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Background: Targeted therapy with tyrosine kinases inhibitors (TKIs) against epidermal growth factor 
receptor (EGFR) is part of routine clinical practice for EGFR mutant advanced non-small cell lung cancer 
(NSCLC) patients. These patients eventually develop resistance, frequently accompanied by a gatekeeper 
mutation, T790M. Osimertinib is a third-generation EGFR TKI displaying potency to the T790M 
resistance mutation. Here we aimed to analyze if exosomal RNAs, isolated from longitudinally sampled 
plasma of osimertinib-treated EGFR T790M NSCLC patients, could provide biomarkers of acquired 
resistance to osimertinib.
Methods: Plasma was collected at baseline and progression of disease from 20 patients treated with 
osimertinib in the multicenter phase II study TKI in Relapsed EGFR-mutated non-small cell lung cancer 
patients (TREM). Plasma was centrifuged at 16,000 g followed by exosomal RNA extraction using Qiagen 
exoRNeasy kit. RNA was subjected to transcriptomics analysis with Clariom D.
Results: Transcriptome profiling revealed differential expression [log2(fold-change) >0.25, false discovery 
rate (FDR) P<0.15, and P(interaction) >0.05] of 128 transcripts. We applied network enrichment analysis 
(NEA) at the pathway level in a large collection of functional gene sets. This overall enrichment analysis 
revealed alterations in pathways related to EGFR and PI3K as well as to syndecan and glypican pathways 
(NEA FDR <3×10−10). When applied to the 40 individual, sample-specific gene sets, the NEA detected 16 
immune-related gene sets (FDR <0.25, P(interaction) >0.05 and NEA z-score exceeding 3 in at least one 
sample). 
Conclusions: Our study demonstrates a potential usability of plasma-derived exosomal RNAs to 
characterize molecular phenotypes of emerging osimertinib resistance. Furthermore, it highlights the 
involvement of multiple RNA species in shaping the transcriptome landscape of osimertinib-refractory 
NSCLC patients.
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Introduction

Lung cancer is the most common cancer worldwide 
resulting in nearly 20% of all cancer deaths (1). The most 
common subgroup of lung cancer is non-small cell lung 
cancer (NSCLC) constituting around 85% of lung cancer 
cases. Activating mutations in the gene encoding epidermal 
growth factor receptor (EGFR) occur in approximately 
15% of all NSCLC adenocarcinomas in Western patients 
with the prevalence being 3–4 times higher in Asians (2). 
These mutations result in a constitutively active EGFR 
receptor promoting uncontrolled proliferation, invasion 
and metastasis (3). The vast majority of NSCLCs harboring 
activating mutations in EGFR respond favorably to first-
generation ATP-competitive tyrosine kinase inhibitors 
(TKIs) erlotinib and gefitinib (4-6), or to second-generation 
EGFR TKIs afatinib and dacomitinib that irreversibly 
bind to the kinase domain. Although first- and second-
generation TKIs are clinically favorable compared to 
platinum-based therapy, inevitably all such tumors develop 
resistance to these TKIs, which is partly a consequence of 
the emergence of a secondary mutation, T790M (7). This 
mutation results in an increased affinity for ATP, negating 
the efficacy of ATP-competitive TKIs (8). Osimertinib is a 
covalent irreversible third-generation TKI, which targets 
NSCLCs with activating mutations in EGFR regardless 
of presence of the T790M mutation (9). Osimertinib 
received U.S. Food and Drug Administration (FDA)-
approval in 2017 as second-line therapy, followed by 
approval as first-line therapy in 2018 by both the FDA 
and the European Medicines Agency (EMA) (10-14). 
Despite the impressive effects of osimertinib in the clinical 
setting, patients receiving osimertinib eventually develop 
resistance. Known resistance mechanisms involve acquired 
mutation of the drug-binding cysteine, C797S, as well 
as amplifications of MET, HER2 and PIK3CA, together 
accounting for up to 50% of resistant cases. Furthermore, 
a large fraction of EGFR T790M NSCLCs progressing 
on osimertinib exhibit lost T790M-status (15-17).  
Several of the reported resistance mechanisms impact 
cell signaling pathways, likely altering gene transcription 
programs. Therefore, investigation of transcriptional 
changes is imperative for uncovering RNA biomarkers as 

well as understanding potential mechanisms and biological 
outcomes of acquired resistance to osimertinib. This 
requires repeated biopsies to capture the progression of the 
disease. Repeated solid tissue biopsy sampling presents an 
invasive clinical procedure that only captures the molecular 
nature of the cells at the sampling site. In contrast, blood 
liquid biopsies will potentially capture all RNAs shed 
into the bloodstream in extracellular vesicles, including 
exosomes, from any tumor cell, potentially minimizing 
tumor heterogeneity. The drawback of liquid biopsies is 
that the subsequent profiling cannot distinguish tumor-
derived vesicle-bound RNA from vesicle-bound RNA shed 
from healthy tissues. However, studying datasets of tens 
or even hundreds of solid tissue biopsy samples does not 
guarantee the identification of a common denominator for a 
specific phenotype. This demands rigorous cross-validation 
approaches, involving independently collected datasets. 
Furthermore, analysis would gain power by summarizing 
sparse individual gene events to the pathway level. The 
method of network enrichment analysis applied here 
allowed accounting for any altered transcripts regardless of 
expression of pathway genes (18,19). Using this approach, 
in an aim to identify potential new biomarkers of resistance, 
we have studied longitudinal changes in the transcriptional 
landscape of plasma extracellular vesicle bound RNAs from 
a cohort of EGFR T790M NSCLC patients receiving 
osimertinib as second-line treatment, and demonstrate 
that blood plasma serves as a comprehensive RNA source 
and that our major biological findings from plasma 
extracellular vesicle bound RNAs are corroborated using 
public and newly generated cell model data. We present the 
following article in accordance with the MDAR reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-22-236/rc).

Methods

Patient cohort and sample preparation

Twenty patients were included in the study. Five patients 
were males (38, 68, 43, 65 and 78 years old) and fifteen 
patients were females (62, 69, 53, 73, 56, 60, 75, 79, 59, 75, 
76, 66, 69, 61 and 64 years old). All patients were enrolled 
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in the Northern European multicenter phase II TREM 
study (EudraCT No. 2015-000307-10) and diagnosed 
with EGFR T790M-mutant NSCLC with a treatment 
history involving disease progression on minimum one first 
and/or second-generation EGFR TKI (20). The patients 
were treated with osimertinib 80 mg daily until radiologic 
progression. In this osimertinib-treated cohort, samples 
of twelve patients were collected via the Oslo University 
Hospital and eight patients at the Karolinska University 
Hospital. Whole blood was drawn just before treatment 
start (baseline) and at radiological disease progression 
on osimertinib treatment while patients were still on 
osimertinib and just before change of therapy. Plasma was 
separated through centrifugal isolation, 2,000 g for 15 min, 
and aliquoted to fresh 1ml tubes and stored at -80C. The 
regional ethical committees at respective hospitals approved 
sampling for this study.

EGFR mutant parental cell lines NCI-H1975 and 
HCC827 and TKI-refractory cell lines (erlotinib-resistant 
HCC827, gefitinib-resistant HCC827, osimertinib-resistant 
HCC827 and osimertinib-resistant NCI-H1975) (21) were 
cultured in RPMI-1640 medium with 10% supplemented 
Fetal Bovine Serum at 5% CO2, 37 ℃, and passaged when 
reaching sub-confluent conditions.

RNA extraction

Exosomal RNA was isolated at Karolinska Institutet.  
1 mL plasma/sample point was centrifuged at 16,000 g for 
10 minutes followed by processing using the ExoRNeasy 
serum plasma midi kit (Qiagen), as previously described (22),  
and the RNA was eluted in 14 μL RNase free water. 
RNA quantity and quality were assessed through the 
documentation of RNA integrity number (RIN) curves. 
All samples selected for analysis displayed similar RIN 
curves with a range from 1.50–2.90. Cell line total RNA 
was extracted from EGFR mutant TKI-refractory NSCLC 
cell lines (erlotinib-resistant HCC827, gefitinib-resistant 
HCC827, osimertinib-resistant HCC827 and osimertinib-
resistant NCI-H1975) and EGFR mutant parental NSCLC 
cell lines (HCC827 and NCI-H1975) (21) using mirVana 
miRNA isolation kit (ThermoFisher Scientific Cat 
#AM1560).

Transcriptome analysis

3 μL of eluted exosomal total RNA, or cell line total RNA, 
was pre-amplified for 6 cycles before loaded onto Clariom 

D Pico Assay, human transcriptome arrays (ThermoFisher 
Scientific #902925). Cell line total RNA was loaded onto 
Clariom D Pico Assay in biological duplicates. Transcript 
expression values were normalized using Signal Space 
Transformation (SST-RMA) method. 

Exploratory and statistical analyses

The SST-RMA values were bell-shape distributed, although 
the right tail was too extended. Therefore, the values were 
further log-transformed in order to render distribution 
closer to Gaussian and ensure homoscedasticity and usage 
of parametric statistics. However, the fold change values 
and boxplots visualization were based on the original SST-
RMA values. Principal component analysis, Volcano plot 
analysis, RNA-class distribution analysis and differential 
gene expression analysis was performed for 81042 transcripts 
with Clariome annotation in R environment using functions 
from package base. The removal of batch effects, generalized 
least squared models and network enrichment analysis were 
implemented with R packages limma, nlme and NEArender, 
respectively (https://cran.r-project.org/web/packages/). 

Network enrichment analysis

The network enrichment analysis (NEA) employs the 
global network, which combines all major types of 
molecular interactions in an unbiased way. By utilizing this 
topological information, NEA can render experimentally 
observed molecular alterations into a space of pathways and 
processes. The pathway view enables lower dimensionality, 
is more transparent for biological interpretation compared 
to other multivariate methods, and is also more efficient in 
absence of replicates—which is a typical situation in patient 
sample collections.

Similarly to the well-known over-representation analysis 
(ORA), NEA can analyze experimental altered gene sets 
(AGS), such as top N differentially expressed genes (DEG). 
AGSs are then tested for enrichment, i.e., significant 
“relatedness” with regard to (usually a large collection of) 
functional gene sets (FGS), such as pathways or other custom 
sets of biological importance. In ORA, enrichment of FGS 
versus AGS is determined by the fraction of genes shared 
by the two sets. NEA instead counts network edges that 
connect genes of AGS with any genes of FGS, which number 
is compared to a number expected by chance. The latter is 
influenced by variability in network edge numbers of involved 
genes and is therefore normalized by topological properties 

https://cran.r-project.org/web/packages/
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(node degrees) of gene nodes in the global network. 
NEA assigns profiles of FGS enrichment scores to 

each submitted AGS, which then could be used as either 
descriptive or predictive variables in the same way as gene 
expression profiles. NEA possesses higher statistical power 
to detect enrichment compared to ORA (18) and better 
reproducibility compared to both using raw gene profiles 
and diverse enrichment methods, which were tested in a 
systematic benchmark (19). Furthermore, NEA can identify 
network enrichment against e.g., signaling pathways, 
members of which not necessarily changed their own 
expression.

The integrated framework of NEA consists of three 
components: AGSs for each clinical sample, a sufficiently 
large collection of FGSs, and a version of global interaction 
network. The analysis was run in R environment using 
package NEArender of version 1.4. NEArender produced 
network enrichment scores for each AGS-FGS pair.

Global network version

The global network for NEA was a set of functional links 
from curated databases collected in the Pathway Commons 
project (version 9) (23) with 846,631 unique edges between 
20,063 unique human gene nodes.

Functional gene sets (FGS) 

The collection of pathways and gene sets included all 
entries from BioCarta, KEGG, Reactome, WikiPathways, 
MetaCyc, PID databases as well as 50 hallmarks from 
MSigDB. In addition, we used immunologic MSigDB 
collection C7 of 4872 signatures.

Altered gene sets (AGS) from cells and patients

For each sample, a specific AGS was compiled as a list of 25 
genes most deviating by expression values from the rest of 
samples in the respective cohort (either cell lines or patients).

Network visualization

The sub-networks for illustrations were generated at the 
public NEA resource https://www.evinet.org/ (24).

Least squares models for patients and cells

R packages base, car, nlme were employed, so that the 

models are presented using R code and functions of these 
packages.

Model PA-1 (repeated measures ANOVA)

gls( model = 

Expression ~ Origin + Concentration + Type + Concentration * 

Type,

correlation = corAR1(

form = ~ Type | Patients, 

value = ACF(

 gls(model = Expression ~ Origin + Concentration + 

Type + Concentration * Type), 

 form = ~ Levels | Patients

 )[2,2]

   ), method=”REML”);

Expression: gene expression;

Concentration: RNA concentration in the samples;

Origin: Oslo or Stockholm site;

Type: baseline or progression.

Model CL-1 (2-way ANOVA with interaction term)

aov(Expression ~ Line + Type + Line * Type)

with variables

Expression: gene expression;

Line: parental cell line, HCC827 or NCIH1975;

Type: original or resistant.

Model CCLE-1 (3-way ANOVA with one interaction 
term)

anova(lm(Sensitivity ~ Tissue + EGFR + Expression + EGFR * Ex-

pression)),

with factors

Sensitivity: to one of [ER, GE, OS];

Tissue: tissue or organ of the original tumor;

EGFR: mutation status;

Expression: gene expression.

Model PCA-1 (3-way ANOVA without interaction 
terms)

anova(lm(PC ~ Origin + Concentration + Type)),

https://www.evinet.org/
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Table 1 Clinical parameters

Assessment Value

Gender (%) Male: 5/20 (25%), female: 15/20 (75%)

Median age, years (range) 64 (38–79)

Smoking status (%) Current: 2/20 (10%), ex-smoker: 9/20 (45%), never smoker: 9/20 (45%)

Performance status (%) 0: 7/20 (35%), 1: 12/20 (60%), 2: 1/20 (5%)

Histology (%) Adenocarcinoma: 20/20 (100%)

Stage at diagnosis (%) IV: 20/20 (100%)

EGFR mutation subtype (%) Exon 19: 15/20 (75%), L858R: 4/20 (20%), Exon 18: 1/20 (5%), T790M: 20/20 (100%)

Median PFS osimertinib (months) 10.6

EGFR, epidermal growth factor receptor; PFS, progression-free survival.

with variables

PC: sample-specific principal component value;

Concentration: RNA concentration in the samples;

Origin: Oslo or Stockholm;

Type: baseline or progression.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and the ICH-
Guidelines of Good Clinical Practice and according to 
regulatory requirements. This study received ethical 
approval by the institutional review board at Karolinska 
University Hospital (registration No. 2016/944-31/1) 
and Oslo North Regional Ethics Board (No. 2015/181). 
Additional approvals by Stockholm Medical Biobank (No. 
Bbk-01605) were received. All patients provided written 
informed consent.

Data availability statement

The data generated in this study are available within the 
article and its supplementary data files. Raw data for this 
study were generated at the Karolinska Institutet BEA core 
facility and is available from the corresponding author upon 
request.

Sample definition and in-laboratory replication

All experiments were conducted using biological replicates. 
Visualized data reflects either all biological replicates, or 

representative biological replicates, as stated. If visualized 
with error bars, each data point represents all biological 
replicates of a specific analysis group. 

Results

Transcript coverage of plasma-derived exosomal RNA

To demonstrate that blood plasma serves as a comprehensive 
RNA source, we analyzed exosomal RNA from plasma 
sampled at baseline and progression of disease from twenty 
EGFR-mutant NSCLC patients receiving osimertinib 
in a multicenter phase II study (20) (Table 1, Table S1) as 
well as RNA derived from six EGFR-mutant NSCLC cell 
lines (two parental and four TKI-refractory) (21). First, 
we compared the level of per chromosome representation 
of mRNA transcripts detected in our blood plasma and 
cell line samples to RNA-seq transcriptomics data from 
traditionally used cancer samples: either in vitro Cancer Cell 
Line Encyclopedia (CCLE) cell cultures or 545 primary, 
fresh-frozen NSCLC tumors (TCGA) (21,25-27) (Figure 1). 
Using as reference a collection of 386 cancer-related genes, 
we found that detectable gene expression per chromosome 
was more variable in the blood plasma samples. However, 
the overall representation of the mRNA-landscape was 
found fairly similar between the plasma samples (Clariom D 
platform), our cell line samples (Clariom D platform), and 
RNA-seq CCLE and The Cancer Genome Atlas (TCGA) 
samples, with a maximum of 81% detected genes per sample 
per chromosome (Table S2). 

Next, we explored possible variability of transcriptomics 
data due to known factors in a principal component 
analysis (PCA) of all the 40 samples (Figures S1,S2,  

https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
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Figure 1 Representation of cancer gene mRNA in transcriptomics datasets. Each circle of the individual panels represents one chromosome. 
TCGA, The Cancer Genome Atlas; CCLE, cancer cell line encyclopedia; LUAD, lung adenocarcinoma; LUSC, lung squamous cell 
carcinoma.

Table S3). In order to detect potential influence of 
sample RNA concentration, site of delivery (“origin”, i.e., 
Stockholm or Oslo) as well as sample type (“baseline vs. 
progression”) on specific principal components (PC), we 

subjected each PC to linear model analysis (model PCA-1, 
see Methods). While most components were not associated 
with any changes between baseline and progression, 
PC32 clearly separated baseline from progression samples  

https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf


Alexeyenko et al. The RNA landscape in osimertinib resistant lung cancer2070

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2022;11(10):2064-2078 | https://dx.doi.org/10.21037/tlcr-22-236

(Figures S1,S2). This PCA investigation confirmed that 
influence of the three factors on variability in RNA 
expression should be accounted for. Therefore, the 
subsequent analysis of differential expression between 
baseline and progression included necessary covariates and 
an interaction term “Concentration * Type” (model PA-1).  
As an example, we included paired sample information in 
a repeated measures model on individual genes (model 
PA-1) and found that most informative genes from PC32 
significantly overlapped with genes detected by this model. 
Differential RNA expression was most pronounced for 
PYY3, ABCA2, MT1L, PRODH2, HMGB1P19, MIR892B 
and OR56B2P (FDR <0.0001) (Table S4). 

Dynamics of plasma-derived exosomal RNA

Based on the conclusions above, we evaluated differential 
RNA abundance in plasma derived exosomes between 
baseline and progression samples using a repeated measures 
model PA-1, which accounted for patients’ identities 
and detected changes due to tumor progression while 
subtracting influence of total RNA concentration and batch 
effect of delivery site. We required the interaction term 
“concentration * progression/baseline” to be insignificant in 
order to exclude less stable findings. In total, 128 transcripts 
displayed significant differential expression [log2(fold-
change) >0.25, FDR P<0.15, value for interaction term 
“concentration X progression/baseline” >0.05] (Figure 2A, 
Table S5). Among these, expression of 41 and 87 transcripts 
decreased and increased toward progression, respectively. 
Importantly, the most pronounced genes from PC32  
(Table S4) were among the top differentially expressed 
genes. In addition, we detected multiple genes in 
cell signaling pathway, immune system pathway and 
transcription, including MKNK1, RASA1, RGS18, IL17RA, 
ZNF17 and LIN9 (Figure 2B-2I, Table S5).

Pathway enrichment of differentially expressed genes

The differential expression analysis presented above 
produced a list of genes altered during the treatment. In 
order to characterize the list at a more general level we 
subjected the DEG list as an altered gene set (AGS) to 
network enrichment analysis (NEA) against a collection of 
6,529 functional gene sets (FGS). The NEA approach (18)  
is similar to over-representation analysis of DEG but 
considers the network context of each gene (Figure 3). This 
overall NEA exposed a number of highly enriched pathways 

(FDR <3×10-10), including pathways related to ERBB and 
PI3K signaling, as well as syndecan and glypican pathways. 
The glypican pathway produced the highest number of 
AGS to FGS links. Interestingly, we also observed several 
immune-related pathways, including IFN-gamma and 
IL-6 signaling pathways (Figure 4A,4B, Table S6). The 
network analysis considers transcripts present in the global 
interaction network, i.e., nearly all protein coding genes, 
most miRNAs, but neither long intergenic non-coding 
RNAs nor pseudogenes. A minor fraction of the pathway 
genes were identified as DEGs, which emphasizes that 
enrichment methods not using network analysis would be 
unlikely to detect these relations. 

Differential pathway activation in plasma-derived 
exosomal RNA 

The overall approach above detected pathways that 
characterized the DEG list as an integral, coherent gene 
group. Furthermore, we also created individual, patient-
specific altered gene sets (AGS) by gathering genes that 
differed in each given sample from the cohort gene means 
(Figure 3). We compiled 40 sample-specific AGSs and 
subjected them to NEA. This produced a matrix of 40× 
6,529 enrichment values and enabled using NEA scores 
in the same way as the original mRNA expression values, 
with the difference that 6,529 NEA profiles were used 
instead of RNAs. Namely, we detected differential pathway 
activation (DPA) for 16 out of 6,529 FGSs [FDR<0.25 
and P(interaction) >0.05], also requiring that NEA z-score 
should exceed 3 in at least one of the 40 samples (Figure 5, 
Figure S3, Table S7). One of the 16 differentially activated 
pathways, gene set GSE35825, displayed biological 
overlap with FGSs detected in the overall NEA approach  
(Figures 4A,5A, Tables S6,S7). The original publication by 
Liu et al. presented a transcriptomics dataset comparing 
IFN-alpha versus IFN-gamma stimulated macrophages 
derived from mouse bone marrow (28). The data was further 
processed to present the 200 most differentially expressed 
genes. In our patient data, the sample-specific gene sets were 
often linked in the global network to the GSE35825-based 
set of 200 genes and this linkage, quantified as NEA Z-scores, 
manifested values in the baseline samples systematically 
higher than the matching progression samples (Figure 5A).  
Interestingly, one gene of the GSE35825-based set 
[Endothelin 1 (EDN1) (29)] was consistently upregulated 
in the progression samples (Figure 5B,5C). In general, it 
appeared that immunity-related pathways dominated the 

https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
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differences between baseline and progression phenotypes 
(Table S7). 

Reciprocal validation using the three data sources

In order to demonstrate that our findings reflect a potential 
biological context of acquired resistance upon progression, 
we used the web resource www.evicor.org (30) in order 
to match the results obtained in the patient cohort to 
sensitivity correlates from our TKI-refractory cell line panel 
and CCLE dataset. We could estimate overlaps between 
sets of lower p-value correlates between different analyses. 
This approach, by calculating Fisher’s exact statistics of 
the overlap and controlling error rates via appropriate 
adjustment for multiple testing, demonstrated that there 
was a statistically significant match between the findings 
in all pairwise comparisons and at both gene and pathway 
levels (Table S8). In total, our cell line panel resulted in 
64 enriched pathways related to TKI-resistance versus 
33 enriched pathways in the patient cohort (Table S8).  
Since the experimental setups behind the three data 
sources were entirely independent, the overlaps indicate a 
biological and clinical relevance of the patient blood plasma 
sampling. 

Discussion

In this study, we investigated the transcriptome from 
longitudinally sampled liquid biopsies to assess potential 
RNA biomarkers with a possible association to the 
development of resistance to osimertinib in the clinic. 
While there have been a number of proposed resistance 
mechanisms to osimertinib, some reports rely solely 
on analysis of cell-free DNA (31-35), which may not 
provide the full biological picture of how a tumor can 
circumvent osimertinib therapy. Our investigation focused 
on comparing exosomal RNA at treatment baseline to 
exosomal RNA harvested at disease progression in twenty 
patients receiving osimertinib as second-line treatment. 
All patients enrolled in this study had prior treatment with 
a first-generation EGFR TKI and tested positive for the 
T790M mutation before starting osimertinib treatment. 
Therefore, it is possible that the T790M mutation could 
have arisen as a consequence of prior TKI-treatment and 
that patients without the T790M mutation would have a 
distinct RNA landscape in the baseline setting. Moreover, 
the methodology used in this study (22) is likely to extract 
RNAs originating from various extracellular vesicles below 
200 nm in diameter, and not solely RNAs derived from 
exosomes. There are so far no studies investigating the 

https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
http://www.evicor.org
https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-236-supplementary.pdf
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Figure 4 Overall NEA of pathways associated with progression to osimertinib in NSCLC EGFR T790M patients. (A) Graph representation 
of pathway enrichment, ranked on numbers of individual links between AGS and FGS genes found in the global network. (B) Example 
of detailed network view of EGFR pathway enrichment versus AGS of most significant DEGs. Yellow: AGS genes; magenta: FGS genes. 
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Figure 5 Individual NEA of pathways associated with progression to osimertinib in NSCLC EGFR T790M patients. (A) When subjected 
to NEA, the 20 baseline AGS showed higher enrichment with respect to GSE35825_IFNA_VS._IFNG_STIM_MACROPHAGE_UP 
compared to progression samples from same patients. (B) Example patterns of network connectivity of baseline AGS from patient 14 (sample 
27) versus FGS GSE35825_IFNA_VS._IFNG_STIM_MACROPHAGE_UP. Diamonds: AGS genes; circles: FGS genes; shades of blue 
and red: degree of down- and up-regulation compared to the genes’ cohort means, respectively (note that shades of AGS genes are much 
brighter, since their selection was solely based on differential expression). (C) Same as B, for the progression sample (sample 28). NEA, 
network enrichment analysis; NSCLC, non-small cell lung cancer; EGFR, epidermal growth factor receptor; AGS, altered gene sets; FGS, 
functional gene sets.

exosomal transcriptome from plasma, following osimertinib 
resistance. Analysis of our non-sequencing transcriptomics 
platform revealed presence of all major RNA categories, 
which provided a robust base for direct interpretation of 
results in DEG analysis and for enrichment analyses. The 
ability to derive biologically sensible results, validated with 
external experimental and model datasets, provided a proof 
of potential usability of blood plasma sampling. When 
comparing the full cohort of baseline versus progression 
samples, we were intrigued by the relatively low amount of 
differentially expressed transcripts. We observed significant 

differential expression of protein coding mRNA transcripts 
MKNK1, ABCA2, PRODH2, RASA1, IL17RA, ZNF17, 
LIN9, RGS18, APOBEC3D, GTPBP2, WDR89, ODC1, 
ERICH6 and GSG2. However, despite the abundant RNA 
coverage, there was a systematic lack of previously reported 
aberrations, including MET, HER2 and PIK3CA, which 
might be explained by tumor heterogeneity. This created 
the incentive of analyzing tumor progression at the pathway 
level. Interestingly, we observed changes in ERBB, PI3K 
and ECM (syndecan and glypican) pathways when using the 
overall NEA approach, while the individual analysis proved 
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to be highly informative on presence and involvement of 
immune cell transcriptomes. Both syndecans and glypicans 
are cell surface bound heparan sulfate proteoglycans 
(HSPGs). HSPGs are implicated in regulation of cell 
proliferation, migration, and differentiation and are 
therefore considered key players in cancer initiation and 
progression. However, there is very limited data on the 
potential role of HSPG in resistance to EGFR TKIs. Nishio 
et al. reported that high concentrations of heparan sulfate 
in serum were strongly related to poor treatment outcome 
of EGFR TKIs (36). Heparin-binding epidermal growth 
factor-like growth factor (HB-EGF) is a ligand for EGFR 
and has the ability to bind HSPGs, which facilitates EGFR 
activation. Another study demonstrated that the expression 
of HB-EGF was clearly increased in lung cancer cell lines 
with EGFR mutation compared to those without EGFR 
mutation and implicated HB-EGF as a target in resistance 
to EGFR TKIs due to EGFR downstream aberrations (37). 
The role of overexpression of HSPGs in relation to HB-
EGF-mediated EGFR activation in TKI resistance remains 
to be shown. Our study suggests a possible usability of 
HSPGs as biomarkers in patients with disease progression 
on osimertinib treatment. 

The individual NEA exposed potential roles of 
immunity-related FGS in the course of progression. 
This result is in line with a study by Isomoto et al. (38),  
showing that  the densit ies  of  CD8+ and FOXP3+ 
lymphocytes as well as the expression of CD73 in tumor 
cells increased after the development of EGFR TKI 
resistance, suggestive of possible immunosuppressive 
effects of regulatory T (Treg) cells and CD73 expression, 
the latter via induction of adenosine that interacts with the 
A2A receptor. Notably, most of our findings (either DEGs 
or differentially activated pathways and gene sets) were 
significant correlates, i.e., differential values were observed 
in subsets of samples, which emphasized the complexity 
of the alterations and the necessity to consider subset 
and multivariate approaches when developing potential 
biomarkers. 

Profiling liquid biopsies at the RNA level instead of at 
the DNA level raises some concerns, which need careful 
consideration. Exosomes are shed into the bloodstream 
by virtually all cells in the body (39). Therefore, the 
profiled RNA-landscape will be a mixture of tumor-
derived exosomes and exosomes of various sources of non-
malignant cells. Although longitudinal profiling will likely 
reduce the influence from non-malignant cell derived 

exosomes, the ultimate impact of such influence may look 
very different from patient to patient, and hence contribute 
to the observed heterogeneity. On the other hand, the 
heterogeneity and robustness of mRNA detection in this 
study was comparable or better than in the public RNA-seq 
based datasets. In order to truly decipher the impact on, and 
possibly contribution from, the RNA-landscape in acquired 
resistance to osimertinib, it may be crucial to extend the 
analysis to include both liquid biopsies and solid biopsies, 
as well as to include analysis of DNA and circulating DNA. 
Such future extension of the analysis, where the RNA-
landscape of solid biopsies is compared with the RNA-
landscape of liquid biopsies at baseline and progression of 
disease should determine the ultimate usability of liquid 
biopsy RNA-profiles in resistance to targeted therapies. 
Finally, the transcripts and profiles unveiled in this study do 
not present a causal relationship to osimertinib resistance. 
Future studies, in vitro and in vivo, are warranted to validate 
whether any of the uncovered differentially expressed 
transcripts play a mechanistic role in circumventing 
sensitivity to the EGFR TKI osimertinib.

Conclusions

In conclusion, we demonstrate a potential usability of 
conducting exosomal RNA profiling from plasma to define 
patients with resistance signatures to the third-generation 
EGFR TKI osimertinib. Our study highlights the 
abundance of RNAs in blood plasma, relevance of network-
based analysis, and the involvement of multiple RNA species 
in dictating the transcriptional landscape of osimertinib-
refractory NSCLC patients, including mechanisms related 
to ERBB, ECM and immune-related pathways.
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Figure S1 Linear principal component analysis of plasma-derived exosomal RNA across 40 samples from NSCLC EGFR T790M patients receiving treatment with osimertinib.
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Figure S2 Pair-wise comparison of the 39 principal components.
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Figure S3 Individual network enrichment analysis (NEA) displaying differentially activated pathways, in addition to GSE35825, with 
respect to 20 baseline AGS compared to progression samples from the same patient.
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Table S1 Extended clinical parameters of each individual patient

Site Progression T790M-status Sex Age Smoking status PS Histol EGFR mut PFS months

Helsinki w16 mut M 38 Never 1 AC ex19 3.81

Helsinki w24 mut F 62 Never 1 AC ex19 5.42

Helsinki w84 mut M 68 Former 1 AC ex19 18.73

Linkøping w32 mut F 69 Former 2 AC ex19 7.03

Oslo w48 mut F 53 Never 0 AC ex19 11.3

Oslo w32 mut F 73 Current 1 AC ex18 7.26

Helsinki w32 mut F 56 Former 1 AC ex19 7.2

Linkøping w24 mut F 60 Former 1 AC ex21 5.22

Linkøping w48 mut F 75 Former 1 AC ex21 10.71

Oslo w32 mut M 43 Never 1 AC ex19 7

Oslo w48 mut F 79 Former 1 AC ex21 10.61

Oslo w60 mut F 59 Current 1 AC ex21 13.14

Karolinska w60 mut F 75 former 0 AC ex19 13.73

Karolinska w32 mut M 65 never 1 AC ex19 7.36

Karolinska w48 mut F 76 former 0 AC ex19 10.64

Karolinska w60 mut F 66 never 0 AC ex19 12.88

Karolinska w32 mut M 78 never 0 AC ex19 5.39

Karolinska w60 mut F 69 former 0 AC ex19 14.23

Karolinska w96 mut F 61 never 0 AC ex19 11.24

Karolinska w16 mut F 64 never 1 AC ex19 3.68

EGFR, epidermal growth factor receptor; PFS, progression-free survival; AC, adenocarcinoma.
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Table S2 Representation of cancer gene mRNA in transcriptomics datasets

Dataset Source of material
Transcriptomics 

platform

Mean variability in numbers 
of genes with low or absent 

expression across chromosomes

Fraction of genes with low 
or absent expression across 

chromosomes, mean ± st.dev.

Clariom_D, patients Blood plasma Clariom_D 0.840 0.336±0.03

TCGA.LUAD (lung 
adenocarcinomas)

Primary tumors, fresh-
frozen

RNA-seq 0.567 0.414±0.01

TCGA.LUSC (lung 
squamous cell sarcomas)

Primary tumors, fresh-
frozen

RNA-seq 0.642 0.434±0.02

Clariom_D, cells Cell culture Clariom_D 0.521 0.188±0.06

CCLE, all cancer cell lines Cell culture RNA-seq 0.698 0.537±0.06

CCLE, cancer cell lines of 
lung origin

Cell culture RNA-seq 0.645 0.427±0.05

For each of the human chromosomes, presence of cancer gene transcripts (386 genes found in the KEGG cancer-related pathways; 

codes KEGG#052*) was evaluated in each sample. Variability was expressed as variance of logit values log
1

p
p

 
=  − 

, where p was the 

fraction of cancer genes with low or absent expression. The latter was defined as case of expression in a given sample significantly lower 
than the cohort mean (at Bonferroni-adjusted P value from t-test <0.01). 
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Table S3 Principal component analysis

PC Eigenvalue’s square root Fraction of variance (%) P.Type P.Conc P.Wilcoxon

1 2.416 9.50 0.181 0.8804 0.23

2 0.467 4.18 0.2269 0.161 0.18

3 0.26 3.12 0.9784 0.9033 0.95

4 0.243 3.02 0.5974 5.74E–06 0.9

5 0.185 2.63 0.1558 0.9167 0.33

6 0.169 2.52 0.8414 0.4125 0.86

7 0.167 2.50 0.8829 0.5654 0.82

8 0.166 2.49 0.4804 0.1768 0.86

9 0.164 2.48 0.1243 0.6255 0.46

10 0.161 2.45 0.6875 0.5357 0.7

11 0.158 2.43 0.2097 0.3815 0.11

12 0.155 2.41 0.8922 0.7445 0.64

13 0.154 2.40 0.8471 0.179 0.99

14 0.152 2.39 0.2138 0.9681 0.41

15 0.152 2.38 0.5484 0.6699 0.7

16 0.15 2.37 0.1854 0.9853 0.33

17 0.148 2.35 0.3339 0.7635 0.35

18 0.148 2.35 0.5988 0.2041 0.41

19 0.144 2.32 0.9628 0.3666 0.78

20 0.143 2.31 0.9695 0.08717 0.76

21 0.142 2.31 0.03978 0.3434 0.21

22 0.14 2.29 0.6438 0.7159 0.56

23 0.139 2.28 0.6827 0.7577 0.33

24 0.138 2.27 0.4772 0.5665 0.72

25 0.137 2.27 0.807 0.7787 0.99

26 0.136 2.26 0.4288 0.2359 0.84

27 0.135 2.25 0.1743 0.7122 0.1

28 0.132 2.22 0.3169 0.7037 0.46

29 0.131 2.21 0.9485 0.5893 0.55

30 0.129 2.19 0.4549 0.9016 0.37

31 0.126 2.17 0.8423 0.7758 0.76

32 0.124 2.16 0.01401 0.2774 0.0061

33 0.123 2.14 0.5784 0.7168 0.49

34 0.122 2.14 0.9263 0.2018 0.74

35 0.121 2.12 0.09156 0.5421 0.2

36 0.118 2.10 0.9653 0.9528 0.64

37 0.111 2.04 0.7752 0.8159 0.84

38 0.109 2.02 0.0585 0.9001 0.056

39 0.105 1.98 0.1471 0.6604 0.14
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Table S4 Differentially expressed genes in Principal Component 32

Gene Coefficient in PC32 P.Type FDR.Type

PYY3 −0.166692315 2.20E–07 9.26E–06

ABCA2 −0.16120866 1.09E–06 1.53E–05

MT1L 0.285908111 8.00E–07 1.53E–05

PRODH2 −0.190786149 1.57E–06 1.65E–05

HMGB1P19 −0.175180873 5.95E–06 4.32E–05

MIR892B 0.1765141 6.17E–06 4.32E–05

OR56B2P −0.36834929 1.55E–05 9.32E–05

GSG2 −0.322834092 3.73E–05 0.000195949

CHRNB2 −0.16535396 0.000120857 0.000391535

LINC00210 −0.216639704 0.000150933 0.000391535

MAP3K7CL 0.231942374 0.000158478 0.000391535

PGAM1P13 −0.175418078 0.000142233 0.000391535

PIGFP3 0.161248332 0.000119775 0.000391535

PREPL 0.444446945 0.000134088 0.000391535

SLC35A2 0.223094668 0.000128467 0.000391535

STT3B 0.472279445 9.62E−05 0.000391535

ZNF507 0.285862623 0.000131286 0.000391535

SCYL2 0.291051161 0.000174486 0.000407134

CHRNA3 0.167199573 0.000201859 0.000439237

DEFA3 −0.179454824 0.000228262 0.000439237

OR51Q1 −0.280672257 0.000230077 0.000439237

RPL35AP26 0.182099036 0.000218151 0.000439237

PBK −0.4036554 0.000260394 0.000475502

ATP6V1B2 0.255478305 0.000289924 0.000507367

ATP1B1 0.384966212 0.000335871 0.000542561

SEC22A 0.221573944 0.000324379 0.000542561

ERCC4 0.171045665 0.000417382 0.000649261

FAM228B 0.215143778 0.000444358 0.000666537

GOLGA8B −0.17285244 0.000471919 0.00068347

CSTF3 0.23327718 0.000578246 0.000792976

GABRG3 0.184682147 0.000585292 0.000792976

MOCS1 −0.177532192 0.000639775 0.000839704

PART1 0.193956082 0.000706772 0.000873072

PCED1A 0.262638443 0.000687793 0.000873072

ARHGAP42 0.265394995 0.000748461 0.000898154

MIR507 −0.233989024 0.000788235 0.000905413

RASSF5 0.185141951 0.000819183 0.000905413

ZNF786 0.228326367 0.000800372 0.000905413

LINC00314 0.289167794 0.000863075 0.000929465

CEP170P1 0.176312692 0.000905245 0.000931036

RNU6-271P 0.196029784 0.000908869 0.000931036

ERGIC2 0.395401712 0.000997413 0.000997413



Table S5 Differential gene expression in patients progressing on osimertinib and with an FDR <0.15

Gene_symbol log2(fold_change).GE_patients P(ConcXtype).GE_patients FDR(Type).GE_patients

sworpaw 0.45 0.41 0.00026

luber −0.36 0.1 0.00048

lawdarbo 0.65 0.15 0.00048

zochorbu 0.71 0.28 0.00048

PYY3 0.29 0.049 0.0023

wawleybo 0.98 0.23 0.0023

siyamu 0.35 0.059 0.0031

MT1L −0.6 0.22 0.0064

ABCA2 0.25 0.04 0.0069

MKNK1 −0.88 0.58 0.0069

PRODH2 0.64 0.083 0.0083

lokar 0.5 0.66 0.0083

gortor 0.5 0.98 0.011

gertaw 0.58 1 0.011

UPP2-IT1 0.58 0.0015 0.016

sterbybo 0.67 0.23 0.016

terbeyby 0.55 0.23 0.016

IL17RA −0.66 0.29 0.016

RASA1 −1.72 0.79 0.016

smyku 0.4 0.83 0.016

MIR892B −0.5 0.37 0.017

choplorby 0.79 0.86 0.017

HMGB1P19 0.44 0.87 0.017

tenura 0.58 0.0067 0.018

CALM2P3 −0.73 0.7 0.022

ZNF17 0.83 0.74 0.022

plawwo 0.41 0.86 0.022

LIN9 −1.29 0.94 0.023

mortyby 0.47 0.15 0.024

tosoru −0.24 0.043 0.026

gyveebo 0.56 0.84 0.026

OR56B2P 0.39 0.0083 0.029

MIR6818 0.46 0.32 0.029

tinima 0.41 0.75 0.029

slanabo 0.64 0.92 0.029

RGS18 −1.52 0.016 0.034

vasheybu 0.47 0.046 0.034

steywarby 0.48 0.73 0.034

APOBEC3D −0.94 0.83 0.034

GTPBP2 −0.9 0.44 0.035

TRMT112P2 −0.53 0.3 0.039

floysterby 0.32 0.017 0.04

C18orf65 0.33 0.038 0.04

murera 0.57 0.42 0.04

44451 −0.35 0.07 0.041

WDR89 −0.66 0.2 0.043

spawglu 0.4 0.57 0.044

ODC1 −2.24 0.25 0.046

fustyby 0.54 0.66 0.046

ERICH6 −0.58 0.71 0.046

GSG2 0.46 0.25 0.047

LOC646903 0.32 0.13 0.052

HMGN2P31 −0.45 0.22 0.052

LINC00309 0.37 0.081 0.053

runiyo 0.52 0.067 0.057

geydoy 0.57 0.3 0.06

LINC01101 0.32 0.3 0.06

LINC00358 0.48 0.82 0.06

MICU2 −1.29 0.85 0.06

malor 0.39 0.9 0.06

LOC100131285 0.7 0.32 0.061

gluglybu 0.51 0.31 0.069

H2BFS −1.11 0.00012 0.074

DDX39BP1 0.56 0.12 0.074

OR8B1P 0.67 0.5 0.074

BLOC1S2 −0.93 0.0088 0.076

EIF4BP1 −0.42 0.34 0.076

nanome −0.6 0.022 0.078

bluspeeby 0.8 0.43 0.078

LOC606724 −0.41 0.71 0.078

sherbloyby 0.94 0.93 0.078

STT3B −1.48 0.17 0.082

swawserbu 0.38 0.36 0.082

shermubu 0.51 0.95 0.082

homeobox.49 0.61 1 0.082

showy 0.34 0.23 0.084

RN7SKP294 0.32 0.44 0.084

nergorby 0.57 0.7 0.084

LOC643623 0.31 0.015 0.085

OR51A6P 0.38 0.017 0.085

geegee 0.64 0.3 0.085

HMGN2P32 −0.54 0.37 0.085

RP11-407N8.5 0.38 0.071 0.086

pleyjor 0.31 0.2 0.086

PIGFP3 −0.39 0.099 0.089

CHRNB2 0.38 0.48 0.089

AKAP3 0.74 0.16 0.09

skawspybu 0.42 0.2 0.09

SLC35A2 −0.38 0.33 0.092

PREPL −1.39 0.24 0.093

ZNF507 −0.78 0.64 0.093

LINC01000 0.5 0.74 0.093

PGAM1P13 0.33 0.77 0.097

MAP3K7CL −2.03 0.038 0.1

LOC105373185 0.2 0.2 0.1

wawter 0.3 0.42 0.1

C7orf50 −0.31 0.46 0.1

LINC00210 0.39 0.64 0.1

LOC100507443 0.24 0.65 0.1

nawmobu 0.51 0.7 0.1

HMGN2 −0.65 0.0028 0.11

SCYL2 −1.49 0.022 0.11

glarbleeby 0.47 0.081 0.11

RN7SL327P 0.35 0.14 0.11

RN7SL489P 0.35 0.14 0.11

RN7SL853P 0.35 0.14 0.11

OTUD3 0.71 0.16 0.11

S100A5 0.27 0.28 0.11

METTL4 −0.76 0.37 0.11

F13B −0.52 0.52 0.11

CHRNA3 −0.32 0.66 0.11

rorplarby 0.63 0.73 0.11

TRBV7-7 0.28 0.76 0.11

RPL17P49 −0.44 1 0.11

sarstubu 0.53 0.00042 0.12

OR51Q1 0.64 0.006 0.12

C2orf88 −0.81 0.012 0.12

RPL35AP26 −0.3 0.023 0.12

yosoyu 0.51 0.088 0.12

NPC1 −0.58 0.31 0.12

DEFA3 1.09 0.37 0.12

GPR50 0.41 0.41 0.12

MAGED2 −0.69 0.59 0.12

LOC257396 0.17 0.69 0.12

spodu 0.44 0.78 0.12

nawblabu 0.33 0.79 0.12

LOC730100 0.25 0.83 0.12

shersoby 0.43 0.96 0.12

ELOVL7 −1.79 0.00096 0.13

KIAA1383 0.46 0.019 0.13

wordee 0.51 0.11 0.13

kleylaw 0.61 0.16 0.13

MIR4524B 0.7 0.26 0.13

OR4C13 −0.28 0.31 0.13

fawwee 0.44 0.53 0.13

timemi −0.51 0.57 0.13

varsperbu 0.48 0.61 0.13

PBK 0.46 0.62 0.13

yanaro 0.39 0.69 0.13

skoplorbu 0.5 0.72 0.13

ATP6V1B2 −1.52 0.91 0.13

dorkluby 0.48 0.017 0.14

DDX11L2 −1.39 0.041 0.14

DDX11L10 −1.49 0.06 0.14

toybo 0.63 0.11 0.14

skugybu −0.23 0.12 0.14

tukly −0.48 0.14 0.14

toykoy 0.37 0.14 0.14

ATP1B1 −1.01 0.16 0.14

SEC22A −0.58 0.22 0.14

NUPR2 −0.26 0.3 0.14

fawchy −0.27 0.41 0.14

korboybo 0.4 0.69 0.14

steymoybo 0.58 0.69 0.14

CCT8L1P −0.21 0.79 0.14

slorfer 0.44 0.86 0.14

MLXIP −0.36 0.86 0.14

kuchoyby 0.8 0.91 0.14

RN7SL70P −0.34 0.98 0.14

spudu 0.35 0.98 0.14
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Table S6 Significant pathways in the overall NEA approach

FGS (pathway) No.of.links.AGS-FGS NEA.z-score NEA.P-value NEA.FDR

glypican_pathway 322 7.681 1.60E-14 1.10E-12

glypican_1_network 307 8.858 8.20E-19 9.60E-17

erbb_receptor_signaling_network 300 8.166 3.20E-16 2.90E-14

internalization_of_erbb1 290 8.028 9.90E-16 8.40E-14

proteoglycan_syndecan-mediated_signaling_events 272 8.601 7.90E-18 8.40E-16

trail_signaling_pathway 258 8.229 1.90E-16 1.80E-14

all623_ding2008 256 12.578 2.80E-36 1.30E-33

ifn-gamma_pathway 252 8.269 1.30E-16 1.30E-14

syndecan-1-mediated_signaling_events 251 8.051 8.20E-16 7.10E-14

signaling_events_mediated_by_hepatocyte_growth_factor_receptor_
(c-met)

249 8.14 3.90E-16 3.50E-14

signaling_events_mediated_by_focal_adhesion_kinase 244 8.036 9.30E-16 8.00E-14

class_i_pi3k_signaling_events 237 8.138 4.00E-16 3.60E-14

class_i_pi3k_signaling_events_mediated_by_akt 205 7.496 6.60E-14 4.40E-12

endothelins 186 7.968 1.60E-15 1.30E-13

kegg_05200_pathways_in_cancer 148 6.982 2.90E-12 1.60E-10

kegg_04010_mapk_signaling_pathway 132 7.111 1.20E-12 6.80E-11

reactome_hemostasis 128 7.476 7.60E-14 5.10E-12

hs_egfr1_signaling_pathway_wp437_35716.txt 124 8.39 4.90E-17 4.80E-15

hs_mapk_signaling_pathway_wp382_38878.txt 108 7.82 5.30E-15 4.10E-13

hs_insulin_signaling_wp481_38887.txt 90 8.345 7.10E-17 6.90E-15

hs_il-6_signaling_pathway_wp364_35645.txt 86 7.023 2.20E-12 1.20E-10

kegg_04012_erbb_signaling_pathway 84 7.397 1.40E-13 9.10E-12

hs_calcium_regulation_in_the_cardiac_cell_wp536_38956.txt 79 6.9 5.20E-12 2.80E-10

kegg_04530_tight_junction 75 9.733 2.20E-22 3.60E-20

kegg_05214_glioma 70 8.006 1.20E-15 1.00E-13

hs_g_protein_signaling_pathways_wp35_35311.txt 68 7.934 2.10E-15 1.70E-13

biocarta_biopeptides_pathway 64 9.129 6.90E-20 9.00E-18

kegg_04540_gap_junction 57 7.227 5.00E-13 3.00E-11

kegg_05223_non-small_cell_lung_cancer 56 6.899 5.20E-12 2.80E-10

biocarta_pdgf_pathway 52 7.601 2.90E-14 2.10E-12

biocarta_egf_pathway 51 6.944 3.80E-12 2.10E-10

hs_signal_transduction_of_s1p_receptor_wp26_38752.txt 25 7.513 5.80E-14 3.90E-12

kegg_00512_o-glycan_biosynthesis 14 10.232 1.40E-24 2.80E-22
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Table S7 Significant pathways in the individual NEA approach

Gene_set log2(fold_change) p(ConcXtype) FDR(Type)

gse26156_double_positive_vs._cd4_single_positive_thymocyte_dn 1.26 0.078 0.037

gse1432_ctrl_vs._ifng_24h_microglia_dn 1.21 0.43 0.037

gse9960_healthy_vs._gram_pos_sepsis_pbmc_dn 0.84 0.73 0.13

gse22886_th1_vs._th2_12h_act_dn -0.89 0.46 0.13

gse19941_lps_vs._lps_and_il10_stim_il10_ko_nfkbp50_ko_macrophage_up -0.61 0.18 0.17

gse36476_ctrl_vs._tsst_act_16h_memory_cd4_tcell_old_dn 1.49 0.98 0.18

gse35825_ifna_vs._ifng_stim_macrophage_up 0.94 0.98 0.18

gse7460_cd8_tcell_vs._treg_act_up -0.62 0.58 0.19

gse27786_lin_neg_vs._cd8_tcell_up 0.82 0.23 0.21

gse12198_ctrl_vs._low_il2_stim_nk_cell_dn 1.07 0.52 0.21

gse2706_2h_vs._8h_lps_stim_dc_dn 1.04 0.22 0.21

gse13411_naive_vs._switched_memory_bcell_dn 0.93 0.31 0.21

gse15330_lymphoid_multipotent_vs._megakaryocyte_erythroid_progenitor_up 1.23 0.19 0.21

reactome_innate_immunity_signaling 1.56 0.58 0.22

gse10147_il3_and_hivp17_vs._il3_and_cpg_stim_pdc_dn 0.91 0.18 0.23

gse29617_ctrl_vs._day3_tiv_flu_vaccine_pbmc_2008_dn 1.3 0.46 0.23

Table S8 Cross-validation of significant findings

Patient cohort In-house cell panel CCLE

Patient 
cohort

GE, LM PA-1: 128 DE RNAs NEA(individual): P(H-B) = 0.06 NEA(individual): P(H-B) = 0.022 

NEA(individual), LM PA-1: 16 DA FGS NEA(overall): P(H-B) = 0.011

NEA(overall): 33 enriched pathways

In-house 
cell panel

GE: p(H-B) = 0.0012 GE, LM CL-1: 16 DE RNAs NEA(individual): P(H-B)=0.0023

NEA(individual), LM CL-1: 0 DA FGSs

NEA(overall): 64 enriched pathways

CCLE GE: P(H-B) = 0.0002 GE: P(H-B) = 1.4e−25 GE, LM CCLE-1: 125 DE genes 

NEA(individual), LM CCLE-1: 0 
DA FGS

GE, gene/RNA level analysis; NEA, pathway level analysis; LM, linear model; DE, differentially expressed; DA, differentially activated; 
P(H-B), P value from Fisher’s exact text tried at a series of P value cutoffs of increasing strength, adjusted for multiple testing by Holm-
Bonferroni method. 

https://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method
https://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method
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