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Original Article

Multi-omics consensus portfolio to refine the classification 
of lung adenocarcinoma with prognostic stratification, tumor 
microenvironment, and unique sensitivity to first-line therapies
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Background: Molecular classification of lung adenocarcinoma (LUAD) based on transcriptomic features 
has been widely studied. The complementarity of data obtained from multilayer molecular biology could 
help the LUAD classification via combining multi-omics information. 
Methods: We successfully divided samples from the The Cancer Genome Atlas (TCGA) (n=437) into 
four subtypes (CS1, CS2, CS3 and CS4) by 10 comprehensive multi-omics clustering methods in the 
“movics” R package. Meanwhile, external validation sets from different sequencing technologies proved 
the robustness of the grouping model. The relationship between subtypes, prognosis, molecular features, 
tumor microenvironment and response to first-line therapy was further analyzed. Next we used univariate 
Cox regression analysis and Lasso regression analysis to explore the application of biomarkers in clinical 
prognosis and constructed a prognostic model.
Results: CS1 showed the worst overall survival (OS) among all four clusters, possibly related to its poor 
immune infiltration, higher tumor mutation and worse chromosomal stability. Patients in different subtypes 
differed significantly in cancer stem cell characteristics, activation of cancer-related pathways, sensitivity 
to chemotherapy and immunotherapy. The prognostic model showed good predictive performance. The 
1-, 2- and 3-year areas under the curve of risk score were 0.779, 0.742 and 0.678, respectively. Seven genes 
(DKK1, TSPAN7, ID1, DLGAP5, HHIPL2, CD40 and SEMA3C) used to build the model may be potential 
therapeutic targets for LUAD. 
Conclusions: Four LUAD subtypes with different molecular characteristics and clinical implications were 
identified successfully through bioinformatic analysis. Our results may contribute to precision medicine and 
inform the development of rational clinical strategies for targeted and immune therapies.
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Introduction

Lung cancer is currently the second most common cancer in 
the world in terms of new cases and the number one cause of 
cancer death. In 2020, approximately 2.2 million new cases 
of lung cancer are diagnosed worldwide (1). The prognosis 
of lung cancer is relatively poor, with 5-year survival rates 
ranging from 4% to 17%, depending on the stage of 
the disease at the time of diagnosis (2). Lung cancer is a 
heterogeneous disease (3,4), and includes several subtypes with 
pathological and clinical relevance. Lung cancer is generally 
classified into two major groups: small cell lung carcinoma 
(SCLC, 15% of cases) and non-small cell lung carcinoma 
(NSCLC, 85% of cases). Of these, lung adenocarcinoma 
(LUAD) is the most common histological type, accounting 
for nearly 60% of NSCLCs, and is characterized by genomic 
instability and a highly pathogenic mutational burden (5).

Molecular analysis helps classify LUAD into multiple 
molecular subtypes to guide prognosis prediction and 
treatment selection more precisely. The understanding of 
LUAD biology has been significantly improved by multiple 
molecular classifications of various gene expression profiles 

at the transcriptome level. The development of malignant 
transformation requires molecular alterations at many levels. 
Single-level histological approaches are attempting to unravel 
the mechanisms of cancer development by interrogating 
entire genomic libraries, epigenomes, transcripts, proteins, 
microbiomes, and metabolites through increasingly affordable 
high-throughput technologies (6). However, there is no 
single molecule level approach to fully explain the complexity 
of this problem, such as the cancer genome or pinpointing 
oncogenic driving mechanisms. Therefore, a multi-omics 
signature-based classification scheme for LUAD has been 
proposed, which could potentially reveal the heterogeneity 
of LUAD. Recently, a multicomponent classification and 
integration model of LUAD by integrative histology was 
reported (7), revealing crosstalk features between different 
molecules, but only KEAP1/NFE2L2/CUL3 alterations in 
LUAD compromised the normal function of the antioxidant 
signaling pathway, which hardly explains the heterogeneity of 
LUAD. A computational machine learning prediction model 
(PReceur) developed based on genomic molecular features, 
compared with the TNM system, can better predict LUAD 
recurrence risk and guide clinical treatment (8). This revealed 
the promising applications of molecular classifications in the 
LUAD.

The ability to explain molecular complexity and 
variation at multiple levels such as genome, epigenome, 
transcriptome, proteome and metabolome enables us to 
better understand the occurrence and development of 
diseases. With the development of sequencing technology, 
biology increasingly relies on data generated at these levels, 
which are collectively referred to as “multi-omics” data (9). 
The Cancer Genome Atlas (TCGA) database has multi-
omics data of more than 400 LUAD simples. In this study 
we aimed to identify integration consistency in LUAD by 
generating consistent sets from classifications generated 
by multiple algorithms based on mRNA and lncRNA 
expression, epigenomic DNA methylation profiles and 
genomic mutations subtypes (IC) to better outline tumor 
heterogeneity and biological processes. We also constructed 
a prognostic model based on the marker genes of each 
subtype. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
tlcr.amegroups.com/article/view/10.21037/tlcr-22-775/rc).
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Highlight box

Key findings 
• Four lung adenocarcinoma subtypes were identified successfully 

through using a multi-omics approach.
• Four lung adenocarcinoma subtypes showed distinct molecular 

patterns in transcriptome expression, epigenetic methylation and 
somatic mutations.

• Seven genes (DKK1, TSPAN7, ID1, DLGAP5, HHIPL2, CD40 and 
SEMA3C) are closely related to prognosis and may be potential 
therapeutic targets.

What is known and what is new? 
• It is known that classification of lung adenocarcinoma based on 

transcriptomic features has been extensively studied.
• In this study, we innovatively integrate multi-omics data to refine 

the classification of lung adenocarcinoma.

What is the implication, and what should change now?
• Application of multi-omics consistent approach will promote the 

development of precision medicine and clinical strategies.
• What we need to do is to further optimize multi-omics methods so 

they can be applied from bench to bedside.

https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-775/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-775/rc


Translational Lung Cancer Research, Vol 11, No 11 November 2022 2245

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2022;11(11):2243-2260 | https://dx.doi.org/10.21037/tlcr-22-775

Methods 

Multi-omics datasets

The molecular profile of TCGA-NSCLC dataset of 
TCGA-LUAD cohort was obtained by downloading 
from TCGA database, including 437 LUAD cases with 
complete transcriptome expression, somatic mutation, 
copy number change(CNA), DNA methylation and clinical 
information. The R package “TCGAbiolinks” is used to 
process raw sequencing data (10) GENCODE27 mapping 
was used to transform Ensemble IDs into gene symbols. 
DNA methylation profile was downloaded from the XENA 
database (https://xenabrowser.net/). Copy number segment 
data were downloaded from FireBrowse (http://firebrowse.
org/). Somatic mutations and clinical information were 
downloaded from cBioPortal (https://www.cbioportal.org/). 
The clinical information is provided in website: https://cdn.
amegroups.cn/static/public/tlcr-22-775-01.xlsx.

External transcriptomic datasets

External validation was performed using a microarray 
dataset with transcriptomic expression profiles and overall 
clinical outcomes. Lung tumors other than LUAD were not 
included in this study (e.g., large cell lung cancer, squamous 
lung cancer, etc.). The microarray dataset (GSE68465, 
n=442) sequenced by Affymetrix GeneChip was collected 
from the Gene Expression Omnibus (GEO) database (11). 
Information on the platform, corresponding sample sizes 
and clinical characteristics of the dataset are described in 
detail in website: https://cdn.amegroups.cn/static/public/
tlcr-22-775-02.xlsx. For the microarray data, median values 
were considered if multi-probe IDs were used to annotate 
gene symbols. The R package “sva” (12) in an empirical 
Bayesian framework eliminated potential crossover dataset 
batch effects and further investigated batch effects using 
principal component analysis.

Multi-omics integration and visualization

For integrated clustering, the TCGA-LUAD dataset 
was preprocessed to form four data matrices, where rows 
corresponded to features and columns corresponded to 
cases (n=437). We extracted probes located on the promoter 
CpG island and for genes with multiple probes mapping to 
their promoters, the beta median was applied to obtain the 
final genes. For the mutation information, the status of the 
mutant gene was defined as 1 while the wild-type gene was 0. 

For CNAs, we condensed the genomic fragments described 
in the literature (13). Features with flat values were 
removed to better fit the model and to improve clustering 
efficiency. Specifically, we selected the top 1,500 most 
variable mRNAs, lncRNAs, and methylated genes based on 
the absolute deviation from the median. In addition, genes 
with mutation rate >3% were selected for subtype analysis. 
Cluster partitioning of the multi-omics data was completed 
by the “movics” R package, which provides a unified 
interface to 10 state-of-the-art multi-omics clustering 
algorithms and normalizes the output of each (14). The 
10 algorithms were cimlr, iclusterbayes, mocluster, coca, 
consensusclustering, intnmf, lracluster, Nemo, pinsplus, and 
SNF. Among many algorithms, these algorithms had been 
evaluated for performance in past researches (15). To find 
an optimal number of clusters, we calculated the clustering 
prediction index and gap statistics (14) with reference to the 
previous molecular subtype numbers of LUAD. 

Bioinformatics analysis

We analyzed the mutations using the R package “maftools” 
and initially removed 100 markers (16). Mutation 
characteristics were also evaluated by the R package 
“deconstructSigs” (17). GISTIC2.0 detection and localization 
of recurrent focal somatic CNAs by genotype (https://www.
genepattern.org/) with a copy number amplification/deletion 
threshold equal to ±0.3 (q-value <0.05) (18). Individual scores 
of copy number altered genomes (FGA) in the TCGA-LUAD 
samples were computed from copy number fragment data:

2R copy number of segments=  [1]

FGA Br B=  [2]

where FGA is the ratio of genomes with log2 (copy number) 
>0.3 to genomes analyzed for copy number Br denotes 
genomes with |log2R| >0.3 and B denotes the cardinality 
in all segments. Methylation analysis between tumor and 
normal tissue was performed using the R program package 
“ChAMP” (19); detection of hypermethylated promoters 
followed the following strict criteria: mean methylation 
β>0.5 in tumor samples with false discovery rate (FDR) 
<0.05 and mean methylation β<0.2 in adjacent normal 
samples. In addition to the microarray based predictive 
analysis (previously identified as TCGA-LUAD subtypes), 
the R package “consensesmibc” was performed for 
extensively identifying the individual consensus molecular 
subtypes (cms). The external cohort was used to verify 

https://xenabrowser.net/
http://firebrowse.org/
http://firebrowse.org/
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https://cdn.amegroups.cn/static/public/tlcr-22-775-01.xlsx
https://cdn.amegroups.cn/static/public/tlcr-22-775-01.xlsx
https://cdn.amegroups.cn/static/public/tlcr-22-775-02.xlsx
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the robustness of subtype division by nearest template 
prediction (NTP) (20).

Calculation of microenvironmental cell abundance and 
enrichment pathways

To create a summary of the list of genes associated with 
specific microenvironmental cells, two gene markers 
[CIBERSORT (21) and MCPcounter (22)] needed to be 
modified. Because CIBERSORT does not contain signals 
associated with fibroblasts and endothelial cells, 40 genes 
(32 endothelial cell genes and 8 fibroblast genes) were 
added to our compendium, of which 364 genes represented 
24 microenvironmental cell types. We then analyzed these 
gene sets using gene set variation analysis (GSVA) and 
generated enrichment scores for each cell using the R 
package “GSVA”. The presence of infiltrating immune/
stromal cells in the tumor tissue was estimated by the R 
package “Estimation” (23). In addition, DNA methylation 
scores of tumor-infiltrating lymphocytes (MeTIL) in the 
TCGA-LUAD cohort were calculated separately according 
to the scheme outlined in the literature (24). Ten oncogenic 
pathways were enriched using the method of GSVA (25). 
Replication stress signals were enriched via single-sample 
gene set enrichment analysis (ssGSEA) (26). 

Analysis of chemotherapy sensitivity

Chemosensitivity of LUAD was predicted using the R 
package pRRophetic (https://www.cancerrxgene.org/) 
using 727 human cancer cell lines as a training group; 
IC50 was estimated using ridge regression for each sample 
treated with a specific chemotherapeutic agent (lower IC50 
indicated increased sensitivity to treatment) (27). 

Exploration of immunotherapeutic response and stemness 
features

Tumor Immune Dysfunction and Exclusion (TIDE) uses 
a set of gene expression markers to evaluate mechanisms 
of the dysfunction of tumor-infiltrating cytotoxic T 
lymphocytes (CTLs) and the rejection of CTLs by 
immunosuppressive factors (28). The higher the TIDE 
score, the less effective the immune checkpoint blockade 
(ICB) will be. Potential ICB response was predicted with 
the TIDE algorithm. Data from The Cancer Immunome 
Atlas (TCIA) database (https://tcia.at/home) were used to 
predict the response to CTLA-4 and PD-1 immunotherapy. 

The occurrence of cancer is usually accompanied by gradual 
loss of differentiation phenotypes and the acquisition of 
progenitor and stem cell-like characteristics (29). We used a 
regression machine learning (OCLR) algorithm to calculate 
the stemness score of each sample for assessing the degree 
of oncogenic dedifferentiation (29).

Construction of the prognosis model

Biomarkers represent the molecular characteristics of each 
subtype to a certain extent. We wanted to deeply study the 
relationship between prognosis and classification and identify 
biomarkers related to prognosis to explore relevant clinical 
applications. In order to increase the accuracy of statistical 
analysis, cases from TCGA with missing OS values or OS 
values <30 days, missing clinical data (age, gender, stage and 
TNM classification) were excluded. The top 50 biomarkers 
significantly upregulated and downregulated in each subtype 
were used to construct the prognosis model. First, univariate 
Cox proportional hazard regression analysis was used to seek 
genes closely related to prognosis. Next, Lasso regression 
with 1,000 cycles of 10-fold cross-validation was applied for 
building the model with this formula:

( ) ( )1
n k k
kRisk score coef gene expr gene== ∑ ∗  [3]

where coef (genek) is the short form of the coefficient of genes 
correlated with survival and expr (genek) is the expression 
of genes. We divided the samples into low and high groups 
based on the median risk score. Overall, 1,000 times  
of random stimulation in each cycle was performed to avoid 
overfitting. We established a nomogram that can predict the 
1-, 2-, and 3-year survival of LUAD patients. A correction 
curve according to the Hosmer-Lemeshow test was used 
to evaluate the accuracy of the nomogram. Meanwhile, 
immunohistochemical (IHC) results from the HPA database 
(https://www.proteinatlas.org/) were used to validate the 
protein level of these gene signatures in normal and tumor 
tissues.

Statistical analysis

All statistical tests were performed via R software 
(version:4.0.2), including the two-sample Mann-Whitney 
test, Fisher’s exact test, log-rank test for Kaplan-Meier 
curves, and Cox proportional hazards regression for 
estimating hazard ratios (HRs) and 95% confidence 
intervals (CIs). The treatment effect of immune checkpoint 
inhibitors was measured by two non-proportional hazards 

https://www.cancerrxgene.org/
https://tcia.at/home
https://www.proteinatlas.org/
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statistics, namely restricted mean survival and long-term 
survival extrapolation, using the R packages “survRM2” and 
“ComparisonSurv” (30). Most of these analytical procedures 
were embedded in the R package “MOVICS”. 

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Multi-omics integration of molecular isoforms of LUAD

Based on the two clustering statistics and final calculation 
results, we identified four optimal clusters (Figure 1A,1B), 
named CS1 (n=77), CS2 (n=146), CS3 (n=125) and CS4 
(n=89). They showed distinct molecular patterns (Figure 1C). 
These classifications significantly correlated with age, sex, 
pathological stage (Figure 1C). Notably, CS1 showed the 
worst OS among the four clusters (Figure 1D). The detailed 
demographics and clinical information are in the Table S1.

Identification of genetic characteristics of subtypes

We found the highest mutation rate of TP53 and CSMD3 
in CS1 and CS2, and the highest mutation rate of KRAS in 
CS3 and CS4 (Figure 2A). In our further investigation of 
the genomic heterogeneity of LUAD, we found that CS1 
and CS2 showed a higher tumor mutation burden (TMB; 
Figure 2B) compared with the other subtypes. We then 
investigated chromosomal instability by calculating FGA 
scores and found that CS3 had better chromosomal stability 
than other isoforms, with significantly lower copy number 
loss or gain (all P<0.001; Figure 2C).

Prognostic value of subtype-specific signatures in the 
peripheral LUAD cohort

Given that transcriptome-level data are the most commonly 
used molecular profiles in cancer research, we identified 
200 mRNAs with unique and significantly upregulated 
expression in the TCGA-LUAD cohort as classifiers for 
each subtype and generated them to individually predict 
LUAD subtypes identified in the external dataset. The 
upregulated biomarker heatmap and downregulated 
biomarker heatmap are shown in Figure 2D,2E. Each 
subtype of the validation set had many marker genes 

consistent with the TCGA cohort, which showed the 
robustness of the classification method (Figure 3A). NTP 
classified each sample in the external cohort as an already 
identified subtype (Figure 3B). Among all subtypes, CS1 
had the worst prognosis (Figure 3C) and this was highly 
consistent with the results of the TCGA cohort.

Immune differences among LUAD subtypes

Combined with the immune difference analysis of 
TCGA cohort and validation set, we found that immune 
checkpoint-related genes such as CTLA4 and PDCD1LG2 
were highly expressed in group CS1 and CS2, which 
suggested that patients in these subgroups may be more 
sensitive to the corresponding immunotherapy. CS2 and 
CS3 had a high immune infiltration environment. Immune-
related biological processes were more active in these 
subgroups. The enrichment degree of endothelial cells and 
fibroblasts showed the opposite trend (Figure 3D,3E), which 
indicated a close interaction between these cell types.

Cancer-related pathway analysis and chemosensitivity

Biological processes of DNA damage response detection 
and transcription-coupled nucleotide excision repair were 
overactivated in CS1 (Figure 4A), which may explain why 
CS1 had high FGA and fraction of genome gain/loss (FGG/
FGL) values. Numerous immune-related processes, such 
as response to type I interferon, antigen processing and 
presentation and the Fcreceptor mediated stimulatory 
signaling pathway, were overactivated in CS2 (Figure 4A), 
which was consistent with the analysis of the immune 
environment. Cell cycle-related processes such as mitotic 
sister chromatid separation, chromosome segregation and 
regulation of chromosome separation were inhibited in 
CS3 (Figure 4B). Treatment targeting cell cycle disorders 
may be more effective in this subgroup. Many immune-
related processes were inhibited in Group CS4, which 
was again consistent with the preceding results. We 
evaluated the sensitivity of the four subtypes to commonly 
used chemotherapeutic drugs and they showed differing 
sensitivities (Figure 4C). GSVA enrichment analysis showed 
that each of the four subtypes had characteristic hallmark 
pathways (Figure 4D).

Immunotherapeutic response and stemness features

The TIDE scores of each subtype from high to low were 

https://cdn.amegroups.cn/static/public/TLCR-22-775-Supplementary.pdf
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Figure 1 Classification of LUAD based on multi-omics. (A) Evaluation of a number of multi-omics clusters. (B) Molecular clustering 
heatmap of the multi-omics analysis. (C) Comprehensive heatmap showing the detailed molecular landscape of four integrative consensus 
subtypes. (D) Kaplan-Meier curves of overall survival with log-rank test for 437 LUAD patients stratified by integrative consensus 
subtype. CS, cluster subtype; LA, lung adenocarcinoma (NOS); LAA, lung acinar adenocarcinoma; LAMS, lung adenocarcinoma mixed 
subtype; LBCM, lung bronchioloalveolar carcinoma mucinous; LBCN, lung bronchioloalveolar carcinoma nonmucinous; LCCA, lung 
clear cell adenocarcinoma; LMipA, lung micropapillary adenocarcinoma; LMucA, lung mucinous adenocarcinoma; LPA, lung papillary 
adenocarcinoma; LSPPA, lung solid pattern predominant adenocarcinoma; LSRA, lung signet ring adenocarcinoma; MC, mucinous (colloid) 
carcinoma; TPM, transcripts per million; LUAD, lung adenocarcinoma; NOS, not otherwise specified.
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Figure 2 Genome level analysis of four integrative consensus subtypes. (A) Waterfall plot showing the significant mutations. (B) Analysis 
of tumor mutation burden among subgroups. (C) Distribution of FGA and FGG/FGL. Bar charts are presented as mean ± standard error 
of the mean. (D) Upregulated biomarker heatmap for each subgroup. (E) Downregulated biomarker heatmap for each subgroup. ****, 
P<0.001. CS, cluster subtype; LA, lung adenocarcinoma (NOS); LAA, lung acinar adenocarcinoma; LAMS, lung adenocarcinoma mixed 
subtype; LBCM, lung bronchioloalveolar carcinoma mucinous; LBCN, lung bronchioloalveolar carcinoma nonmucinous; LCCA, lung 
clear cell adenocarcinoma; LMipA, lung micropapillary adenocarcinoma; LMucA, lung mucinous adenocarcinoma; LPA, lung papillary 
adenocarcinoma; LSPPA, lung solid pattern predominant adenocarcinoma; LSRA, lung signet ring adenocarcinoma; MC, mucinous (colloid) 
carcinoma; FGA, fraction of genome altered; FGG/FGL, fraction of genome gain/loss; NOS, not otherwise specified.
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CS2, CS3, CS4 and CS1 (Figure 5A). Patients in CS1 
might gain long-lasting clinical benefit from ICB. For CS1, 
CTLA-4 immunotherapy may have better therapeutic 
effect (Figure 5B-5E), which was also consistent with the 
immune analysis results. Combination PD-1 and CTLA-
4 immunotherapy might be more effective treatment for 

patients in CS2 (Figure 5D). Each subtype had distinct 
differences in stemness features (Figure 5F). CS3 had the 
highest stemness score, which suggested that these tumor 
cells could be more invasive, making metastasis to distant 
tissues easier. Anti-metastasis therapy should be considered 
for patients in CS3.

Figure 3 Validation of classification to reproduce four integrative consensus subtypes in external cohorts and immune microenvironment 
analysis. (A) Overlap between NTP and PAM showing the consistency and robustness of the classification. (B) NTP heatmap for GSE68465. 
(C) Kaplan-Meier curves of overall survival with the log-rank test for LUAD patients in the GSE68465 cohort stratified by integrative 
consensus subtypes. (D) Immune checkpoint expression and TME enrichment in TCGA cohort. (E) Immune checkpoint expression and 
TME enrichment in the GSE68465 cohort. CS, cluster subtype; NTP, nearest template prediction; PAM, point accepted mutation; LUAD, 
lung adenocarcinoma; TME, tumor microenvironment; TCGA, The Cancer Genome Atlas.
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Construction of the prognosis model

We further explored the relationship between marker 
genes and disease prognosis. According to univariate Cox 
regression analysis, a total of 99 genes were associated with 
disease risk (Figure 6A). Among them, 7 (DKK1, TSPAN7, 
ID1, DLGAP5, HHIPL2, CD40 and SEMA3C) were most 
suitable for constructing a prognostic model when the first-
rank value of log(λ) was the minimum likelihood of deviance 
(Figure 6B,6C). Principal component analysis showed that 
the model could clearly divide the samples into high- and 

low-risk groups (Figure 6D).
The risk score was calculated with this formula:
risk score = exp (DKK1) × 0.223536825351734+exp (TSPAN7) 

× (−0.238742797324981)+exp (ID1) × 0.215841381833051+exp 
(DLGAP5) × 0.182602422124916+exp (HHIPL2) × 
0.116091089482409+exp (CD40) × (−0.366461553946006)+exp 
(SEMA3C) × 0.180363936710061. There were significant 
differences in survival time between the two groups in both 
the training set and test set (Figure 7A). The expressions 
of the 7 genes also showed great differences between the 
two groups (Figure 7B). Univariate Cox and multivariate 
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Cox regression analyses showed that the risk score could 
be an independent prognostic factor (Figure 7C,7D). In this 
model, the 1-year area under the curve (AUC) of the risk 
score was 0.779, and the AUCs of age, gender and stage 
were 0.502, 0.589 and 0.655 respectively (Figure 8A). The 
1-, 2- and 3-year AUCs of the risk score were 0.779, 0.742 
and 0.678 (Figure 8B). The model had a stable effect on 
predicting the prognosis of patients with different clinical 
characteristics (Figure 8C-8H). This model also had good 
performance in the validation test set (Figure 8I,8J). From 
the IHC results, we found that the protein expressions 
of DLGAP5 and ID1 were higher in tumor tissues while 
CD40 was lower in tumor tissues than in normal tissues 
(Figure S1). This was consistent with the prognosis formula.

We built a nomogram to predict the 1-, 3- and 
5-year survival probability for patients (Figure 9A). A 
calibration plot was then used to evaluate the accuracy of 
the nomogram (Figure 9B). The results showed that the 

nomogram could accurately predict. Additionally, KEGG 
signal pathways and immune microenvironment were 
different between the two groups (Figure 9C-9F). The 
information may help us carry out better personalized 
treatment against LUAD.

Discussion 

To refine the classification of LUAD and clinically relevant 
biomarkers, we performed a comprehensive and consistent 
integrated analysis of LUAD in a multi-omics framework 
and defined four subtypes that provide new ideas for 
stratifying patients for first-line treatment. We developed 
and validated a single-sample 200-gene signature to 
refine the classification of LUAD, and notably, we further 
constructed a 7-gene base classifier capable of distinguishing 
patients with poor prognosis from those with traditional 
base class LUAD. Gene signatures were successfully 
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validated in the external cohort. In general, our results 
suggested that a more detailed classification of patients 
based on multi-omics was helpful to further study the 
pathological mechanism and clinical treatment. Although 
the current subtypes have different molecular patterns 
and multi-omics perspectives, we suggest the application 
of transcriptome-based markers or classifiers in the clinic, 
because expression profiles can directly reflect the biological 
processes of tumors and possible therapeutic options.

We attempted to analyze the differences between 
subtypes. The mutation rate of TP53 and CSMD3 was 
high in CS1. TP53 acts as a tumor suppressor in many 
tumor types. The antiproliferative effect of p53 protein in 
coping with multiple stress and in physiological processes 
such as aging makes it one of the main inducements of 

cell carcinogenesis (31). Studies have found that TP53 is 
closely related to poor prognosis in many cancers, such 
as breast cancer (32). TP53 deficiency can strengthen 
the proliferation and invasive activity of LUAD cells and 
promote angiogenesis and CD8+ T cell failure in the tumor 
microenvironment through G55-dependent secreted 
proteins (33). LUAD with TP53 mutations has significantly 
higher levels of antitumor immune characteristics (34). 
Additionally, cancers with TP53 mutations are more likely 
to have higher TMB and tumor aneuploidy level (TAL) (34), 
which is consistent with our analysis. CSMD3 is involved 
in regulation of dendrite development. It is a common 
mutation gene that may be a potential therapeutic target 
in pulmonary carcinosarcomas (35). Metastasis of LUAD 
usually leads to poor prognosis. Compared with the primary 
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Figure 7 Visualization and analysis of the prognosis model. (A) Kaplan-Meier analysis of the overall survival in this model based on risk 
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Figure 8 Validation of the prognosis model. (A) The 1-year ROC curves of risk scores and clinical characteristics. (B) The 1-, 2-, and 3-year 
ROC curves of the risk scores. (C-H) Kaplan-Meier analysis of the overall survival for sex, age, and stage. (I) The 1-, 2-, and 3-year ROC 
curves of the risk scores in the GSE68465 cohort. (J) Kaplan-Meier analysis of the overall survival for this model in the GSE68465 cohort. 
AUC, area under the curve; ROC, receiver operating characteristic.
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Figure 9 Nomogram and analysis of differences between the high- and low-risk groups. (A) Nomogram that included the risk score, and 
tumor stage predicts the probability of 1-, 3-, and 5-year overall survival. (B) Calibration curves for nomogram. (C) GSEA of significantly 
enriched pathways in the high-risk group. (D) Difference in the immune checkpoints between the two groups. (E) Difference in the 
immunocyte infiltration of the two groups. (F) Difference in the immune pathways of the two groups. *, P<0.05; **, P<0.01; ***, P<0.001. 
OS, overall survival; DCs, dendritic cells; aDCs, activated dendritic cells; iDCs, interdigitating dendritic cells; pDCs, plasmacytoid dendritic 
cells; Tfh, follicular helper T cells, TIL, tumor infiltrating lymphocytes; GSEA, Gene Set Enrichment Analysis.
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LUAD, metastases usually show a significantly higher 
mutation burden and chromosomal instability (36). CS3 
had better chromosomal stability and this may become one 
of the reasons for good prognosis.

Cancer associated fibroblasts (CAFs) are mesenchymal 
cells with heterogeneous phenotypes. They are the main 
sources of cytokines and extracellular matrix molecules, which 
can enhance the invasive activity of tumor cells, help build the 
vascular system and inhibit antitumor immunity (37). Studies 
have shown that co-implantation of CAFs and cancer cells can 
recruit endothelial progenitor cells through SDF-1, which 
accelerates tumor growth and enhances angiogenesis (38).  
CAFs also indirectly promote hypoxia in the tumor matrix, 
resulting in hypoxia-inducible factor (HIF)-1α and vascular 
endothelial growth factor (VEGF) production and promoting 
angiogenesis (39). Interestingly, we found that the infiltration 
abundances of endothelial cells and fibroblasts in the tumor 
microenvironment were opposite, which suggested a complex 
regulatory relationship between the two cell populations. 
Exploring the specific inhibitory mechanism between them 
may contribute to clinical treatment.

Patients in the high-risk group had lower immune 
infiltration than those in the low-risk group. High densities 
of tumor-infiltrating lymphocytes (TILs) are associated with 
good prognosis (40). Lower densities of TILs in our high-
risk group confirmed this. Furthermore, we speculate that the 
prognosis of the two groups was related to cytokines in the 
tumor microenvironment. Cytokines play an important role in 
the pathological process of lung cancer (41). HIF participates 
in the VEGF pathway regulating angiogenesis (42).  
Tumor necrosis factor (TNF)-α can cooperate with natural 
killer cells and CD8+ T cells to activate the immune 
system against the tumor (43). In addition, TNF-α can 
activate different pathways to induce tumor cell apoptosis 
and inhibit tumor angiogenesis (44). Interferon gamma 
(IFN-γ), known as a cancer inhibitor, mediates signaling 
pathways such as JAK-STAT, PI3K-AKT, MAPK and NF-
κB (45). Transforming growth factor β (TGFβ) is the main 
immunosuppressive factor secreted by tumor cells and it 
inhibits the production of interleukin (IL)-2, IL-12 and 
IFN-γ (46). Many interleukins, such as IL-6, IL-17, IL-8, 
IL-10, IL-22, IL-1β, and IL-18, are regarded as potential 
therapeutic targets for lung cancer (47). Inhibitor of DNA 
binding 1 (ID1) regulates a variety of cellular processes, 
including cellular growth, senescence, differentiation, 
apoptosis, angiogenesis, and neoplastic transformation. ID1, 
an adverse prognostic marker, is an effector of the p53-
dependent DNA damage response pathway (48).

The 7 genes used to construct our model may be 
closely related to the prognosis of LUAD. Dickkopf-1 
(DKK1) is an inhibitor of the Wnt/β-catenin signaling 
pathway. DKK1 may play a crucial role in the progression 
of NSCLC (49). Activation of DKK1 is associated with 
poor prognosis of esophageal cancer via the Dickkopf1-
CKAP4 pathway and therefore, targeting CKAP4 may be an 
effective treatment (50). Tetraspanins are a transmembrane 
4 superfamily (TM4SF) of proteins that participate in 
metastasis and invasion of tumor cells (51). TSPAN7 is a 
member of TM4SF and it has been found that TSPAN7 
is a promising prognostic marker in clear-cell renal cell 
carcinoma (52). Overexpression of DLGAP5 has been found 
in many types of human cancers and silencing it could 
inhibit the proliferation of NSCLC cells (53). HHIPL2 is 
highly expressed in gastric cancer and its overexpression is 
associated with copy number gain (54). CD40 is essential for 
T cell-dependent immunoglobulin class switching, memory 
B cell development, and germinal center formation. CD40 
agonist antibodies could enhance T cell infiltration and 
change the tumor microenvironment to improve the 
efficacy of chemotherapy and immunotherapy (55). Such 
therapy may be especially effective for patients in the high-
risk group with low expression of CD40. Overexpression 
of SEMA3C correlates with an increase in cancer cell 
invasion and adhesion. In prostate cancer, it can active 
multiple growth factor receptor tyrosine kinase to drive 
cancer growth (56). A study also found that SEMA3C was 
associated with poor prognosis in cervical cancer because 
of the activation of the p-ERK pathway (57). Taking all 
these findings together, these 7 genes may be potential 
therapeutic targets for LUAD.

It was shown that immune infiltration played important 
role in the prognosis of LUAD so we attempted to explore 
the correlation between immune infiltration and these genes. 
The expression level of DKK1 was positively correlated 
with the infiltration level of myeloid derived suppressor cells 
(MDSCs) in 20 types of cancers and negatively correlated 
with CD8+ T cells in 4 of these 20 cancer types (58). Tumor 
vessels highly expressing TSPAN7 gene are associated with 
extensive infiltration of T cells and B cells and the occurrence 
of tertiary lymphoid structures (59). CD40 can authorize 
dendritic cells to promote anti-tumor T cell activation and 
reactive macrophages to destroy tumor matrix (55). Although 
no studies have reported the relationship between the 
remaining genes and immune infiltration, these genes may 
still affect tumor immune invasion through indirect biological 
processes.
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We should also acknowledge that this analysis has 
some limitations. All results were based on bioinformatics 
analysis in this study. It was better to verify the constructed 
prognostic model by real world data. It takes a lot of time 
and research to transform the multi-omics technology in 
the laboratory into the common medical technology at the 
bedside. A major obstacle is the uneven maturity of the 
different histological approaches used for routine clinical 
applications (6). Therefore, in the future it will be necessary 
to combine these RNA-based findings with multiplex 
IHC to study the intrinsic alterations of tumor cells and 
their interaction with the tumor microenvironment that 
determines the therapeutic response. The accuracy of data 
classification depends on sample size, sample type, sample 
preparation, and omics data type. In addition, environmental 
parameters including laboratory conditions and the choice 
of experimental materials can also affect the results of multi-
omics studies (15). In order to improve the translation of 
multi-omics, the parameters of the latent variables should be 
carefully determined and harmonized as much as possible.

Conclusions

In a word, through a combined multi-omics approach, we 
successfully classified LUAD into 4 subtypes, which are 
closely related to prognosis, tumor microenvironmental 
features, molecular characteristics and first-line therapies. 
Our findings may help us better understand and explore the 
heterogeneity of LUAD and the corresponding pathological 
mechanism. We hope that this innovative approach for 
LUAD classification will further aid precision medicine and 
inform the development of rational clinical strategies for 
both targeted and immune therapy.
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Figure S1 Immunohistochemistry analysis of the protein expression of prognosis-related genes in the Human Protein Atlas database. 
(A) The protein expression of CD40 in the normal tissue. Antibody: CAB072868. Intensity: Moderate in macrophages (image available 
from https://www.proteinatlas.org/ENSG00000101017-CD40/tissue/lung#img). (B) The protein expression of CD40 in the tumor tissue. 
Antibody: CAB072868. Intensity: Negative (image available from https://www.proteinatlas.org/ENSG00000101017-CD40/pathology/
lung+cancer#img). (C) The protein expression of DLGAP5 in the normal tissue. Antibody: HPA005546. Intensity: Weak in alveolar cells; 
Moderate in macrophages (image available from https://www.proteinatlas.org/ENSG00000126787-DLGAP5/tissue/lung#img). (D) The 
protein expression of DLGAP5 in the tumor tissue. Antibody: HPA005546. Intensity: strong in tumor cells (image available from https://
www.proteinatlas.org/ENSG00000126787-DLGAP5/pathology/lung+cancer#img). (E) The protein expression of HHIPL2 in the normal 
tissue. Antibody: HPA059673. Intensity: Negative (image available from https://www.proteinatlas.org/ENSG00000143512-HHIPL2/
tissue/lung#img). (F) The protein expression of HHIPL2 in the tumor tissue. Antibody: HPA059673. Intensity: Negative (image available 
from https://www.proteinatlas.org/ENSG00000143512-HHIPL2/pathology/lung+cancer#img). (G) The protein expression of ID1 in 
the normal tissue. Antibody: CAB025915. Intensity: Moderate in alveolar cells; Moderate in macrophages (image available from https://
www.proteinatlas.org/ENSG00000125968-ID1/tissue/lung#img). (H) The protein expression of ID1 in the tumor tissue. Antibody: 
CAB025915. Intensity: Moderate in tumor cells (image available from https://www.proteinatlas.org/ENSG00000125968-ID1/pathology/
lung+cancer#img). (I) The protein expression of TSPAN7 in the normal tissue. Antibody: CAB068245. Intensity: Negative (image available 
from https://www.proteinatlas.org/ENSG00000156298-TSPAN7/tissue/lung#img). (J) The protein expression of TSPAN7 in the tumor 
tissue. Antibody: CAB068245. Intensity: Negative (image available from https://www.proteinatlas.org/ENSG00000156298-TSPAN7/
pathology/lung+cancer#img). Magnification, ×125.
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Table S1 Summarization of clinical features

Level CS1 (N=77) CS2 (N=146) CS3 (N=125) CS4 (N=89)

Fustat (%) 0 34 (44.2) 93 (63.7) 92 (73.6) 60 (67.4)

1 43 (55.8) 53 (36.3) 33 (26.4) 29 (32.6)

Futime, median [IQR] 624.00  

[336.00, 1072.00]

654.00  

[408.75, 1026.25]

629.00  

[435.00, 929.00]

626.00  

[426.00, 1194.00]

Age, median [IQR] 63.00 [57.25, 72.00] 62.00 [56.00, 72.00] 69.00 [61.00, 75.00] 65.00 [60.00, 71.00]

Gender (%) Female 34 (44.2) 83 (56.8) 86 (68.8) 32 (36.0)

Male 43 (55.8) 63 (43.2) 39 (31.2) 57 (64.0)

Race (%) Asian 0 (0.0) 2 (1.5) 3 (2.6) 1 ( 1.3)

Others 10 (13.9) 17 (12.8) 11 (9.5) 12 (15.4)

White 62 (86.1) 114 (85.7) 102 (87.9) 65 (83.3)

Pack_years_smoked,  

median [IQR]

40.00  

[28.00, 51.25]

40.00  

[25.00, 54.00]

30.00  

[20.00, 43.00]

39.00  

[20.75, 50.00]

Histology (%) Lung acinar adenocarcinoma 0 (0.0) 3 (2.1) 7 (5.6) 8 (9.0)

Lung adenocarcinoma (NOS) 61 (79.2) 103 (70.5) 57 (45.6) 44 (49.4)

Lung adenocarcinoma mixed subtype 11 (14.3) 26 (17.8) 28 (22.4) 25 (28.1)

Lung bronchioloalveolar carcinoma 

mucinous

0 (0.0) 0 (0.0) 5 (4.0) 0 (0.0)

Lung bronchioloalveolar carcinoma 

nonmucinous

0 (0.0) 6 (4.1) 11 (8.8) 1 ( 1.1)

Lung clear cell adenocarcinoma 1 (1.3) 0 (0.0) 0 (0.0) 0 (0.0)

Lung micropapillary adenocarcinoma 0 (0.0) 1 (0.7) 1 (0.8) 0 (0.0)

Lung mucinous adenocarcinoma 0 (0.0) 0 (0.0) 2 (1.6) 0 (0.0)

Lung papillary adenocarcinoma 0 (0.0) 4 (2.7) 9 (7.2) 8 (9.0)

Lung signet ring adenocarcinoma 0 (0.0) 0 (0.0) 1 (0.8) 0 (0.0)

Lung solid pattern predominant 

adenocarcinoma

3 (3.9) 2 (1.4) 0 (0.0) 0 (0.0)

Mucinous (colloid) carcinoma 1 (1.3) 1 (0.7) 4 (3.2) 3 (3.4)

Anatomy (%) L-lower 11 (14.7) 16 (11.0) 28 (22.4) 14 (16.5)

L-upper 22 (29.3) 40 (27.6) 24 (19.2) 15 (17.6)

Other (please specify) 1 (1.3) 1 (0.7) 2 (1.6) 0 (0.0)

R-lower 12 (16.0) 27 (18.6) 24 (19.2) 18 (21.2)

R-middle 1 (1.3) 6 (4.1) 6 (4.8) 5 (5.9)

R-upper 28 (37.3) 55 (37.9) 41 (32.8) 33 (38.8)

pStage (%) Stage I 37 (48.7) 73 (50.7) 82 (66.7) 45 (50.6)

Stage II 15 (19.7) 45 (31.2) 24 (19.5) 22 (24.7)

Stage III 18 (23.7) 22 (15.3) 13 (10.6) 16 (18.0)

Stage IV 6 (7.9) 4 (2.8) 4 (3.3) 6 (6.7)

EGFR (%) Mutated 7 (9.1) 18 (12.3) 32 (25.6) 0 (0.0)

Wild 70 (90.9) 128 (87.7) 93 (74.4) 89 (100.0)

KRAS (%) Mutated 12 (15.6) 42 (28.8) 33 (26.4) 49 (55.1)

Wild 65 (84.4) 104 (71.2) 92 (73.6) 40 (44.9)

IQR, interquartile range.
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