. Other explanations are related to hypoxia, 
apoptosis, cell density and vascularity. ITH also includes 
diversity between primary tumour and its metastases 
(4,5). All these phenomena trigger different responses to 
treatment and select cells contingents resistant to cancer 
therapies. ITH is considered as a poor prognosis factor 
and is present at a high level in NSCLC (6). The spatial 
relationship between PET voxels reflects metabolic 
heterogeneity (7,8) and that between CT voxels measures 
tissue density heterogeneity (9). In several cancers, including 
NSCLC, radiomics was proposed as a non-invasive 
assessment tool to investigate tumour heterogeneity. It 
provides parameters called radiomics features (RFs). It is 
now encompassed in the fields of artificial Intelligence and 
data mining (10-12).

PET study (13) has shown significant association 
between the driver epidermal growth factor receptor 
(EGFR) and some RFs. The relationship between PD-L1 
expression and metabolic parameters (14) and with other 
RFs (15) have been studied. CT extracted features were also 
published (16,17). Despite numerous studies focusing on 
the use of radiomics in NSCLC, no radiomics-based model 
is clinically used or validated (18,19).

Until now, the lack of clinical use could be explained 
by the high variability in methodology approaches and the 
absence of internal or external validation in most studies. 
No consensus has thus been proposed nowadays for routine 
practice (20). The main goal of this paper is to investigate 
the potential of radiomics to predict OS and PFS. Besides 
we took advantage of our patient population to undertake 
an ancillary study that compares RFs and PD-L1 expression 
on one side and RFs and histo-clinical variables on the 
other. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-22-158/rc).

Methods

Patients

Patients with NSCLC treated in our institution from 
March 2017 to October 2019 were consecutively and 
retrospectively included. They all had an IHC for PD-L1 
expression on biopsy sample or surgical resection specimen 
and an 18F-FDG PET-CT at the beginning of the disease. 
Patients were naive of previous treatment. Upon inclusion 
in the study, patients were anonymized.

PET/CT image acquisition
18FDG PET-CTs have been performed on two different 
devices: a Siemens Biograph device without time of flight 
(TOF) equipment and on a Siemens Horizon device with 
TOF equipment. Parameters of acquisition were the 
following for the Biograph device: CT slice thickness:  
2.5 mm, matrix size: 512, PET slice thickness: 2 mm, 
matrix size: 180. They were the following for the Horizon 
device: CT slice thickness: 1.5 mm, matrix size: 512, PET 
slice thickness: 2 mm, matrix size: 180. The parameters of 
reconstruction on the Biograph device were: OSEM 2D, 
4 iterations, 8 sub-sets and 5 mm gaussian filter. Using 
Horizon device they were: OSEM 3 D, 6 iterations, 10 sub-
sets and 6.5 mm gaussian filter. No contrast enhancement 
has been done for CT.

IHC

PD-L1 expression was evaluated on tissue tumour with 
LDTs, established on a Benchmark Ultra system using a 
22C3 antibody (DAKO monoclonal mouse anti human PD-
L1). The results of PD-L1 expression have been returned as 
the percentage of PD-L1 positive cells (PPC), based on the 
total of viable tumour cells in the specimen. The following 
scores were used: PPC =0% (PPC0); PPC =1–49%  
(PPC1-49) and PPC ≥50% (PPC50).

RFs calculation

Forty-seven RFs were extracted for each patient and each 
modality, in compliance to the IBSI guidelines (21) using 
the LIFEx (22) dedicated software version 4.62. The 
segmentation PET procedure was based on an adaptive 
thresholding associated to a region growing approach 
proposed by the software. The PET contours were refined 
based on the CT images. The 47 PET RFs and the 47 CT 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-158/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-158/rc
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Table 1 The features

Category Features

Metabolism density SUV/HU min

SUV/HU mean

SUV/HU σ2

SUV/HU max

SUV/HU peak

TLG/TLU

SUV/HU coefficient of variation

Histogram Skewness

Kurtosis

Log Entropy 10

Log Entropy 2

Energy

Sphericity Volume (mL)

Volume (voxels)

Sphericity

Compacity

GLCM Homogeneity

Energy

Contrast

Correlation

Dissimilarity

Log Entropy 10

Log Entropy 2

GLRLM SRE

LRE

LGRE

HGRE

SRLGE

SRHGE

LRLGE

LRHGE

GLNU

RLNU

RP

NGLTDM Coarseness

Contrast

Table 1 (continued)

RFs (Table 1) were then extracted using these contours. 
The first 7 PET and CT RFs were descriptive statistical 
parameters derived from SUV and from Hounsfield 
density unit (HU) respectively. To account for the 
possible variety between the two scanners, an a posteriori 
harmonization step was applied before selection of features 
and modelling. Only the RFs have been harmonized using 
the combat procedure (23).

Statistical analysis

Prognosis analysis
Prediction of OS and PFS was chosen as the primary 
endpoint. Correlation between RFs and PDL1/histo-
clinical variables was chosen as secondary and exploratory 

Table 1 (continued)

Category Features

GLZLM SZE

LZE

LGZE

HGZE

SZLGE

SZHGE

LGLZE

HGLZE

GLNU

ZNU

ZP

GLCM, gray level co-occurrence matrix; GLRLM, gray level run 
length matrix; NGLTDM, neighborhood grey level difference 
matrix; GLZLM, grey level zone length matrix; SUV, standard 
uptake value; HU, Hounsfield unit; σ2, standard deviation; 
TLG, total lesion glycolysis; TLU, total lesion HU; SRE, short 
run emphasis; LRE, long run emphasis; LGRE, long gray 
level run emphasis; HGRE, high gray level run emphasis; 
SRLGE, short run low gray level emphasis; SRHGE, short 
run high gray level emphasis; LRLGE, long run low gray level 
emphasis; LRHGE, long run high gray level emphasis; GLNU, 
gray level nonuniformity; RLNU, run length non uniformity; RP, 
run percentage; SZE, small zone emphasis; LZE, large zone 
emphasis; LGZE, low gray level zone emphasis; HGZE, high 
gray level zone emphasis; SZLGE, small zone low gray level 
emphasis; SZHGE, small zone high gray level emphasis; LGLZE, 
low gray level zone emphasis; HGLZE, high gray level zone 
emphasis; ZNU, zone size nonuniformity; ZP, zone percentage.
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endpoints.
Regarding the prediction of OS and PFS, four models 

have been designed for each endpoint: (I) a conventional 
(clinical and histological) model, (II) a PET model, (III) a 
CT model and (IV) a (conventional + PET + CT) model, 
resulting in 8 models. The full dataset was then separated 
by random sampling in a training cohort and a testing 
cohort.

Firstly, significance of features was tested using a 
univariate Cox analysis on the training cohort. Five 
sub-groups of variables were defined: conventional and 
metabolic, first order PET, second-order PET, first order 
CT and second-order CT. Only significant variables were 
included in their respective sub-group. For each model 
and each sub-group a multivariate stepwise Cox analysis 
was performed to select the final variables. These variables 
were introduced one by one as long as the log-likelihood 
ratio test remained significant at 5% level. Then a final 
multivariate Cox analysis was performed. Prognostic 
scores were generated for each model by calculating, 
for each patient, the weighted sum of the products of 
each significant variable retained in the model with its 
corresponding Cox coefficient referred to as the radiomics 
signature. Patients have then been dichotomized into a low 
and a high risk groups by the median value of their score. 
The Kaplan-Meier curves of the 4 OS models and of the 
4 PFS models were drawn. The log-likelihood of each 
training model has been calculated and compared using the 
log-likelihood ratio statistic. The difference between low 
and high risk groups have been tested using the Logrank 
test. Hazard ratio (HR) and the Harrell’s concordance 
index (C-index) (24) were calculated. For statistical tests 
the significance level of 5% has been considered, except 
when mentioned.

The radiomics signature was applied to patients of the 
testing cohort to calculate their prognostic score. Low and 
high risk groups were generated as previously described. 
The survival curves were calculated as well as all the 
statistical parameters above described.

Association between RFs and clinical variables
Links between histology and stage on one side and with the 
3 expression of the PD-L1 on the other were tested using 
analysis of variance (ANOVA). In addition, the RFs of age, 
the gender sets (male versus female), the smoker sets (non-
smokers versus smokers) were compared in the same way. 
The null hypothesis for each test is one-sided type. The P 
values derived from ANOVA have been corrected with the 

Bonferroni method. The P value is the probability that the 
test statistic can take a value greater than the value of the 
computed Fisher test statistic. In addition, the normalized 
difference delta between the second and the first modality 
and the area under curve (AUC) have been calculated.

2 1= 100%
2

Modality Modality 
Modality 

−
∆ ∗ 	 [1]

All calculations were performed with Matlab statistical 
toolbox—r2018b (The MathWorks Inc.).

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by ethics board of Annecy Nuclear Medicine 
Center which is registered with “French Commission 
nationale de l’informatique et des libertés (CNIL)” under 
number DPO-34247 in terms of patient data protection. 
Informed consent was taken from all the patients. Only 
patients who have accepted their participation in the study 
were included. All data have been anonymized.

Results

Patients’ population

From the 212 original patients, 4 have been excluded due 
to an ambiguous histology status and eight more due to a 
too small tumour volume (inferior to 10 mm3). The final 
number of patients was 200. Patient characteristics are 
given in Table 2. Time between IHC and PET-CT was less 
than 2 weeks. The PET-CTs of the first 33 patients have 
been recorded on the Siemens Biograph device and the last 
167 patients on the Siemens Horizon device.

Prognosis analysis

With a median follow-up of 834 days, 67% (134/200) and 
47% (95/200) of the patients have experienced progression 
or death respectively. The values of the variables in the two 
cohorts, training (102/200) and testing (98/200) have been 
compared using the Chi-square test and the Wilcoxon test. 
Only two variables were significantly different between 
training and testing patients: histology and RF Peak-HU-
CT, indicating a valid random sampling.

Significant features derived from the final multivariate 
stepwise analysis are indicated in Table 3. A signature 
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has been built with these variables associated to their 
regression coefficient. Details about signatures are given in 
supplementary section (Appendix 1).

The Kaplan-Meier curves of the 4 OS models and of 
the 4 PFS models are shown in Figure 1A,1B respectively. 
Statistical survival data are given in Table 3. For OS 
results the logrank tests were not significant in models 

including CT RFs. The most efficient OS model is that 
which only includes Stage and Gender. Table 3 shows that 
performances of PFS models globally surpass those of OS 
ones even if the likelihood ratio tests between model-1 
and model-4 is significant (P=0.014) for OS and not 
significant for RFS. For OS training the higher median 
survival time is superior to 1,176 days for low risk patients 
of conventional model and is lower with 281 days for high 
risk patients of the same model. The ratio is 4.18. For 
PFS, these values are respectively superior to 1,176 and 
285 days with a ratio of 4.12.

Testing cohort

The signatures from the training set were applied to patients 
included in the testing set. The corresponding survival 
curves are shown in Figure 1A,1B. The comparison between 
training and testing data indicated a large difference for low 
risk patients in OS model-4 and in PFS model-1. It must be 
noticed that the likelihoods could not be calculated in the 
testing cohort.

Association between RFs and clinical variables

Chi-square tests have been performed with contingency 
tables constructed from the 200 patients characteristics 
listed in Table 2. They were only significant for the 
comparison of gender status versus histology status: the 
proportion of SCC in male is double the proportion in 
female (40% vs. 20%). These findings are in accordance 
with current knowledge. All other comparisons were not 
significant.

Figure 2 sums up the links between histology status 
and stage status in one side and RFs in the other side. It 
gives for each RF, the significance level of the ANOVA 
test, the normalized difference delta between the second 
and the first modality and the corresponding AUC. These 
three parameters must be integrated for the clinical 
interpretation of the test. The differences delta of PET 
and CT should be interpreted independently of each 
other since they measure different kinds of biological and 
physical data.

ANOVA found no significant difference of RFs between 
the PD-L1 expressions as well as between the smoker 
statuses. Then no PD-L1 and no smoker data was shown 
in Figure 2. Figure 3 showed a substantial overlap of the 
two metabolic RFs, SUVmax and TLG, and the PD-L1 
expressions. In the same way, Figure 4A,4B showed an 

Table 2 Patients characteristics

Characteristics Whole cohort Training cohort Testing cohort

Gender

Male 139 (69%) 69 70

Female 61 (31%) 33 28

Age

Median (years) 67 66 68

Range (years) 35–91 37–90 35–91

PD-L1

0% 63 (32%) 35 28

1–50% 88 (42%) 46 42

>50% 49 (26%) 21 28

Histology

ADC 138 (68%) 79 59

SCC 62 (30%) 23 39

Stage

I 24 (12%) 9 15

II 19 (9%) 10 9

III 48 (24%) 19 29

IV 109 (55%) 64 45

Smoker

0† 57 (28%) 31 26

0–20 52 (22%) 28 24

>20 90 (50%) 42 48

Unknown 1 1

Outcome

Dead 95 (47%) 52 43

Alive 105 (53%) 50 55

Progression 134 (67%) 68 66

No 
progression

66 (33%) 34 32

†, pack-years.

https://cdn.amegroups.cn/static/public/TLCR-22-158-supplementary.pdf
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Table 3 Results for 102 training patients and 98 testing patients

Variable
Training Testing

P Logrank HR C-index P Logrank HR C-index

OS models

Conventional: stage + gender 2.22×10−8 5.29±1.44 0.80±0.086 0.009 2.27±1.44 0.61±0.11

PET: coarseness-NGTDM + GLU-GLRLM 0.04 1.96±0.84 0.63±0.11 ns 1.80±1.20 0.56±0.12

CT: GLNU-GLZLM + ZP-GLZLM ns 1.49±0.63 0.62±0.11 ns 1.67±1.07 0.61±0.11

Conventional + PET + CT: stage + gender + coarseness-
NGTDM-PET

ns 1.10±0.83 0.55±0.11 ns 1.72±1.09 0.57±0.11

PFS models

Conventional: stage + gender 1.9×10−5 2.75±1.05 0.70±0.11 0.005 2.45±1.1 0.68±0.10

PET: coarseness-NGTDM + SRLGE-GLRLM-PET 0.004 2.48±1.36 0.64±1.62 0.01 1.80±0.83 0.56±1.32

CT: SRE-GLRLM-CT ns 1.83±0.70 0.64±1.62 ns 1.67±0.76 0.61±0.11

Conventional + PET + CT: stage + coarseness-NGTDM-PET 1.9×10−5 2.75±1.62 0.73±0.11 0.02 2.21±1.32 0.62±0.11

OS, overall survival; PFS, progression-free survival; GLRLM, gray level run length matrix; GLNU, gray level nonuniformity; GLZLM, grey 
level zone length matrix; SRLGE, short run low gray level emphasis; SRE, short run emphasis; ns, not significant.

example of a high SUVmax of 43.16 on a tumour without 
PD-L1 expression versus a low SUVmax of 5.38 on a tumour 
with a high expression of PD-L1.

ANOVA for histology was significant at the 0.05 level 
for 28 PET RFs and for 15 CT RFs when ADC and SCC 
patients were compared. Most of metabolic RFs were 
significantly higher in the SCC patients than in the ADC 
patients as illustrated on Figure 4C,4D which showed a SCC 
patient with a clearly higher SUVmax than that of an ADC 
patient. The highest AUC concerned ZNU-GLZLM for 
PET and HUmean and HGRE-GLRLM for CT.

The comparison of stage 1 & 2 versus stage 3 & 4 is 
significant for 17 PET RFs and 33 CT RFs. Homogeneity-
CT is higher in stage 3 & 4 patients than in the stage 1 
& 2 ones (P<0.01 and AUC =0.81). As an example on  
Figure 4E,4F, the value of homogeneity-CT of the stage 4 
para-pleural tumour is higher than that of the stage 1 & 2 
tumour, with 0.61 and 0.20 values respectively.

Discussion

The reduced number of final significant RFs in multivariate 
survival analyses can be explained by a high redundancy of 
prognostic information between the included RFs. Better 
performances of PFS models could be explained by a higher 
number of patients with PFS events than the number of 
patients with OS events (Table 2). Models including CT 

RFs are less than optimal while those with PET RFs remain 
efficient. According to Logrank test, HR and C-index, 
conventional models only including Stage and Gender 
remain the most efficient to separate low risk and high risk 
patients.

A study (25) based only on a conventional model, 
without radiomics data, has shown good performance 
for PFS evaluation with a C-index of 0.75. A study (26) 
based on PET showed that a standardized, multi-centre 
dataset to predict PFS in locally advanced NSCLC was 
successful whereas prediction models with robust feature 
preselection were unsuccessful. In the same way a meta-
analysis (20) found a poor prognostic value of radiomics. 
On the contrary, a study (27) has shown an improvement 
of PFS estimation by adding PET RFs to conventional 
model. Likewise, a study (28) found a good PFS predictive 
value for PET and CT RFs. It is similar for older studies 
(29,30). Finally, two studies (31,32) have concluded to an 
improvement of prognostic with radiomics compared to 
conventional data on special patients. Moreover, the high 
prognosis value of stage in our study, at least equal to that 
of some RFs, must be emphasized. We found some gaps, 
more or less pronounced, between training and testing 
results. This reflects a degree of instability between cohorts. 
In summary our results confirm the survival prediction 
potential of some RFs, alone or in association. Despite this, 
the addition of radiomics data to conventional data does not 
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Figure 1 OS curves (A) and PFS curves (B) for the 4 models on the 102 training and 98 testing patients. OS, overall survival; PFS, 
progression-free survival; CT, computed tomography; PET, positron emission tomography.
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HISTO STAGE p<0.05
PET CT PET CT p< 0.01
delta AUC delta AUC delta AUC delta AUC p<0.001

MIN 1.40 0.51 -2.68 0.53 -16.06 0.53 19.31 0.61
MEAN 16.25 0.62 -55.36 0.63 -17.03 0.64 348.00 0.78
STD 32.12 0.65 -21.50 0.60 -13.55 0.58 69.18 0.75
MAX 27.82 0.67 11.98 0.61 -18.32 0.63 -19.27 0.56
PEAK 24.92 0.65 17.07 0.60 -19.14 0.63 -39.36 0.70
TLG / TLU 60.66 0.68 -58.95 0.62 -66.17 0.72 272.57 0.71
CV 16.28 0.62 -1741.71 0.59 7.05 0.54 -201.76 0.63
SKEWNESS -1.12 0.51 11.49 0.53 23.25 0.62 -48.43 0.68
KURTOSIS -1.30 0.51 44.82 0.62 2.94 0.57 -62.80 0.74
ENTROPY10 12.45 0.65 -10.69 0.61 -7.51 0.60 34.34 0.80
ENTROPY2 12.45 0.65 -10.69 0.61 -7.51 0.60 34.34 0.80
ENERGY -38.86 0.65 20.37 0.61 31.84 0.60 -52.52 0.80
VOLUME(ml) 57.41 0.68 38.88 0.59 -57.67 0.71 -45.58 0.66
VOLUME(vox) 60.14 0.68 58.66 0.60 -60.08 0.72 -51.52 0.65
SPHERICITY -1.68 0.61 0.48 0.52 3.58 0.72 0.94 0.59
COMPACITY 24.11 0.68 16.54 0.61 -27.24 0.72 -20.31 0.65
HOMOGENEITY -10.95 0.57 9.81 0.61 3.03 0.50 27.33 0.81
ENERGY -60.82 0.64 19.61 0.60 67.26 0.62 -60.58 0.79
CONTRAST 41.60 0.61 -28.36 0.59 13.24 0.53 154.12 0.78
CORRELATION 15.86 0.63 -3.55 0.53 -15.34 0.65 9.33 0.57
ENTROPY10 12.40 0.66 -8.74 0.60 -9.67 0.63 29.48 0.80
ENTROPY2 12.40 0.66 -8.74 0.60 -9.67 0.63 29.48 0.80
DISSIMILARITY 20.26 0.60 -23.82 0.60 2.53 0.52 102.24 0.80
SRE 1.39 0.54 -2.05 0.62 -0.55 0.54 5.70 0.80
LRE -5.37 0.52 7.33 0.62 4.51 0.55 -19.24 0.79
LGRE -26.73 0.61 28.13 0.55 160.72 0.65 -29.89 0.67
HGRE 34.76 0.63 6.92 0.63 -20.58 0.63 -19.72 0.78
SRLGE -27.02 0.61 24.90 0.55 145.72 0.66 -25.04 0.68
SRHGE 35.77 0.64 5.11 0.61 -19.34 0.62 -16.01 0.75
LRLGE -19.11 0.59 37.33 0.52 231.17 0.61 -46.61 0.60
LRHGE 27.87 0.64 13.13 0.62 -28.00 0.66 -32.00 0.80
GLNU 33.90 0.62 78.08 0.63 -46.51 0.70 -77.10 0.75
RLNU 67.73 0.69 47.61 0.59 -61.72 0.72 -38.22 0.61
RP 1.52 0.53 -2.78 0.62 -0.51 0.55 7.66 0.80
COARSNESS -41.28 0.69 -41.70 0.61 84.98 0.72 75.95 0.68
CONTRAST 14.33 0.55 -36.04 0.62 15.09 0.52 189.27 0.77
SZE 10.33 0.61 -4.77 0.58 -2.45 0.51 7.69 0.72
LZE -50.95 0.52 42.94 0.58 -34.19 0.56 -88.04 0.78
LGZE -46.58 0.63 -10.62 0.53 190.83 0.66 -29.55 0.62
HGZE 36.29 0.65 6.00 0.59 -20.43 0.62 -22.66 0.75
SZLGE -37.97 0.58 -3.45 0.53 104.36 0.71 -18.35 0.63
SZHGE 45.20 0.64 4.28 0.58 -16.80 0.60 -18.79 0.75
LZLGE -55.67 0.54 38.18 0.58 316.52 0.51 -90.85 0.77
LZHGE -43.26 0.54 43.10 0.58 -83.64 0.65 -88.01 0.77
GLNU 68.81 0.69 32.94 0.57 -52.94 0.70 -49.09 0.64
ZNU 82.65 0.70 7.45 0.51 -61.45 0.66 26.86 0.56
ZP 12.12 0.55 -27.72 0.62 5.13 0.53 99.87 0.81

P<0.05
P<0.01
P<0.001

Figure 2 Normalized difference delta of radiomics features (RFs) between the two modalities of histology squamous cell carcinoma minus 
adenocarcinoma and between the two modalities of stage 3 & 4 minus stage 1 & 2. Significance levels are indicated with a colour scale. No 
coloured value indicated an absence of significance at 5% level of the analysis of variance (ANOVA) test. Area under curve (AUC) are given; 
CT, computed tomography; PET, positron emission tomography.
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Figure 3 Distribution of standard uptake value max (SUVmax) and of total lesion glycolysis (TLG) within the three PD-L1 expressions. 
Circles give the medians.
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Figure 4 PET and CT transverse slices with white arrows indicating the tumor site. PD-L1 negative patient with a standard uptake value 
maximum (SUVmax) of 43.16 (A). Positive PD-L1 patient with a SUVmax of 5.38 (B). Adenocarcinoma (ADC) patient with a SUVmax of 4.14 (C). 
Squamous cell carcinoma (SCC) patient with a SUVmax of 24.98 (D). Stage 2 patient with a homogeneity of 0.20 (E). Stage 4 patient with a 
homogeneity of 0.61 (F).
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improve the prediction of survival in our patients.
Several conventional variables and a lot of RFs are 

significant to predict the prognosis in a univariate way in 
our cohort. Stage was the most significant variable in the 
models including conventional data. It can be noticed that 
the number of RFs CT is superior to that of PET ones. The 
number of significant variables according to univariate tests 
is clearly reduced in multivariate Cox model. The likelihood 
ratio test is only significant for the comparison between 
the conventional OS models and the (conventional + PET 
& CT) models and not significant for PFS models. That 
indicates an absence of additional prognosis information of 
radiomics compared to the conventional variables.

A limit of our prognostic study is the relative low ratios 
of events per variable included in the stepwise multivariable 
procedure, inferior to the advised value of 10. The 
retrospective nature of this study is also a disadvantage. 
Moreover, we have not considered the prediction of 
immunotherapy effects using radiomics as it was done in 
several papers. One of them (33) associated a biological 
inflammatory factor based on the ratio of neutrophils to 
leukocytes to metabolic PET RFs. It improves the selection 
of appropriate patients for immunotherapy. Response to 
immunotherapy can also be provided using a radiomics 
signature of CD8 cells (34). These applications in NSCLC 
are promising (35) but present some limitations (19) and are 
not yet widespread.

About association between RFs and clinical variables, our 
main findings are the followings. There was no association 
between PD-L1 expression and conventional and radiomics 
parameters, in discordance with several publications which 
indicate a higher FDG metabolism in patients with PD-
L1 expression superior to 50% (14,15). However, the 
links between PD-L1 expression and tumour metabolism 
should be interpreted according to immune environment 
as proposed for prediction of immunotherapy response 
(33,34). We have observed a higher glycolysis metabolism in 
SCC tumours compared to that of ADC ones. Stage 3 & 4 
tumours appear more homogeneous than stage 1 & 2 ones. 
Conventional variables are independent from each other 
apart from the impact of gender on the histology sub-type 
with a rate of SSC twice as high in men than in women.

Studies (16,17) have shown significant relations between 
PD-L1 expression and CT RFs while we did not find 
any. A correlation between the PD-L1 level of expression 
and medical imaging is of importance especially given 
the current development of in vivo imaging procedures 
with 89Zr labelled anti-CD8 minibody (36) and specific 

labelled 18F molecule such as adnectin (37) have been 
proposed. These immuno-imaging techniques, not yet 
used in clinical practice, are promising and could complete 
radiomics.

Regarding the correlation between RFs and the rest 
of clinico-histopathologic among SCC and especially 
ADC patients’ variables we confirmed the importance of 
the glycolysis level as a prognostic tool among SCC and 
especially ADC patients already described (38). Glycolysis 
was able to stratify ADC patients regarding their prognosis, 
a lower glucose metabolism being associated with a better 
prognosis. Results regarding the correlation between RFs 
and the tumor stage are relatively surprising since they would 
indicate that stage 3 & 4 tumors, including metastatic lesions 
are significantly more homogeneous on CT (but not in 
PET) than the stage 1 & 2 tumors. These results should be 
considered as exploratory and confirmed on external cohorts.

In summary, several conventional variables and a lot of 
RFs are significant to predict the prognosis in a univariate 
way in our cohort. Stage was the most significant variable 
in the models including conventional data. It can be noticed 
that the number of RFs CT is superior to that of PET ones. 
The number of significant variables according to univariate 
tests is clearly reduced in multivariate Cox model. The 
likelihood ratio test is only significant for OS models to 
compare the conventional models and the (conventional 
+ PET & CT) models. That indicates a real but weak 
contribution to radiomics compared to the conventional 
variables. Moreover, the PD-L1 expression of tumours 
could not be differentiated by RFs.

In practice, for our population and in our institutions, 
we found a limited practical interest of radiomics in 
NSCLC patients. RFs provide prognostic information but 
don’t appear as superior to conventional data. Our data 
support the need of large scale, prospective trial to fully 
apprehend the complexity of patients’ responses to ICIs. 
Nevertheless we have respected the methodology described 
in the literature especially by using a well-established 
and widespread procedure (Lifex) for segmentation 
and to estimate the RFs as well as a suitable algorithm 
to harmonize them (Combat). As previously discussed, 
convolutional filters were not applied due to the lack 
of IBSI-recommendations regarding the use of LoG or 
wavelet features in PET and/or CT imagings. However, 
integration of such features could possibly enhance the 
models’ performances and should be further evaluated.

We have also compared the survival models using 
the log-likelihood ratio statistics and have performed a 



Translational Lung Cancer Research, Vol 11, No 10 October 2022 2061

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2022;11(10):2051-2063 | https://dx.doi.org/10.21037/tlcr-22-158

training/testing procedure. Whatever the practical impact 
of presenting negative results must be considered (39). 
The differences of findings between several institutions 
could be explained by specificities of populations: ethnics 
and social status of patients as well as kind and level of 
medical care, this confusion bias being rarely taken into 
account in available data. Technical development of PET-
CT devices must also be taken into account as well as 
specificities of the radiomics software and the way to 
handle it. For information, LifeX (22) team has a project 
to develop an application that will enables the evaluation, 
in a multicenter way, of radiomics and\or AI models 
proposed for the management of lung cancer patients. 
Multicenter validation of models remains indeed essential 
to consider for their clinical use. Several studies focused on 
the lack of harmonization of radiomics (38,39) while others  
(10-12,40,41) underscore more sophisticated methodology 
such as principal components analysis (PCA), artificial 
intelligence (AI), multiblock discriminant analysis (42). 
However these techniques can be explored in research 
centers but are not suited for a clinical use which needs 
simple and robust procedures. Nowadays, one should be 
cautious in applying results obtained by others and the 
creation of one’s own survival analysis seems necessary, 
before calculating the optimal local suited radiomics 
signature.
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Appendix 1

Signature

The signatures for OS (SOS) and PFS model (SPFS) are the following with gender =1 for male and =2 for female and stage =1 when <3 and 

=2 when ≥3:
SOS =−1.51 * Gender +0.806 * Stage −50.99 * Coarsenesspet	 [2]
SPFS =0.8189 * Stage + 0.0020 Coarsenesspet	 [3]
The SOS and the SPFS thresholds are 0.284 and 2.745 respectively.
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