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Original Article

Integrated analysis reveals the microenvironment of non-small 
cell lung cancer and a macrophage-related prognostic model
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Background: In the treatment of non-small cell lung cancer (NSCLC), recent advances in immunotherapy 
have heralded a new era. Despite the success of immune therapy, a subset of patients persistently fails to 
respond. Therefore, to better improve the efficacy of immunotherapy and achieve the purpose of precision 
therapy, the research and exploration of tumor immunotherapy biomarkers have received much attention.
Methods: Single-cell transcriptomic profiling was used to reveal tumor heterogeneity and the 
microenvironment in NSCLC. The Cell-type Identification by Estimating Relative Subsets of RNA 
Transcripts (CIBERSORT) algorithm was utilized to speculate the relative fractions of 22 infiltration 
immunocyte types in NSCLC. Univariate Cox and least absolute shrinkage and selection operator (LASSO) 
regression analyses were used for the construction of risk prognostic models and predictive nomograms of 
NSCLC. Spearman’s correlation analysis was employed to explore the relationship between risk score and 
tumor mutation burden (TMB) and immune checkpoint inhibitors (ICIs). Screening of chemotherapeutic 
agents in the high- and low-risk groups was performed with the “pRRophetic” package in R. Intercellular 
communication analysis was conducted using the “CellChat” package.
Results: We found that most tumor-infiltrating immune cells were T cells and monocytes. We also found 
that there was a significant difference in the tumor-infiltrating immune cells and ICIs across different 
molecular subtypes. Further analysis showed that M0 and M1 mononuclear macrophages were significantly 
different in different molecular subtypes. The risk prediction model was shown to have to ability to 
accurately predict the prognosis, immune cell infiltration, and chemotherapy efficacy of patients in the high 
and low-risk groups. Finally, we found that the carcinogenic effect of migration inhibitory factor (MIF) is 
mediated by binding to CD74, CXCR4, and CD44 receptors involved in MIF cell signaling.
Conclusions: We have revealed the tumor microenvironment (TME) of NSCLC through single-cell data 
analysis and constructed a prognosis model of macrophage-related genes. These results could provide new 
therapeutic targets for NSCLC.
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Introduction

Lung cancer is the third most common malignant tumor in 
humans and the leading cause of cancer-related mortality 
worldwide (1,2). Patients with non-small cell lung cancer 
(NSCLC) are more likely to die from the disease than those 
with small-cell lung carcinoma (3-5). NSCLC patients who 
are diagnosed during advanced stages typically have mild 
symptoms that are difficult to detect.

Tumor immunotherapy has gained increasing attention 
in recent years thanks to some remarkable discoveries (6). 
Currently, available immunotherapy modes include single-
drug therapy, combined chemotherapy, chemotherapy 
plus immunotherapy,  consolidation therapy after 
chemoradiotherapy, and combined immunotherapy (7). 
Although targeted therapies and immunotherapies have 
made significant progress in treating advanced NSCLC, 
the 5-year survival rate remains very low. For this reason, 
much work needs to be done to clarify the molecular 
mechanisms underlying NSCLC and to identify more 
specific biomarkers.

The availability of immune checkpoint inhibitors (ICIs) 
has improved the outlook for patients with advanced 

NSCLC. However, due to the heterogeneity of NSCLC, 
only 40% of those affected benefit from ICIs (8-13), 
which results in poor efficacy. Regardless of whether 
efficacy, prognosis, or toxic side effects or being assessed, 
the common challenge is the lack of perfect biomarkers. 
According to the current trend, integrating multiple 
biomarkers and establishing an efficacy prediction model is 
the future development direction.

Tumor microenvironment (TME) is composed of 
immune cells, fibroblasts and related cytokines, etc., which 
provides necessary conditions for the occurrence and 
development of tumors, in which macrophages play an 
important role (14). Tumor-associated macrophages (TAMs) 
are defined as the macrophages involved in the formation 
of TME, which affects the whole process of lung cancer 
development (15-17). TAMs are highly malleable, showing 
that they can polarize into different phenotypes and perform 
different functions under different microenvironmental 
stimuli (16). According to different functions and 
phenotypes, TAMs are mainly divided into classically 
activated M1 type macrophages and substitutivity activated 
M2 type macrophages (18). M1 and M2 macrophages have 
obvious functional differences, and can be transformed 
according to different environmental stimulus factors. 
Study has shown that M1-type macrophages are dominant 
in the early stage of NSCLC, while M2-type macrophages 
are dominant in the middle and late stages. With the 
progression of tumor, M1 gradually transforms to M2 
phenotype (14). In this study, the heterogeneity of NSCLC 
was investigated by analyzing single-cell data. The M0 and 
M1 macrophages were significantly different in different 
clusters of NSCLCs, suggesting that macrophages play 
an important role in specific immunotherapy. At the same 
time, we analyzed the influence of macrophage-related 
genes (MRGs) on the prognosis and chemotherapeutic drug 
sensitivity of NSCLC to provide insights for personalized 
treatment. We further elucidated the critical role of the 
migration inhibitory factor (MIF) signaling pathway in the 
communication between NSCLC cells, which provides 
new guidance for patient immunotherapy. We present the 
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following article in accordance with the TRIPOD reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-22-866/rc).

Methods

Data acquisition and processing of expression data and 
clinical information

The small conditional RNA (scRNA)-seq data were obtained 
from the Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) database (GSE148071) (19).  
In this study, scRNA-seq was analyzed primarily using the 
“Seurat” package in R (The R Foundation for Statistical 
Computing, Vienna, Austria) (20-22). PercentageFeatureSet 
from the “Seurat” package was used to calculate the 
mitochondrial percentages in each cell. Cells outside the 
threshold of 50 expressed genes and those with more than 
5% mitochondrial content were excluded. LogNormalize 
was used to normalize the scRNA-seq data before 1,500 
highly variable genes (HVGs) were identified based on 
the FindVariableGenes function. Moreover, the RNA-
sequencing (RNA-seq) data of 108 normal and 1,041 
NSCLC samples [The Cancer Genome Atlas (TCGA)-
lung adenocarcinoma (LUAD) and TCGA-lung squamous 
cell carcinoma (LUSC)] were accessed from TCGA 
(http://cancergenome.nih.gov/) database, and additional 
NSCLC samples were obtained from the GEO database 
(GSE74706 and GSE103512) (23,24). The clinical data of 
TCGA-LUAD and TCGA-LUSC were extracted from 
the TCGA database; ambiguous survival status or unclear 
clinicopathological characteristics were excluded. NSCLC 
samples and corresponding adjacent normal tissues were 
collected from the West China Hospital, Sichuan University 
were isolated. After surgical removal, the samples were 
immediately frozen in liquid nitrogen. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The present study was approved by the 
Ethics Committee of West China Hospital (Ethics 2022 
No. 74). Informed consent was obtained from the patients 
or their guardians. The quantitative polymerase chain 
reaction (qPCR) primer sequences are listed in Table S1.

Dimensionality reduction and cell visualization

Principal component analysis (PCA) was conducted for 
linear dimensional reduction of the scRNA-seq data, 
and the principal components (PCs) were then used for 

t-distributed stochastic neighbor embedding (tSNE) 
clustering. With the criteria of log2 fold change (FC) >1 
and false discovery rate (FDR) <0.05, marker genes in each 
cluster were identified, and the top 10% of marker genes 
from clusters were laid out in the heatmap. Annotation of 
clusters was performed using the “SingleR” package (25),  
which compares the transcriptomes of single cells to 
reference datasets to determine cellular identity.

NSCLC differentiation-related genes (NDRGs)-based 
molecular subtypes

In this study, we analyzed NSCLC cell fate determination 
and pseudo time tracing using the “Monocle” package 
(21,26). Then, intracellular differentially expressed genes 
in cells with distinct differentiation states with log2 FC 
>1 and FDR <0.05 were designated as NDRGs. After the 
log2-scale transformation of NDRGs expression in the 
GSE103512 dataset, 75 NDRGs were retained for NSCLC 
molecular typing. Subtype identification was performed 
using the “ConsensusClusterPlus” package. For the best 
cluster number, the K-means algorithm and cumulative 
distribution function (CDF) curve were applied, and 50 
iterations with max K=9 were conducted for stable subtypes. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis was used for the degree of 
enrichment of NDRGs between 3 molecular subtypes in 
pathway terms.

TME scores in the three molecular subtypes

ESTIMATEScore, ImmuneScores, TumorPurity, and 
StromalScore were calculated using the Estimation of 
STromal and Immune cells in MAlignant Tumor tissues 
using Expression data (ESTIMATE) package. All 22 kinds  
of immune cells were calculated using the Cell-type 
Identification by Estimating Relative Subsets of RNA 
Transcripts (CIBERSORT) package. To analyze the 
association between molecular subtypes and immune 
cell infiltration, we adopted CIBERSORT to estimate 
the infiltration levels of 22 immune cell subtypes across 
molecular subtypes. Molecular subtype expression 
differences of common ICIs were analyzed using the 
expression profile of each molecular subtype.

The macrophage-related prognostic model for NSCLC

Based on the CIBERSORT algorithm, immune cell 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-866/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-866/rc
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://cancergenome.nih.gov/
https://cdn.amegroups.cn/static/public/TLCR-22-866-Supplementary.pdf
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distribution was estimated in TCGA-LUAD and TCGA-
LUSC. A Pearson correlation analysis of the MRGs co-
expression relationship was carried out, with cutoffs of 
R>0.4 and P<0.001 used to represent co-expression. Gene 
Ontology (GO) enrichment and KEGG analysis were used 
to reveal the MRGs-related biological functions in NSCLC. 

Cox regression and least absolute shrinkage and 
selection operator (LASSO) regression analyses were used 
to screen for prognostic MRGs in TCGA. The risk score 
of the gene signature was calculated as follows: risk score = 
(Coefficientgene 1 × expression of gene 1) + (Coefficientgene 2 
× expression of gene 2) + … + (Coefficientgene n × expression 
gene n). The diagnostic value of the risk score was assessed 
using receiver operating characteristic (ROC) curves to divide 
the patients with NSCLC into low-risk and high-risk groups.

Next, to determine the risk score of each patient and 
to analyze the overall survival (OS) time between risk 
groups, Kaplan-Meier survival analysis was performed. A 
multivariable Cox regression analysis of a risk-score model 
and clinical characteristic parameters was conducted to 
evaluate 1-, 3-, and 5-year OS probability in the TCGA 
cohort using the “rms” package.

Our analysis of enrichment terms in the entire TCGA 
cohort was carried out using version 4.1.0 of the gene set 
enrichment analysis (GSEA) software (http://www.gsea-
msigdb.org/gsea/index.jsp).

The function of risk scores for chemotherapeutic drugs 
predicted

To evaluate the potential significance of the model in the 
clinical treatment of NSCLC, we calculated the half-maximal 
inhibitory concentration (IC50) values of chemotherapeutic 
drugs using the “pRRophetic” package (27). The differences 
in the IC50 values between the high- and low-risk groups 
were evaluated using the Wilcoxon signed-rank test.

Inference and analysis of cell-cell communication

Extraction was based on single-cell receptor and ligand 
expression levels used to infer intercellular communication. 
The intercellular communication networks were analyzed 
based on scRNA-seq data (GSE148071) using the 
“CellChat” package (28).

Statistical analysis

All statistical analyses were carried out in R and Perl, and 

P<0.05 was considered indicative of statistical significance.

Results 

Single-cell profiling of gene expression in NSCLC cells

Analyzing single-cell RNA-seq data with the Seurat V4.1 
R package was performed. In this study, 1,858 cells from 
4 NSCLC samples were obtained from GSE148071. A 
total of 3,146 genes were analyzed, of which 1,646 had 
low intercellular variation and 1,500 had high variation 
(Figure 1A). For dimensionality reduction, the top  
1,500 HVGs with the highest variance were selected for 
PCA. From this analysis, 11 PCs were selected to run the 
tSNE algorithm. A heat map showing the marker genes of 
each cluster is displayed in Figure 1B. We identified 7 types 
of cells, including T cells, monocytes, B cells, epithelial 
cells, tissue stem cells, endothelial cells, and natural killer 
(NK) cells (Figure 1C). In addition, we analyzed the 
expression of the 8 greatest variation genes in NSCLC 
tissues and normal tissues (Figure 1D). These results are 
consistent with the results obtained using gene expression 
profiling interactive analysis (GEPIA) (Figure S1).

Clustering analysis revealed the heterogeneity of the 
immune microenvironment in NSCLC

The study identified 209 NDRGs. NDRG-based consensus 
clustering analysis was completed in GSE148071, and 3 
molecular subtypes that contained all the NSCLC samples 
were identified at a clustering threshold of max K=9  
(Figure 2A-2C). Using KEGG function enrichment, the 
NGDRGs in subset 1 were involved in cytokine production 
and cell activation (Figure 2D), those in subset 2 were also 
associated with phagosome and lysosome (Figure 2E), and 
those in subset 3 were closely related to phagosome and 
tuberculosis (Figure 2F). Then, we compared the immune 
scores of each molecular subtype. The immune scores of the 
molecular subtypes were correlated using ESTIMATE. After 
that, we compared the ESTIMATEScore, ImmuneScores, 
TumorPurity, and StromalScore of the 3 molecular subtypes. 
The current study found that the differences in estimate/
immune/stromal scores were highly significant in subtypes 
C1/2/3 (Figure 3A-3D). The results of this study indicate 
that NSCLC molecular subtypes have different effects on 
the efficacy of therapeutics. The CIBERSORT software 
was further used to generate gene expression configuration 
files for 22 immune cells, which were then combined 

http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
https://cdn.amegroups.cn/static/public/TLCR-22-866-Supplementary.pdf
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Figure 1 Analysis of NSCLC heterogeneity and microenvironment using single cells. (A) A total of 3,146 genes were analyzed, of which 1,500 
had high variation. (B) 500 NSCLC cells were aggregated into 11 clusters (principal components 0–10) and the 1,500 genes in each cluster 
are displayed on the heat map. (C) Single-cell clustering analysis based on the full scRNA-seq data and the annotation of each cluster based 
on canonical marker analysis. (D) Expression of genes was examined by qRT-PCR. **, P<0.01; ***, P<0.001. tSNE, t-distributed stochastic 
neighbor embedding; NK, natural killer; NSCLC, non-small cell lung cancer; scRNA, small conditional RNA; qRT-PCR, quantitative real-
time polymerase chain reaction.

with the gene expression matrix of lung cancer samples to 
generate 22 immune cell counts (Figure 3E). To investigate 
the potential for altered immune response caused by  
3 molecular subtypes, we estimated the 22 immune cell 
infiltration levels by CIBERSORT. B cells memory, plasma 
cells, T cells CD4 memory resting, T cells regulatory, NK 
cells activated, monocytes, macrophages M0, macrophages 
M2, dendritic cells resting, and mast cells resting differed 
significantly between molecular glioma subtypes (Figure 3F). 
Further expression profiles among immune checkpoints in  
3 subtypes of NSCLC were also confirmed (Figure 3G). 
These discoveries, based on molecular subtypes, potentiate 
future personalized and optimal treatments.

The expression of MRGs in NSCLC

TAMs are a critical component of the TME and are 
involved in various aspects of tumor behavior (16,29-31). 

According to the above results, we found that macrophage 
infiltration levels showed significant differences among 
the different molecular subtypes of NSCLC. We next 
aimed to analyze the role of macrophages in NSCLC more 
directly. First, the macrophage 0-, 1-, and 2-related genes 
were screened based on the Spearman correlation method 
with the absolute value of the correlation coefficient >0.4 
and P value <0.001 as the threshold (Figure 4A-4C). To 
further elucidate the functions of the identified MRGs in 
NSCLC, GO and KEGG pathway enrichment analyses 
were employed, and MRGs were found to be enriched on 
immune-related pathways (Figure 4D,4E). These results 
reveal that macrophages infiltration plays a critical role in 
tumor progression.

Construction of an MRGs prognostic-predicting model

We next investigated the prognostic role of MRGs in 
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NSCLC patients. A univariate Cox regression analysis 
was conducted on 104 MRGs to identify prognosis-
related genes. A total of 7 robust prognosis-related genes 
were identified (Figure 5A). Multivariate Cox regression 
analysis was then performed to determine the independent 
prognostic factors and to build prediction models  
(Figure S2A,S2B). NSCLC patients were divided into 
high- and low-risk groups using the median risk score. 
We analyzed whether risk score and other clinical traits 
were independent prognostic factors (Figure S2C,S2D). 
A Kaplan-Meier survival curve was applied to compare 
the survival rates between high- and low-risk scores 
(Figure 5B,5C). The ROC curves showed better efficacy 

to predict survival using the risk score (Figure 5D,  
Figure S2E). The ROC analyses for 1-year survival 
prediction indicated high areas under the curve (AUCs) 
(Figure 5E). Furthermore, patients with a high risk also 
showed a poor prognosis in terms of the OS time for age 
>65 years groups (Figure 5F), males (Figure 5G), stage 
III–IV (Figure 5H); patients with a low risk also showed a 
poor prognosis in terms of the OS time for age >65 years  
groups (Figure 5F), and stage III–IV (Figure 5H). Finally, 
a prognostic nomogram was established based on the 
TCGA (TCGA-LUAD and TCGA-LUSC) dataset, and 
the calibration curve indicated a high reliability of the 
nomogram (Figure 5I,5J). In summary, we built a risk 

https://cdn.amegroups.cn/static/public/TLCR-22-866-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-866-Supplementary.pdf
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Figure 3 Analysis of overall tumor microenvironment scores and immune infiltrate in three molecular subtypes. (A-D) TME scores by 
three molecular subtypes. (E) The contents of 22 immune cells in each sample from the GSE103512 dataset. (F) The content difference 
analysis of 14 kinds of immune cells in 3 subtypes. (G) The difference expression analysis of 38 ICGs in 3 subtypes. *, P<0.05; **, P<0.01; ***, 
P<0.001. ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data; NK, natural killer; ns, 
not significant; TME, tumor microenvironment; ICGs, immune checkpoint genes.
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Figure 4 The macrophages associated genes and pathway enrichment (GO and KEGG) were carried out. (A) M0 macrophage-associated 
gene network. (B) M1 macrophage-associated gene network. (C) M2 macrophage-associated gene network. GO (D) and KEGG (E) 
enrichment analysis of macrophages-related genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

model based on MRGs.

Association between risk score and immune infiltration 
and tumor mutation burden (TMB)

To better understand the difference in immune cell 
infiltration between low- and high-risk groups, we carried 
out an infiltration analysis of immune cells. Among them, 
mast cells activated, macrophages M0, macrophages M2, 
neutrophils, NK cells resting, and T cells CD4 memory 
activated were positively correlated with a risk score, the 
remaining were negatively correlated (Figure 6A,6B). 

To verify the results of TCGA, a search was performed 
in the GEO (GSE74706 and GSE103512). The TAM 
infiltration was enriched in NSCLC (Figure 6C). Besides, 
the correlation between risk score and immune checkpoints 
was also investigated. The expression of ICIs was strongly 
associated with risk score (Figure 6D). The risk score may 
be used to predict NSCLC immunotherapy response based 
on its associations with immune checkpoint genes and 
tumor immune infiltration. Moreover, TMB was measured 
as a potential biomarker for immunotherapy. The TMB 
analysis showed that the risk scores of the high/low-risk 
TMB were significantly different (Figure S2F). The TMB 

https://cdn.amegroups.cn/static/public/TLCR-22-866-Supplementary.pdf
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Figure 5 Construction of the prognostic model based on macrophage-related coding genes. (A) Prognosis analysis of macrophage-related 
gene using univariate analysis. (B) Kaplan-Meier curves for OS in risk groups according to the risk score. (C) Survival duration and status 
of NSCLC patient cases. macrophages-related gene risk score analysis of NSCLC patients. (D,E) ROC curve analysis according to the 
clinicopathological features and 1, 3, and 5-year survival of the area under the AUC value. (F-H) The prognosis of NSCLC patients with 
high/low-risk scores. (I,J) The nomogram to predict the 1-, 3-, and 5-year survival risk of NSCLC patients. *, P<0.05; **, P<0.01; ***, 
P<0.001. AUC, area under the curve; OS, overall survival; NSCLC, non-small cell lung cancer; ROC, receiver operating characteristic. 
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Figure 6 A correlation analysis of immune cell infiltration and risk score. (A) The heatmap shows the relationship between immune cells 
and risk score. (B) The infiltrating proportion of immune cells in high- and low-risk groups. (C) The infiltrating proportion of immune cells 
in normal and tumor groups. (D) The relationship between immune checkpoints and risk score. *, P<0.05; **, P<0.01; ***, P<0.001. NK, 
natural killer.

of each gene was significantly different between high- and 
low-risk groups (Figure 7). This also provides guidance for 
practical applications based on TMB.

GSEA was conducted between high- and  
low-risk groups

We performed a GSEA to determine which pathways 
were differentially enriched across risk groups. In terms 
of signaling pathway enrichment analysis, we found 
that the high-risk groups were mainly focused on the 
cell cycle, chemokine, cytokine-receptor, extracellular 

matrix (ECM)-receptor, and focal adhesion signaling 
pathway (Figure 8A). These findings may indicate that 
the above signaling is associated with the malignant 
prognosis of NSCLC. Meanwhile, GSEA revealed that 
drug metabolism by cytochrome p450, linoleic acid 
metabolism, maturity-onset diabetes of the young, 
metabolism of xenobiotics by cytochrome p45, and 
ribosome pathways were mainly enriched in the low-
risk group (Figure 8B). The results of GSEA showed that 
significantly metabolism-related pathways were enriched 
in the low-risk group, which can provide critical clues for 
personalized treatment.
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Figure 7 Correlation analysis between risk groups and total mutation count. The mutation in low-risk (A) and high-risk (B) groups. TMB, 
tumor mutation burden.
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Drug sensitivity of NSCLC patients with high/low risk

It is necessary to improve outcomes through more accurate 
risk group stratification and effective personalized risk-
adapted treatment. Patients scoring low risk received 
single-agent chemotherapy, whereas those scoring high risk 
received different chemotherapy regimens. Furthermore, 
we predicted which chemotherapeutic drugs should be 
prescribed based on the tumor heterogeneity among 

different risk groups. The data showed that a low-risk score 
was associated with lower IC50 values for drugs such as 
ribociclib (Figure 9A), PF-4708671 (Figure 9B), ABT737 
(Figure 9C), OSI-027 (Figure 9D), doramapimod (Figure 9E), 
and AZD6482 (Figure 9F), a high-risk score was associated 
with lower IC50 values for drugs such as BMS-536924 
(Figure 9G), alisertib (Figure 9H), entospletinib (Figure 9I),  
BPD-00008900 (Figure 9J), AZ960 (Figure 9K), and 
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Figure 9 Drug sensitivity of NSCLC patients with high/low risk. (A-F) A low-risk score was associated with lower IC50 values for drugs. 
(G-L) A high-risk score was associated with lower IC50 values for drugs. NSCLC, non-small cell lung cancer.

dasatinib (Figure 9L). So, accurate prediction can potentially 
help to provide better treatment for patients.

Integrated analysis reveals the interaction between the 
same or different cell types 

To determine possible interactions between immune 
cells, we performed CellChat analysis on GEO data 
(GSE148071). The CellChat tool can identify and predict 
the putative functions of poorly understood signaling 
pathways in a scRNA-seq dataset. The cell communication 
includes 3 main parts: secreted signaling, ECM-receptor, 
and cell-cell contact mediated through heterodimer 
interactions, and information on ligand-receptor was 
sourced from the KEGG database (Figure 10A). The results 
showed that epithelial cells, endothelial cells, B cells, tissue 

stem cells, T cells, NK cells, monocytes, and macrophages 
interact closely (Figure 10B,10C). Monocyte-macrophage 
(Figure 10D), tissue stem cells-monocyte (Figure 10E), T 
cells-macrophage (Figure 10F), macrophage-monocyte 
(Figure 10G), endothelial cells-monocyte (Figure 10H), 
B cells-monocyte (Figure 10I), epithelial cells-monocyte 
(Figure 10J), and NK cells-macrophage (Figure 10K) were 
found to be significant interactions. The results provide a 
clear understanding of the cell communication of NSCLC.

The function of the MIF signaling network in TME

Although studies have consistently reported that the cells 
communicate by releasing and receiving secreted signaling 
molecules, the interacting effects of signaling pathways on 
cell-cell communication in NSCLC are poorly understood. 
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Figure 10 Network diagram of the immuno-infiltrating cells communication. (A) Types of receptor-ligand interactions; the way receptors 
and ligands interact; receptor-ligand source. (B) The total number of ligand-receptor interactions between cells of the same or different 
cell types. (C) The strength of ligand-receptor interactions between cells of the same or different cell types. (D-K) Receptor ligand pair 
interactions between immune cells. ECM, extracellular matrix; KEGG, Kyoto Encyclopedia of Genes and Genomes; NK, natural killer.
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Next, we analyzed the effects on the cells’ communication 
signaling pathways molecules. The SPP1, RETN, 
NAMPT, MIF, and LGALS9 signaling pathways might 
play a role in cell-cell communication (Figure 11A). Our 
analysis found that the MIF signaling pathway plays the 
most significant role in the communication in epithelial 
cells-monocyte (Figure 11B). The MIF signaling pathway 
might affect the B cell influencer, endothelial cells sender, 
epithelial cells sender, macrophage influencer, monocyte 
receiver or mediator, T cells receiver or influencer, and 
tissue stem cells influencer to exert its effect (Figure 11C).  
Among them, the oncogenic effects of MIF are mediated 
by binding to receptors CD74, CXCR4, and CD44, which 
are involved in MIF cell-signaling (Figure 11D-11F). 
Clearly, exosomes do not just play a role in cell-cell 
communication, and the mechanism of action of MIF 
needs more elucidation.

Discussion

In recent years, with the continuous improvement 
of medical research level, people have an increased 
understanding of immunosuppression and realize the value 
of the immune system in the treatment of advanced NSCLC 
(19,32,33), so more and more researchers have begun to 
discuss and analyze the effect of immunotherapy. It has been 
established that immune-related biomarkers are associated 
with a better prognosis in various types of cancer (34-37).  
In recent years, immunotherapy has brought epoch-
making changes to the treatment of NSCLC. In particular, 
programmed cell death ligand 1 (PD-1)/programmed cell 
death ligand 1 (PD-L1), The ICIs of PD-L1 have been 
approved as first-line and second-line therapies in patients 
with metastatic NSCLC or some locally advanced NSCLC. 
However, only 15–30% of patients with advanced NSCLC 
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can achieve sustained remission and long-term survival from 
immunotherapy (38). How to search for good biomarkers to 
effectively predict the efficacy of immunotherapy is one of 
the great challenges currently faced. Thus, our study aimed 
to develop promising immune-related biomarkers and 
prognostic risk models for early diagnosis and treatment of 
NSCLC patients. 

In the analysis of the immune infiltration landscape, we 
found that NSCLC had 7 immune infiltration subtypes, the 
most numerous were the population of monocytes with a 
classical phenotype. Monocytes are a type of white blood 
cell in the body’s immune system which are produced in 
the bone marrow, and are classified monocytes inside blood 
vessels and macrophages outside blood vessels (39-43).  
Macrophages are highly heterogeneous and plastic immune 
cells belonging to the mononuclear macrophage system 
(44,45). Macrophages infiltrating tumor tissues are called 
TAMs, which are important types of immune cells in 
the TME. They are involved in regulating the growth, 
invasion, and distant metastasis of lung cancer by inhibiting 
tumor immunity and promoting angiogenesis (16,17). The 
infiltration level and polarization state of TAMs in lung 
cancer tissues are closely related to the prognosis of patients 
and may be a potential target for immunotherapy of lung 
cancer (46-49). Thus, in the current study, MRGs were 
analyzed in NSCLC.

A univariate Cox regression analysis was conducted 
on 104 MRGs to identify prognosis-related genes, and 7 
robust prognosis-related genes were identified. MRGs were 
enriched on immune-related pathways and responded to 
interferon (IFN) regulation. The polarization process of 
macrophages is affected by a variety of regulatory modes, 
including gene transcription level, post-transcription level, 
and post-translational protein modification, and they 
cross each other to form regulatory networks (50). The 
main stimulating factors that induce the polarization of 
macrophage M1 are the Toll-like receptor (TLR) ligand and 
IFN-γ (51-53). These results reveal that IFN-γ plays a critical 
role in macrophage’s anti-tumor progression. The specific 
role of macrophages in NSCLC is worthy of further study.

Multivariate Cox regression analysis was performed to 
determine the independent prognostic factors and to build a 
prediction model. NSCLC patients were divided into high- 
and low-risk groups using the median risk score. A poorer 
survival was found in high-risk patients. We also explored 
the expression of the ICIs, immune infiltration, and TMB 
between the high- and low-risk NSCLC patients. The 
risk score may be used to predict NSCLC immunotherapy 

response based on its associations with ICIs and tumor 
immune infiltration. Furthermore, we predicted which 
chemotherapeutic drugs should be prescribed based on the 
tumor heterogeneity among different risk groups. These 
results suggest that prognostic models can play a very 
important role in predicting patients’ high and low risk of 
NSCLC and in personalizing treatment.

Finally, we also revealed the intercellular communication 
of NSCLC and found that the MIF signaling pathway plays 
the most significant role in the communication in epithelial 
cells-monocyte. MIF can regulate the polarity of TAM, and 
in tumors, macrophages usually differentiate into tumor-
promoting M2 TAM, which accelerates the proliferation 
and metastasis of tumor cells and inhibits anti-tumor 
immune response (54-56). MIF is an immunomodulator 
in the TME, inducing the formation of a tumor inhibitory 
immune microenvironment (54). At present, studies on the 
function of MIF have revealed some clinical applications, 
such as a diagnostic marker for some diseases. However, 
the pathophysiological function, enzyme activity, signal 
transduction mechanism, and related biological functions 
of MIF have not been fully clarified and require further 
exploration.

Conclusions

As a result of our comprehensive integrated analysis of 
MRGs in NSCLC, we can better understand the molecular 
events related to the progression of NSCLC. It was 
also found that a risk score model can accurately predict 
chemotherapy response in patients and prognosis.
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Table S1 Primers for quantitative real-time PCR

Genes Forward primers (5'-3') Reverse primers (5'-3')

SFTPA2 ACTTGGAGGCAGAGACCCAA GGGCTTCCAACACAAACGTC

SPP1 CTCCATTGACTCGAACGACTC CAGGTCTGCGAAACTTCTTAGAT

SFTPB TGGAGCAAGCATTGCAGTG ACTCTTGGCATAGGTCATCGG

KRT19 AACGGCGAGCTAGAGGTGA GGATGGTCGTGTAGTAGTGGC

EMP2 GTGCTTCTTGCTTTCATCATCG TGCAATTCGTGTTGTTGGTACA

CCL20 CCAAGAGTTTGCTCCTGGCT GGATTTGCGCACACAGACAA

PCR, polymerase chain reaction.

Figure S1 Analysis of GEPIA database data. (A-H) The GEPIA website was used to verify these 8 genes. The Y-axis represents gene 
expression. *, P<0.05. LUSC, lung squamous cell carcinoma; LUAD, lung squamous cell carcinoma; GEPIA, gene expression profiling 
interactive analysis. 
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Figure S2 Additional information. (A) Cross-validation for tuning parameter (lambda, screening in the LASSO regression model. (B) 
LASSO coefficient profiles of 7 prognostic MRGs. (C,D) Univariate and multivariate Cox regression analyses. (E) The calibration curve 
of the 1, 3, and 5-year survival. (F) TMB of NSCLC patients with high/low risk. CI, confidence interval; LASSO, least absolute shrinkage 
and selection operator; NSCLC, non-small cell lung cancer; MRGs, metabolism-related genes; TMB, tumor mutation burden; OS, overall 
survival. 
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