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Introduction

Approximately 4–5% of lung cancers are driven by an 
oncogenic anaplastic lymphoma kinase (ALK) fusion event 
(1-4). Patients with ALK+ non-small cell lung cancer 
(NSCLC) often experience years of disease control with 
the current generation of ALK specific tyrosine kinase 
inhibitors (TKI) (5-7). However, even with these highly 

effective therapies, persistent disease remains and resistance 
to targeted therapy will eventually develop requiring a 
therapy change to an alternative TKI or a chemotherapy 
based regimen (8). In parallel to the development of more 
effective TKI therapy for patients with ALK+ NSCLC, 
immunotherapy through blockade of programmed cell 
death protein 1 (PD-1) or programmed cell death 1 ligand 
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1 (PD-L1) redefined the standard of care for most patients 
with lung cancer (8). For patients with early stage disease, 
immunotherapy can increase the chance at long term 
survival through neoadjuvant, adjuvant, or consolidative 
approaches (9-11). Remarkably, for patients with metastatic 
disease treated with an immunotherapy based regimen, 
long term survival is also a possibility for a subset of 
patients with a predefined duration of therapy (12-14). 
Currently, immunotherapy with PD-1 or PD-L1 based 
immunotherapy does not have a clear role in the treatment 
of patients with ALK+ NSCLC and novel approaches to 
augment the anti-tumor immune response in these patients 
is an area of unmet clinical need. 

This narrative review summarizes the preclinical 
and translational data that lead to initial enthusiasm for 
the clinical trials incorporating PD-1 or PD-L1 based 
immunotherapy into the treatment paradigm for patients 
with ALK+ NSCLC. Furthermore, this work highlights 
preclinical and translational data that identify ways in which 

the immune system recognizes ALK+ NSCLC and how 
the ALK+ NSCLC tumor microenvironment (TME) is 
altered with TKI initiation. Future clinical trials and novel 
immunotherapy approaches are discussed in the context 
of the current knowledge of the ALK+ NSCLC TME. 
I present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
tlcr.amegroups.com/article/view/10.21037/tlcr-22-883/rc)

Methods

Relevant literature for this narrative review was obtained 
via searches of online databases including PubMed and 
ClinicalTrials.gov. PubMed was queried using key word 
“anaplastic lymphoma kinase” or “ALK” and “lung cancer”, 
along with other terms as highlighted in Table 1 and  
Table 2. A search was conducted to include relevant 
publications from time to inception of the database to 
December 2022 and was restricted to publications in 

Table 1 The search strategy summary: PubMed

Items Specification

Date of search December 1, 2022

Databases and other sources searched PubMed

Search terms used Anaplastic lymphoma kinase/ALK AND lung cancer/NSCLC, AND/OR PD-1, 
immune system, immunotherapy, T cell, tumor microenvironment, TME

Timeframe All time

Inclusion and exclusion criteria Language: English

Selection process ELS conducted the literature search and data selection

ALK, anaplastic lymphoma kinase; NSCLC, non-small cell lung cancer; PD-1, programmed cell death protein 1, TME, tumor microenvironmen. 

Table 2 The search strategy summary: ClinicalTrials.gov

Items Specification

Date of search December 1, 2022

Databases and other sources searched ClinicalTrials.gov

Search terms used Condition or disease: Lung Cancer, Other terms: ALK

Timeframe/status Recruiting and not yet recruiting studies

Inclusion and exclusion criteria Study type: interventional

Selection process ELS conducted the literature search and trial selection

Any additional considerations, if applicable Trials were reviewed for the use or application of immune modulating or 
immunotherapy based approaches

ALK, anaplastic lymphoma kinase. 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-883/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-883/rc
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English. Additional eligible studies were identified through 
manual review and searching of the reference list of included 
studies. ClinicalTrials.gov was queried in December 2022 
using condition or disease: “Lung Cancer” and other 
terms “ALK”. Recruitment status was set to “not yet 
recruiting” or “recruiting” and study type as “interventional  
(clinical trial)”.

Preclinical data

ALK+ NSCLC expresses PD-L1

As data were emerging that PD-L1 expression associated 
with PD-1 immunotherapy response, initial investigations 
reported PD-L1 positivity in tumor specimens from patients 
with ALK+ NSCLC (Table 3). Using a semiquantitative 
immunohistochemistry (IHC) scoring method, moderate or 
high staining intensity of PD-L1 in ≥5% of tumor cells was 
considered positive, and 6 of 10 ALK+ NSCLC specimens 
were reported positive for PD-L1 (15). In a cohort of 19 
patients with ALK+ NSCLC, PD-L1 expression (≥5% 
staining of tumor cells of any intensity) was positive in 9 
patients prior to TKI therapy, and 5 of those patients had 
tumors with PD-L1 positivity in ≥50% of tumor cells (16). 
While early reports used a variety of methodologies and 
definitions of positivity, PD-L1 assessment by IHC with 
22C3, a companion diagnostic assay for pembrolizumab, 
found 5 of 9 tumor samples from patients with ALK+ 
NSCLC expressed PD-L1 and 2 samples demonstrated 
PD-L1 ≥50% (17,18). 

PD-L1 expression associates with oncogenic ALK fusion 
signaling

In a series of studies, ALK+ NSCLC PD-L1 expression 
was connected to the activation of multiple canonical 
signaling pathways downstream of oncogenic ALK 
fusions (19). Patient derived NSCLC cell lines bearing 
an ALK fusion were found to express PD-L1 at baseline 
and inhibition of the ALK fusion protein through RNA 
silencing or ALK-targeting TKIs downregulated PD-L1 
cell surface expression (20). Pharmacologic inhibition of 
the phosphoinositide 3-kinases (PI3K) pathway and the 
mitogen-activated protein kinases (MAPK) pathway through 
MEK inhibition resulted in decreased cell surface PD-L1 
expression, suggesting these pathways downstream of ALK 
fusion proteins regulate PD-L1 expression (20). Signaling 
through signal transducer and activator of transcription 
3 (STAT3) and hypoxia inducible factor 1α (HIF1α) were 
associated with PD-L1 expression in ALK+ NSCLC cell 
lines and, in tissue from patients with ALK+ NSCLC, 
expression of either hosphor-STAT3 or HIF1α by IHC 
associated with tumor PD-L1 expression (21). Inhibition 
of yes association protein (YAP) and transcriptional co-
activator with PDZ-binding motif (TAZ), components of 
the Hippo pathway, reduced ALK fusion driven PD-L1 
upregulation (22).

These observations from patient specimens and in vitro 
studies that ALK+ NSCLC expressed PD-L1 and was driven 
by oncogenic ALK fusion protein signaling strengthened 
the concept of ALK-mediated local immunosuppression 

Table 3 Selected studies of ALK+ NSCLC and PD-L1 expression

Total patient 
samples

PD-L1 detection 
method

Scoring method
Number of samples PD-L1 
positive

Reference

10 PD-L1 antibody 
ab58810 (Abcam)

Staining intensity: 0 negative or trace, 1 weak, 2 
moderate and 3 high. Positive samples contained a 
staining intensity ≥2 in more than 5% of tumor cells 

6 (15)

19 PD-L1 antibody (clone 
E1L3N, Cell Signaling 
Technology)

PD-L1 positivity: membranous ± cytoplasmic staining of 
tumor cells of any intensity using cutoffs of ≥1%, ≥5%, 
and ≥50% tumor cells

PD-L1 ≥5%: 9; PD-L1 
≥50%: 5

(1)

9 22C3 pharmDx assay 
(Agilent Technologies)

PD-L1 tumor proportion score was calculated as the 
percentage of at least 100 viable tumor cells with 
complete or partial membrane staining

PD-L1 TPS 1–49%: 3; PD-
L1 TPS ≥50%: 2

(16)

ALK, anaplastic lymphoma kinase; NSCLC, non-small cell lung cancer; PD-L1, programmed cell death 1 ligand 1; TPS, tumor proportion 
score.
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via PD-L1 expression. Experiments with ex vivo activated 
dendritic cells and autologous cytokine-induced killer 
cells (DC-CIK) showed increased ALK+ NSCLC cell line 
sensitivity to cell-mediated cytotoxicity when cell lines were 
cultured in the presence of DC-CIK and anti-PD-1 (23). In 
total, these results supported the rationale for incorporating 
immunotherapy into the treatment paradigm for patients 
with ALK+ NSCLC. 

Clinical trial data

Single agent immunotherapy in ALK+ NSCLC

Early studies that established the role of PD-1 or PD-L1 
immunotherapy in subsequent line settings for metastatic 
NSCLC included patients with ALK+ NSCLC. In each 
of these prospective randomized studies, immunotherapy, 
whether nivolumab (CheckMate 057), pembrolizumab 
(KEYNOTE-010), or atezolizumab (POPLAR and OAK), 
demonstrated superior overall survival (OS) compared to 
docetaxel in the intention to treat population (24-27). Only 
CheckMate 057 and KEYNOTE-010 enrolled patients 
with ALK+ NSCLC into both the immunotherapy arm and 
docetaxel arm while the studies with atezolizumab did not 
(24-27). Due to the small number of patients with ALK+ 
NSCLC enrolled onto the CheckMate and KEYNOTE 
studies, subgroup analyses for ALK+ NSLC were not 
reported. However, initial clues to the level of efficacy were 
found in the subgroup of patients with NSCLC bearing 
epidermal growth factor receptor (EGFR) mutation. Unlike 
the overall trial population, patients with EGFR+ NSCLC 
did not experience benefit with either nivolumab (OS HR 
1.18, 95% CI: 0.69–2.00), pembrolizumab (OS HR 0.88, 
95% CI: 0.45–1.70) or atezolizumab (OS HR 1.24, 95% CI: 
0.71–2.18) in the subsequent line setting (24,25,27).

Single arm and retrospective studies further reinforced 
the limited efficacy of single agent PD-1 or PD-L1 
inhibition in ALK+ NSCLC. The ATLANTIC trial 
was a single arm, phase 2 study testing durvalumab in 
the third line or later setting for metastatic NSCLC, 
including patients with ALK+ NSCLC (28). None of the 
11 evaluable patients with ALK+ NSCLC experienced a 
confirmed disease response (28). A retrospective review 
from a single institution in the United States identified 6 
patients with ALK+ NSCLC who received PD-1 or PD-L1 
immunotherapy and none were found to have a radiographic 
response (16). Similarly, a combined report from an 
institution in the United States and in China included 13 

patients with ALK+ NSCLC who received PD-1 or PD-
L1 immunotherapy, and none of the patients demonstrated 
a radiographic response (29). The international, multi-
institution IMMUNOTARGET registry assessed the 
response of oncogene-driven lung cancer to PD-1 or PD-
L1 immunotherapy and included 23 patients with ALK+ 
NSCLC (30). In the 19 patients with ALK+ NSCLC 
and available response data, none experienced disease  
response (30). A retrospective review of 14 patients 
with ALK+ NSCLC treated in South Korea reported 2 
patients with partial responses to pembrolizumab, one for  
8.2 months and the other with an ongoing response at  
4.1 months (31). In a cohort of 8 patients with ALK+ 
NSCLC at institutions across France, 2 patients experienced 
a partial response to PD-1 or PD-L1 immunotherapy (32). 
With longitudinal electronic health record data from 
hundreds of cancer clinics within the United States, 
investigators identified 83 patients with ALK+ NSCLC 
who received PD-1 or PD-L1 immunotherapy (33). In this 
cohort, the median time to progression was 2.34 months 
(95% CI: 1.55–3.09) (33). 

Two case reports describe patients with ALK+ NSCLC 
who experienced disease response on PD-1 immunotherapy 
after exhausting available TKI options. After 2 TKIs and 
platinum doublet chemotherapy, a patient with an ALK 
G1202R mutation identified by next generation sequencing 
(NGS) received pembrolizumab and experienced a partial 
response through 9 cycles (34). A second patient with 
ALK+ NSCLC, received ceritinib then a platinum doublet 
and bevacizumab prior to progression (35). NSG of a 
progressive lesion found an ALK rearrangement and no 
apparent resistance mechanisms. The patient received 
3rd line nivolumab and a complete response was noted on 
imaging for approximately 16 months (35). 

Taken together, of the 73 patients with ALK+ NSCLC 
who received PD-1 or PD-L1 immunotherapy reported in 
the literature, only 6 experienced disease response, for an 
overall response rate of 8%. 

Immunotherapy plus TKI in ALK+ NSCLC

Prior to the readout of several early phase clinical trials, the 
combination of TKI and immunotherapy was a promising 
avenue for patients with ALK+ NSCLC. With the non-
overlapping mechanisms of actions, these therapies had 
the potential to increase responsiveness to TKI and, given 
overall tolerability of both therapies, the hope was additive 
toxicities would be limited. Unfortunately, neither of these 
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assumptions held. 
The combination of crizotinib and nivolumab was tested 

in CheckMate 370 and stopped early due to severe adverse 
events (36). Thirteen patients with ALK+ NSCLC starting 
first line crizotinib were enrolled, and 5 experienced grade 
≥3 hepatic toxicities (36). Two patients died within months 
of starting the combination therapy with acute hepatic 
toxicities as part of their presentation prior to death (36) 
A partial response was observed in 38% of patients, a rate 
markedly less than what would be expected with crizotinib 
in the first line setting (37). Nivolumab and ceritinib in 
the first line and the subsequent line setting resulted in a 
69% and a 35% response rate, respectively, both similar 
to expectations of ceritinib monotherapy (38-40). Six dose 
limiting toxicities (DLTs) were due to gastrointestinal adverse 
events including pancreatitis, autoimmune hepatitis, elevated 
lipase, and elevated transaminase (38). Gastrointestinal 
toxicities were the main DLTs observed in the combination 
of crizotinib and pembrolizumab (41). Nine treatment-
naïve patients with ALK+ NSCLC were enrolled and 4 
experienced a DLT including a pembrolizumab related 
pneumonitis that contributed to a patient’s death (41). Five 
patients experienced a disease response, but due to toxicity 
the study was terminated early (41). 

Ipilimumab, an immunotherapy that blocks cytotoxic 
T-lymphocyte-associated protein 4, was tested in patients 
with EGFR+ or ALK+ NSCLC CTLA-4 who were on 
stable dose of oncogene-targeting TKI (42). Three patients 
with ALK+ NSCLC receiving crizotinib were enrolled 
on the trial and one developed grade 3 hypophysitis and 
another patient experienced grade 2 pneumonitis (42). The 
trial was stopped early due to toxicities in observed in both 
patient cohorts and response rate was not reported (42). 

Based on a limited number of observations later 
generations of ALK-directed TKIs appeared to have less 
toxicity when combined with immunotherapy but no clear 
signal of improved efficacy. JAVELIN Lung 101 combined 
avelumab with lorlatinib in 28 patients with previously 
treated ALK+ NSCLC (43). No DLTs occurred, grade 
≥3 gamma-glutamyl transferase elevation was observed 
in 2 patients, and response rate was 46.4% in line with 
expectations for subsequent line lorlatinib alone (43,44). 
Twenty-one treatment naive patients with ALK+ NSCLC 
received alectinib alone for 7 days and then started 
atezolizumab (45). No DLTs or grade 4 or 5 adverse events 
were reported (45). Response was observed in 81% of 
patients, similar to first line alectinib monotherapy (46). 

Immunotherapy plus chemotherapy in metastatic ALK+ 
NSCLC

Immunotherapy plus chemotherapy is the standard of care 
for most patients with metastatic NSCLC (8). For most 
of the clinical trials that established these options, patients 
with ALK+ NSCLC were excluded. Two trials testing the 
incorporation of atezolizumab into chemotherapy with or 
without bevacizumab allowed enrollment of patients with 
EGFR+ or ALK+ NSCLC after progression or intolerance 
to at least 1 TkI.

IMpower130 compared the combination of carboplatin 
plus nab-paclitaxel with and without atezolizumab (47). 
IMpower150 tested atezolizumab plus carboplatin plus 
paclitaxel (ACP), bevacizumab plus carboplatin plus 
paclitaxel (BCP), or atezolizumab plus BCP (ABCP) (48). 
Both trials met their primary endpoint of improved OS with 
the incorporation of atezolizumab to either carboplatin plus 
nab-paclitaxel or BCP. IMpower130 enrolled 32 patients 
with EGFR+ or ALK+ NSCLC onto the atezolizumab 
+ chemotherapy arm and 12 onto the chemotherapy 
alone arm. No benefit in OS or progression free survival 
(PFS) was observed in this subgroup analysis (47). On 
IMpower150, 44 patients with EGFR+ or ALK+ NSCLC 
received ABCP and 64 received BCP (48). Subgroup 
analysis of patients with EGFR+ or ALK+ NSCLC was 
positive for PFS (HR 0.59; 95% CI: 0.37–0.94) and OS (HR 
0.61; 95% CI: 0.52–0.72) for patients treated with ABCP 
vs. BCP (48). Whether this improvement in overall survival 
is biologically relevant or due to a small sample size that is 
unbalanced remains unclear. 

Curative intent immunotherapy in early stage ALK+ 
NSCLC
As immunotherapy moved to earlier stages of NSCLC, 
patients with EGFR+ or ALK+ NSCLC were variably 
included. The PACIFIC trial demonstrated that 1 year of 
durvalumab consolidation after concurrent chemoradiation 
significantly improved PFS and OS for patients with locally 
advanced, unresectable NSCLC (49,50). Eight patients 
with ALK+ NSCLC were enrolled onto the trial and were 
grouped with 27 patients with EGFR+ NSCLC for outcome 
analyses (11). No difference in OS was observed in the 
EGFR+ or ALK+ NSCLC subgroup comparing durvalumab 
consolidation to placebo (HR 0.85, 0.37–1.97) (11). Adjuvant 
atezolizumab after chemotherapy is standard of care for 
patients with resected NSCLC with PD-L1 ≥1% based on 
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the IMpower010 trial (10). Patients with ALK+ NSCLC 
were allowed to enroll and 12 were randomized to the 
immunotherapy arm and 11 received best supportive  
care (10). No disease free survival benefit was observed 
with adjuvant atezolizumab in patients with ALK+ NSCLC 
(HR 1.05; 95% CI: 0.32–3.45) (10). Patients with ALK+ 
NSCLC were excluded from CheckMate 816, a phase 
3 clinical trial that demonstrated improved event free 
survival with neoadjuvant nivolumab plus platinum doublet 
chemotherapy compared to chemotherapy alone (9).

The available clinical trial and retrospective data suggest 
that the clinically available immunotherapies for lung 
cancer have limited to no role in the treatment of patients 
with ALK+ NSCLC. While some may broadly interpret 
this body of knowledge to suggest the immune system has 
no role in the control of ALK+ NSCLC, an alternative 
hypothesis is that the optimal immunotherapy intervention 
for patients with ALK+ NSCLC lies beyond PD-1 or PD-
L1. A growing body of literature suggests the immune 
system does interface with ALK+ NSCLC and response to 
TKI therapy. 

The ALK+ NSCLC interface with the immune 
system

Wild type ALK protein expression is primarily within the 
nervous system and through various knockout models, 
including mice, it is believed to contribute to embryonic 
neural development, neurogenesis, and behavioral 
regulation (51-55). Studies of ALK protein expression in 
human tissue have demonstrated high levels of expression 
within structures of the brain with low levels of expression 
in the testis and colon (56-58). Based on the likely limited 
exposure of the wild type ALK protein to the immune 
system due to its developmental localization within the 
nervous system, oncogenic ALK fusions may be antigenic to 
the immune system.

Immune system recognition of ALK+ NSCLC

Translational studies from patients with ALK+ malignancies 
suggest an adaptive immune response can be generated 
de novo against oncogenic ALK fusions. The presence of 
antibodies against oncogenic ALK fusions was tested for 
in 21 patients with metastatic ALK+ NSCLC (59). At the 
time of testing, two patients were treatment naïve, one was 
receiving pemetrexed chemotherapy, and 18 were on an 
ALK-targeting TKI (59). Thirteen of these patients were 

positive for anti-ALK fusion antibodies and, in comparison 
none of the 20 healthy controls had detectable anti-ALK 
fusion antibodies (59). In a series of 53 patients with 
metastatic ALK+ NSCLC, 9 patients were positive for a 
high level of anti-ALK antibodies when compared to 38 
patients with ALK negative NSCLC (60). In the 9 patients 
with high anti-ALK antibodies, epitope mapping revealed 
antibody recognition predominantly in the cytoplasmic 
domain (60). 

T cell responses have been observed in animal models 
of ALK+ NSCLC. In an orthotopic mouse model of 
ALK+ NSCLC, animals vaccinated with a DNA plasmid 
coding for the intracytoplasmic domain on ALK developed 
significantly fewer tumor nodules compared to animals 
that received a control vaccination (61). This vaccine 
strategy also decreased tumor out growth and increased 
survival in animals transgenic for ALK under the control 
of the lung specific surfactant protein promoter (61). 
In both the orthotopic and transgenic models of ALK+ 
NSCLC, the ALK vaccine generated ALK specific T cell  
immunity (61). In the ALK transgenic animals, and tumor 
control associated with increased numbers of CD8+ T cells 
within the tumors and was dependent on the presence of 
CD8+ T cells (61). In patients with anaplastic large cell 
lymphomas, CD8+ and CD4+ T cell responses have been 
detected against peptides derived from oncogenic ALK 
fusions, though these have not yet been reported in patients 
with ALK+ NSCLC (62-67). 

The ALK+ NSCLC TME

While data suggest the oncogenic ALK fusion in ALK+ 
NSCLC can be immunogenic, studies of the ALK+ TME 
have revealed an immunologically cold TME. In a cohort 
of 6 patients with ALK+ NSCLC, IHC for CD3+, CD4+, 
and CD8+ cells revealed significantly reduced levels of 
T cells within the ALK+ TME compared to the EGFR+ 
NSCLC TME (61). Gene set enrichment analysis of a 
publically available data set of resected, early stage NSCLC 
that included 11 patients with ALK+ NSCLC, 127 with 
EGFR+ NSCLC, and 20 with Kristen rat sarcoma virus 
(KRAS) mutation positive NSCLC, demonstrated that 
the transcriptional profile of the ALK+ NSCLC TME 
contained fewer T cell related transcripts compared to the 
other patient cohorts (61,68). In 13 treatment naïve patients 
with ALK+ NSCLC, 10 of the ALK+ TME were found 
to have negative to low infiltration of CD8+ cells and 3 
contained a moderate level of infiltration by IHC (16). In a 
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separate cohort, 9 patients with crizotinib resistant ALK+ 
NSCLC all were found to have negative to low infiltration 
of CD8+ cells (16).

Within the TME of ALK+ NSCLC, infiltrating immune 
cells are reported to vary across studies but in general, 
exhibit reduced levels of activity. Gene set enrichment 
analysis of bulk RNA sequencing from 14 patients with 
ALK+ NSCLC revealed a diminished interferon-γ-related 
response signature when compared to ALK− NSCLC (31). 
In 25 treatment naïve ALK+ NSCLC patients, CD8+ T 
cell infiltration was noted within the tumor compartment 
and stroma at levels equivalent to or moderately reduced 
when compared to controls, respectively (69). A major 
difference was noted in levels of interferon-γ transcript 
within the CD8+ T cells where control tumors contained 
CD8+ T cells that were positive for interferon-γ mRNA, 
but in ALK+ NSCLC CD8+ T cells were negative for 
interferon-γ mRNA suggesting an ineffective effector T cell 
response (69). In comparison to KRAS mutation positive 
NSCLC, IHC of tumor specimens from 39 patients with 
ALK+ NSCLC demonstrated fewer infiltrating CD3+ and 
CD8+ cells and reduced levels of granzyme B, which may 
suggest reduced T cell activity but could reflect reduced 
T cell numbers overall (70). Comparative mRNA studies 
of 31 samples from ALK+ NSCLC patients who were 
treatment naïve found an increase in T regulatory (Treg) 
cells within the ALK+ NSCLC TME compared to patients 
with EGFR+ NSCLC or patients with ALK− and EGFR− 
NSCLC (71). However, this difference in Treg cells was 
not seen by IHC in a cohort of 39 patients with ALK+ 
NSCLC (70). Within the cohort of 39 patients with ALK+ 
NSCLC, CD8+ T cell expression of checkpoints PD-
1, CTLA-4, lymphocyte activating gene 3 (Lag3), T cell 
immunoglobulin and mucin domain-containing protein 3 
(TIM-3) by IHC was markedly reduced (70). This suggests 
infiltrating CD8+ T cells were unable to engage with 
potential tumor antigens as T cell checkpoint expression is 
upregulated by T cell activation (72). 

Turning the ALK+ NSCLC from cold to hot: a new benefit 
from an old friend?

A major theme of current cancer drug development, in 
general, is to increase T cell infiltration and activation 
within the TME as T cells are key to tumor control and 
clearance (73). One route is to induce immunogenic cell 
death (ICD) within the cancer cell to activate the adaptive 
immune system. ICD results in the heightened recognition 

of cancer cells by innate immune cells such as dendritic 
cells and macrophages and promotes their differentiation 
into activated phenotypes which can recruit and stimulate 
a T cell response (74). Crizotinib was found to induce 
multiple markers of ICD in H2228, a patient-derived ALK+ 
NSCLC cell line (75). Ceritinib induced ICD in H3122, a 
patient derived ALK+ NSCLC cell line, via pyroptosis (76). 
The induction of ICD by TKI may alter the TME in ALK+ 
NSCLC to a more immunologically active environment 
and several lines of evidence from patient data and mouse 
models support this.

The first patient level data was generated by the phase 
Ib clinical trial of alectinib plus atezolizumab on which 
treatment naïve ALK+ NSCLC patients received 7 days 
of alectinib prior to atezolizumab (45). On treatment 
biopsies were obtained for 9 patients after the alectinib 
run in and before the initiation of atezolizumab. When 
compared to pre-treatment biopsies, an increase in CD8+ T 
cell infiltration was observed in 7 out of 9 patient samples 
by IHC (45). Bulk RNA sequencing was performed on 
pre-treatment tissue samples and samples at time of 
response or progression on TKI from 8 patients with 
ALK+ NSCLC in addition to 23 patients with EGFR+ 
NSCLC (77). In response to TKI treatment, significant 
upregulation was noted in genes supporting T cell 
activation and differentiation in both patient cohorts (77). 
Using bioinformatics approaches to deconvolute the data 
and identify immune cell subsets, findings from the ALK 
samples showed an increase in TME immune score with 
TKI treatment and an increase in cytotoxic cells which 
comprises CD8+ T cells, gamma-delta T cells and natural 
killer (NK) cells within the TME (77). Similarly, single 
cell RNA sequencing and multispectral tissue imaging 
demonstrated an increase in TME T cell infiltration a few 
weeks after TKI initiation in a cohort of 30 patients starting 
TKI, including 10 patients with ALK+ NSCLC (78). 

In two different animal models of ALK+ NSCLC, 
parallels have emerged with the patient data. Mice 
transgenic for an EML4-ALK fusion under a lung specific 
promoter were treated with ceritinib until progression 
on imaging (79). Flow cytometry on progressing tumors 
revealed an increase in Treg cells, a cell population that was 
increased at time of progression in patients receiving a range 
of TKIs (78,79). A significant influx of CD3+CD8+ cells was 
found 4 days after TKI initiation in an orthotopic model of 
EML4-ALK+ NSCLC that experiences complete response 
to TKI (80). In contrast, a distinct orthotopic model that 
only experiences a partial response to TKI showed a limited 
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increase in CD3+CD8+ cell TME infiltration (80). For both 
orthotopic models, response to TKI was dependent on a 
functional adaptive immune system, as tumor control on 
TKI occurred for a limited time and was not durable in 
nude mice (80). 

Taken together, these data from patients with ALK+ 
NSCLC and murine models suggests T cell TME 
infiltration occurs with TKI initiation and may influence 
response to TKI. While some patients with ALK+ NSCLC 
experience a robust, long-term response to TKI therapy, 
there is heterogeneity across patients with ALK+ NSCLC 
in the depth and duration of response to therapy. One 
possibility is that the immune composition of the TME, 
shaped by both the cancer and its response to TKI, can 
influence the heterogeneity of these outcomes. Beyond 
the immediate focus on the T cell compartment, innate 
immune cells within the TME can impact not only T 
cell activation but also may have direct interactions with 
ALK+ NSCLC. Macrophage conditioned media imparted 
alectinib resistance through MET bypass signaling in an 
in vitro model system with EML4-ALK+ NSCLC cells 
derived from murine models (81). Furthermore, H3122 
xenografts demonstrated improved control with crizotinib 
when animals were also treated with clodronate, an agent 
that broadly depletes macrophages (81). CD47 is a widely 
expressed cell surface molecule that prevents target cell 
phagocytosis by innate immune cells through its interaction 
with signal regulatory protein alpha (SIRPα) and CD47 
has been found to be overexpressed in many cancer 
types, including lung cancer (82). In vitro establishment 
of alectinib resistant H2228 was found to generate two 
distinct cell populations based on CD47 expression (83). 
Establishment of the CD47HiH2228 or CD47LoH2228 in 
nude mice revealed the significant tumorgenicity of the 
CD47Hi subpopulation and marked outgrowth (82). Anti-
CD47 therapy improved the degree of tumor control with 
TKI in an immunodeficient mouse model (84). In a separate 
study, animals bearing H3122 tumors were treated with 
lorlatinib, anti-CD47 or the combination (84). Animals 
that received combination therapy experienced the most 
pronounced tumor shrinkage and duration of response (84). 

Clinical trials and future approaches 
incorporating immunotherapy for ALK+ NSCLC 

Current trials

Following up on the efficacy signal from IMpower150, 
several clinical trials are underway to test whether the 

incorporation of PD-1 or PD-L1 directed immunotherapy 
into chemotherapy with and without anti-angiogenic 
therapy is beneficial for patients with ALK+ NSCLC after 
progressing on TKI (Table 4). 

One randomized phase III trial and one large phase II 
study are recruiting patients with ALK+ NSCLC to test 
atezolizumab in combination with a platinum doublet 
with or without bevacizumab in the setting of TKI 
progression (85,86). A small phase II study anticipated 
to enroll will evaluate pembrolizumab with bevacizumab 
and chemotherapy in patients with ALK+ NSCLC after 
progression on first line alectinib (87). A fourth study 
is planned using camrelizumab, a PD-1 inhibitor, with 
apatinib, a small molecule inhibitor of vascular endothelial 
growth factor receptor 2, in combination with carboplatin 
and pemetrexed (88).

Adoptive cell therapy with tumor infiltrating lymphocytes 
(TILs) represents a new avenue for immunotherapy in 
solid malignancies, including lung cancer. In a phase I 
clinical trial of TILs given with nivolumab in patients 
with metastatic NSCLC, 3 patients who received TILs 
and nivolumab experienced disease response, including a 
complete response in a patient with EGFR+ NSCLC who 
progressed on osimertinib (89). CD8+ and CD4+ TILs 
generated from the patient with an EGFR+ NSCLC were 
found to be reactive to multiple epitopes from several 
cancer testis antigens and one somatic mutation (89). 
This patient had limited positivity for established and 
experimental biomarkers of immunotherapy response. 
Tumor PD-L1 was 2% and estimates of the patient’s tumor 
mutational burden were low based on commercial testing 
and whole exome sequencing (89). A large, multi-cohort 
phase II trial is ongoing evaluating TIL therapy with and 
without checkpoint immunotherapy, including cohorts 
that allow the enrollment of patients with ALK+ NSCLC  
(Table 4) (90). Other adoptive cell therapies under 
investigation include autologous NK cell therapy in 
combination with chemotherapy with and without 
cetuximab (91). This phase I/IIa study is only enrolling 
patients with lung cancer post-TKI progression, including 
ALK+ NSCLC (91). 

Future directions

While the current clinically available checkpoint inhibitor 
immunotherapies have yet to find a clear place in the 
treatment paradigm for patients with ALK+ NSCLC, other 
immune modulating approaches may better support TKI-
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Table 4 Select current clinical trials for ALK+ NSCLC incorporating immunotherapy

Regimen Study design NCT number Primary outcome Estimated completion date

Carboplatin + pemetrexed + 
atezolizumab + bevacizumab 
vs. Carboplatin + pemetrexed + 
atezolizumab

Non-randomized phase II NCT04042558 ORR June 2024

Carboplatin + pemetrexed + 
atezolizumab + bevacizumab
vs. carboplatin + pemetrexed

Randomized phase III NCT03991403 PFS December 2022

Pembrolizumab + chemotherapy + 
bevacizumab

Single arm phase II NCT05266846 PFS February 2024 

Camrelizumab + apatinib meylate + 
pemetrexed + carboplatin

Single arm phase II NCT04425135 ORR January 2025 

Autologous TIL (LN-145) +/− 
pembrolizumab

Phase II NCT03645928 ORR, TEAE December 2024 

SNK01 (Super Natural Killer Cells 
01) + gemcitabine + carboplatin +/− 
cetuximab

Phase I/IIa NCT04872634 MTD, AE May 2023

ALK, anaplastic lymphoma kinase; NSCLC, non-small cell lung cancer; NCT, national clinical trials; ORR, overall response rate; PFS, 
progression free survival; TEAE, treatment emergent adverse event; MTD, maximum tolerated dose; AE, adverse event. 

mediated tumor clearance and the endogenous immune 
response against ALK+ NSCLC (Figure 1). Recent advances 
in the engineering of cytokines have generated second-
generation compounds that better enhance adaptive 
immune responses (92). Modified versions of IL-2, a major 
driver of T cell response, are able to bind with high affinity 
to effector T cells and are unable to interact with the IL-2 
receptor present on Treg cells (92). Modified IL-2 may 
promote the acquisition of effector functions of T cells 
already present in the ALK+ NSCLC TME while avoiding 
driving proliferation and function of Treg cells that have also 
been identified in the ALK+ NSCLC TME (16,45,61,68-
71,77,78). A phase I study of modified IL-2 plus nivolumab, 
including 5 patients with treatment-naïve, metastatic 
NSCLC, showed an increase in TME CD8+ T cells on 
treatment and no increase in Treg cells (93). 

Oncolytic virus therapy is another potential tool to 
augment the immunogenicity of ALK+ NSCLC. These 
viral agents selective replicate within tumor cells causing 
immunogenic cell death (94). Notably, these viral agents 
can readily be modified to express cytokines or chemokines 
to improve antitumor efficacy (94). This strategy is already 
clinically available for patients with melanoma who can 
receive intralesional talimogene laherperepvec (T-VEC), 
a modified herpes virus that also expresses granulocyte 
macrophage colony-stimulating factor to recruit and 

activate antigen presenting cells (95). Translational studies 
demonstrated lesions injected with T-VEC contained more 
tumor antigen specific T cells with a decrease in Treg and 
myeloid derived suppressor cells (96). While intralesional 
injections may be possible at time of maximal response on 
an ALK-targeting TKI, or at time of oligoprogression, 
systemic delivery of oncolytic virus therapy through 
intravenous infusion remains an attractive but elusive  
goal (94). 

Finally, while the majority of immune modulating 
therapies are directed towards T cells, a new generation 
of immunotherapies for cancer targeting innate immune 
cells is starting to emerge (97). Macrophages, mononuclear 
phagocytes which can occupy functional states ranging from 
pro-immunogenic to pro-tumorigenic, can recognize and 
phagocytose cancer cells, influence cancer cell response 
to therapy, TME features including T cell infiltration and 
metabolic niche, and the tumor metastatic potential (97). 
The function of cancer cell recognition and phagocytosis 
by macrophages is, in part, influenced by the expression 
of CD47 on the cancer cells, which has been shown to 
be overexpressed in NSCLC (98). Clinical development 
of anti-CD47 and anti- SIRPα therapies, alone and in 
combination approaches, is furthest along in hematological 
malignancies (99). Data from early phase clinical trials 
suggests monotherapy has limited efficacy with more 
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response observed when used in combination (99). To 
date, the adverse event profile of therapies targeting the 
CD47/SIRPα axis does not include immune related adverse 
events classically associated with PD-1/PD-L1/CTLA-
4 checkpoint inhibition (99,100). Based on clinical and 
preclinical data, this suggests the potential of an ALK-
targeting TKI in combination with CD47/SIRPα axis 
directed therapies as an immunotherapy approach for ALK+ 
NSCLC.

Conclusions

The promise of immunotherapy has yet to reach patients 
with ALK+ NSCLC. Based on pre-clinical and translational 
data, the immune system in patients with ALK+ NSCLC 
recognizes and has a degree of interface with the cancer 
cells. While this interface has not yet been augmented 
by the current clinically available immune checkpoint 
inhibitors, promise remains beyond the PD-1/PD-L1 axis. 
Future efforts to identify effective immune modulating 
therapies for ALK+ NSCLC will  require a better 
understanding of how TKI therapy alters the immune 
recognition of ALK+ NSCLC, how residual disease avoids 

immune detection, and which infiltrating immune cells are 
key to improving TKI response and patient outcomes. 
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