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Introduction

Background

Advanced non-small cell lung cancers (NSCLCs) harboring 
activating fusions in the anaplastic lymphoma kinase 
(ALK) are highly sensitive to treatment with ALK-targeted 
tyrosine kinase inhibitors (TKIs). Unfortunately, despite 

significant improvements in clinical outcomes, acquired 
resistance to ALK TKIs inevitably occurs (1-11). 

Rationale and knowledge gap

Resistance is most often mediated by second-site mutations 
in the ALK driver fusion (2-4), resulting in a tumor with 
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sustained dependence on ALK signaling for proliferation 
and survival. Such ALK-mediated resistance can be 
identified by DNA sequencing of tissue or plasma and 
can be overcome by later generations of ALK TKIs (4). 
However, a rarer and less well understood mechanism of 
resistance that occurs in only about 1.2% of TKI-resistant 
ALK-positive tumors is lineage transformation, most 
commonly as a shift in histology from adenocarcinoma to 
neuroendocrine or squamous histology (12). Patients whose 
resistant tumors have undergone lineage transformation 
represent a clinical subset for whom we have limited data to 
recommend optimal treatment regimens.

While ALK-positive tumors make up approximately 
3–7% of NSCLC (13,14), tumors harboring other mutually 
exclusive, targetable driver oncogenes such as EGFR 
(epidermal growth factor receptor), RET (rearranged 
tyrosine kinase gene during transfection), and ROS1 (ROS 
proto-oncogene 1) collectively comprise approximately 
20% of lung adenocarcinomas (15). With some variation 
in overall response rates, each of these genomic subtypes 
follow the same basic paradigm of initial response to targeted 
therapies followed inevitably by treatment resistance 
and disease progression. As with ALK-positive NSCLC, 
lineage transformation is a rare but recurrent mechanism of 
treatment resistance across genomic subtypes (12,16-19). 

Objective

Here we present a review of what is known of the biology 
and clinical implications of lineage transformation in 
NSCLC, drawing parallels across oncogenic driver subtypes 
but with a focus on ALK-positive lung adenocarcinoma. We 
present this article in accordance with the Narrative Review 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-22-867/rc). 

Methods

We performed a search of the published literature using 
PubMed and clinicaltrials.gov databases between October 1, 
2022 and November 30, 2022 (Table 1). Search terms used 
included ALK, EGFR, NSCLC, histologic transformation, 
TKI resistance, small cell lung cancer (SCLC), squamous, 
large cell neuroendocrine carcinoma (LCNEC), and 
epithelialal-to-mesenchymal transition (EMT). We 
included only English-language publications reporting 
original research regarding randomized controlled trials, 
prospective or retrospective cohort studies, case reports or 

series, case-control studies, translational preclinical studies, 
and relevant review articles. Included articles were selected 
and assessed by both authors. 

ALK-positive NSCLC: clinical overview

Fusion rearrangements resulting in constitutive activation 
of the ALK tyrosine kinase domain were initially identified 
in NSCLC in 2007 and occur in approximately 3–7% 
of NSCLCs, most commonly in lung adenocarcinomas 
(13,14). EML4-ALK rearrangements represent the majority 
of oncogenic ALK fusions occurring in NSCLC; however, 
with application of more advanced next-generation 
sequencing platforms for tumor genotyping, approximately 
90 total fusion partners for ALK have been identified in 
NSCLC to date (20). Activating ALK fusions in NSCLC 
are associated with adenocarcinoma histology, younger age 
and minimal smoking history as compared to NSCLCs that 
do not harbor ALK rearrangements (14). 

After a decade of successful drug development in this 
area, there are five ALK TKIs now approved in the first-
line setting as monotherapy for patients with stage IV ALK-
positive lung adenocarcinoma (21-36). Crizotinib, a first 
generation ALK TKI, earned the first such approval in 2011 
on the basis of overall response rates greater than 50% in 
early phase trials (21-23) and subsequent confirmatory phase 
III studies demonstrating superior outcomes compared 
to chemotherapy (24). The ability of investigators and 
regulatory entities to achieve clinical approval of crizotinib 
such a short time from discovery of ALK oncogenic fusions 
in NSCLC was due to the fact that crizotinib was initially 
developed as a MET (mesenchymal-epithelial transition 
factor) inhibitor but was subsequently found to have ALK 
inhibitory properties on kinase screens. For this reason it 
could be rapidly repurposed for clinical testing in ALK-
positive NSCLC. 

Second-generation ALK TKIs ceritinib and alectinib were 
FDA-approved for first-line treatment in 2017 and second-
generation ALK TKI brigatinib was FDA-approved for first-
line treatment in 2020 (1). Initially developed to overcome 
acquired resistance to crizotinib, these second-generation 
ALK TKIs proved to be more potent ALK inhibitors than 
crizotinib (2,37,38). Phase III trials comparing second-
generation ALK TKIs head-to-head with crizotinib 
demonstrated a reproducible improvement in progression-
free and overall survival as well as improved CNS outcomes 
for patients treated with second-generation ALK TKIs 
compared to crizotinib in the first-line setting (32-34). 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-867/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-867/rc
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Finally, lorlatinib is a third generation ALK TKI 
designed to be highly potent and selective in order to 
effectively overcome a range of resistance mutations 
known to be acquired following treatment with first- and 
second-generation ALK TKIs (35,36,39,40). Lorlatinib 
was initially FDA approved in 2018 for patients following 
treatment with alectinib or ceritinib (either as second 
line or after both crizotinib and second-generation ALK 
TKI) based on demonstrated response rate of 40% and 
median progression-free survival (mPFS) 6.9 months in 
this setting (41). FDA approval for lorlatinib in the first-
line setting came in 2021 after publication of the phase 
III trial comparing first-line treatment with lorlatinib 
versus crizotinib demonstrated significantly greater 
overall response rate (76% vs. 58%) and higher 12-month 
progression-free survival (78% vs. 39%) in the lorlatinib 
treatment arm (42). Of note lorlatinib was intentionally 
designed to achieve excellent CNS penetration and the 
superior CNS efficacy was evident in this trial which 
demonstrated a significantly longer time to CNS disease 
progression (42). 

Mechanisms of resistance to ALK TKIs

Despite the impressive clinical responses seen in metastatic 
ALK-positive NSCLC in response to ALK TKIs, 

unfortunately, disease progression inevitably occurs (Figure 1A).  
Repeat biopsies of tumor tissue (and, more recently, plasma) 
at the time of TKI resistance have provided insights into 
the mechanisms of resistance to ALK targeted therapies and 
their relative frequency across multiple generations of ALK 
TKIs (2,3,6). While a comprehensive review of mechanisms 
of resistance to ALK TKIs is beyond the scope of this 
narrative review, we outline below a broad overview of the 
field in order to put our discussion of lineage transformation 
in context.

Broadly speaking, resistance mechanisms can be 
categorized into ‘on-target’ and ‘off-target’ biological 
processes. ‘On-target’ mechanisms of resistance are 
defined as ALK-dependent, or ALK-mediated, resistance 
mechanisms and are the most common type of resistance 
mechanism that develops in the face of ALK TKI treatment 
with a variety of ALK resistance mutations described 
to date (2). In the case of crizotinib, ALK-dependent 
acquired resistance often occurs as acquired ALK L1196M 
mutations or via ALK amplification suggesting insufficient 
ALK inhibition with crizotinib therapy (2). In general, the 
landscape of acquired ‘on-target’ ALK resistance mutations 
varies by specific inhibitor, but for second-generation ALK 
TKIs the G1202R ALK solvent-front mutation is among 
the most commonly identified at the time of resistance, and 
compound ALK mutations also occur with some frequency 

Table 1 The search strategy summary

Items Specification

Date of search October 1, 2022 to November 30, 2022

Databases and other sources searched PubMed and clinicaltrials.gov

Search terms used ALK, EGFR, NSCLC, histologic transformation, TKI resistance, small cell lung cancer (SCLC), 
squamous, large cell neuroendocrine carcinoma (LCNEC), and epithelial-to-mesenchymal 
transition (EMT)

Timeframe From August 2007 until October 2022

Inclusion and exclusion criteria Inclusion criteria:

• English-language articles

• Article types were randomized controlled trials, prospective or retrospective cohort studies, 
case reports or series, case-control studies, translational preclinical studies, and relevant 
review articles

Exclusion criteria:

• Article not published in English

• Article types were editorial comments, abstracts, conference materials, review articles, 
guidelines, consensus statements, or study protocol

Selection process Study selection and full-text articles were assessed by CB Meador and Z Piotrowska
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following resistance to both second-generation and third-
generation ALK TKIs (2,6). Following acquired resistance 
to lorlatinib, the frequency of ‘on-target’ resistance 
mutations decreases to 25–30% frequency (from >50% 
frequency following second-generation inhibitors) and 
preclinical data suggest that this figure may be evolve even 
lower with use of lorlatinib in the first-line setting (3,4).

‘Off-target’ mechanisms of resistance to ALK TKIs refer to 
acquired activation of ALK-independent pathways sustaining 
tumor growth in the setting of ongoing ALK inhibition. 
The most common form of ‘off-target’ resistance is bypass 
pathway signaling, including activation of either parallel 
receptor tyrosine kinase activation or downstream kinase 
signaling pathways. Bypass pathway resistance mechanisms 
identified at the time of crizotinib resistance include 
activation of signaling of receptor tyrosine kinases EGFR, 

HER2 (human epidermal growth factor receptor 2), KIT 
(proto-oncogene c-KIT) (43,44) and IGF-1R (insulin like 
growth factor 1 receptor) (45), downstream KRAS (kirsten rat 
sarcoma viral oncogene homolog) mutation (46), downstream 
YES1 (YES proto-oncogene 1) amplification (47),  
and DUSP6 (dual specificity phosphatase 6) loss (46). 
Bypass pathway activation reportedly conferring resistance 
to second- and third-generation ALK TKIs include MET 
amplification/mutation (48,49), RET rearrangement (50), 
HER2 amplification (51), and mutations or amplification 
in NF2 (neurofibromatosis type 2) (10), YES1 (47), BRAF 
(B-Raf Proto-Oncogene) (52), MAP2K1 (Mitogen-
Activated Protein Kinase Kinase 1) (50,53), and PIK3CA 
(Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic 
Subunit Alpha) (10).

Another form of ‘off-target’ resistance to ALK TKIs, 

Figure 1 Lineage transformation as a mechanism of resistance to ALK TKIs. (A) Schematic representation of initial response of ALK-
positive lung adenocarcinoma to treatment with ALK TKI, followed acquired resistance. Tissue biopsy at the time of acquired resistance is 
necessary for identification of lineage transformation. (B) Overview of the three commonly recognized categories of lineage transformation. *, 
though SCLC is the most common form of neuroendocrine transformation, other types of neuroendocrine histologies have been observed, 
such as LCNEC. Note that this overview excludes detailed representation of mixed histology and heterogeneity likely present in many cases 
(see text for details). Created with biorender.com. ALK, anaplastic lymphoma kinase; NSCLC, non-small cell lung cancer; TKI, tyrosine 
kinase inhibitor; SCLC, small cell lung cancer; LCNEC, large cell neuroendocrine carcinoma.
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and the primary focus of this narrative review, is lineage 
transformation. Originally reported as a mechanism of 
resistance to EGFR TKIs in EGFR-mutant NSCLC 
(16,18,54,55), lineage transformation has been identified as 
a recurrent driver-independent mechanism of resistance to 
targeted therapies across genomic subtypes of NSCLC and 
even among other solid tumor types (56). Because it is a rare 
phenomenon, the exact frequency of lineage transformation 
in the context of ALK-positive NSCLC has not been well 
established. Studies suggest a rate of at least 1.2% of SCLC 
transformation following next-generation ALK TKIs (12), 
and case reports demonstrate the occurrence of not only 
SCLC transformation but also squamous transformation 
and epithelial-to-mesenchymal transformation (EMT) 
following treatment with first, second and third-generation 
ALK TKIs (2,10,57-77) (Table 2 and Table 3). 

A comprehensive understanding of the biology of lineage 
transformation in ALK-positive NSCLC is limited in part 
by its infrequent occurrence and lack of robust patient-
derived tissue samples for study. In addition, the complexity 
of factors governing cellular differentiation make this 
an especially challenging biologic process to define. 
However, lineage state is clearly a critical component of our 
understanding of tumor initiation and evolution across the 
spectrum of malignancies. As alluded to above, within the 
scope of the lung cancer literature, insights into the biology 
of lineage transformation can be broadly grouped into three 
categories for discussion: SCLC histologic transformation, 
squamous histologic transformation, and EMT (Figure 1B).

SCLC histologic transformation

Incidence and diagnosis of SCLC transformation

Transformation from NSCLC to SCLC histology was 
initially reported as a mechanism of TKI resistance 
in EGFR-mutant NSCLC (54). As a result, much of 
our knowledge of the biology, risk factors, and clinical 
outcomes of SCLC transformation comes from the EGFR-
mutant NSCLC literature. In initial studies of resistance 
mechanisms to early-generation EGFR TKIs that 
collectively included 192 patients, SCLC transformation 
was identified in 3–14% of TKI-resistant tumors (54,78). 
The incidence of SCLC transformation at the time of 
resistance to third-generation EGFR TKI osimertinib is 
estimated at 5–7% based on recent studies that included 
a total of 103 patients, though these estimates are limited 
by the fact that many of the largest series of osimertinib 

resistance have not evaluated tumor histology at the time 
of progression (17,19,79,80). There are also multiple case 
reports and case series demonstrating SCLC transformation 
following EGFR TKIs (58,81-95). 

By comparison, available data suggest that SCLC 
transformation occurs less frequently in ALK-positive 
NSCLC than in EGFR-mutant NSCLC. The largest 
published studies analyzing repeat biopsies after ALK TKI 
resistance did not identify any cases of SCLC among 91 
patients with resistance to crizotinib (2,12), a 0–0.08% 
frequency (out of 157 total patients) after resistance to 
second-generation ALK TKIs (2,12), and a 2.7% (out 
of 38 total patients) frequency of SCLC transformation 
after resistance to lorlatinib (12). Of the 9 published 
case reports of SCLC transformation as a mechanism of 
ALK TKI resistance, 3 occurred following crizotinib, 
5 occurred following second-generation TKIs, and 1 
occurred following lorlatinib (Table 2). Notably, while it is 
seen most commonly following resistance to EGFR and 
ALK targeted therapies, SCLC histologic transformation 
has been reported at the time of acquired resistance to 
targeted therapy in a NSCLC harboring a driver ROS1 
fusion (12) as well as following treatment with immune 
checkpoint inhibitors in NSCLC negative for oncogenic 
driver alterations (96-99). The relative incidence of SCLC 
transformation following different therapies, across 
genotypes and clinical presentation of NSCLC remains an 
area of ongoing study. 

SCLC transformation is diagnosed by histopathologic 
examination of tissue biopsy at the time of acquired resistance 
to therapy. Morphologically and immunohistochemically, 
transformed SCLC mimics the appearance of de novo SCLC 
(classic, non-transformed SCLC), characterized by small 
cells with high nuclear-to-cytoplasmic ratio, high mitotic 
activity and positive staining for neuroendocrine markers 
such as chromogranin and synaptophysin (12,18,54,100). 
Genomically, the majority of transformed SCLC tumors 
harbor loss-of-function mutations in tumor suppressors 
TP53 (tumor protein 53) and RB1 (RB transcriptional 
corepressor 1), which is also characteristic of de novo SCLC 
tumors (12,18,54,100). In fact, an EGFR-mutant NSCLC 
with complete inactivation of p53 and RB1 at baseline is 
43 times more likely to evolve to SCLC as a mechanism 
of resistance to TKI therapy compared to an EGFR-
mutant NSCLC without these co-occurring alterations at  
baseline (101). Finally, while the original EGFR driver 
mutation is genomically preserved in the SCLC transformed 
tumor, loss of expression of EGFR is seen at the protein 
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level suggesting loss of dependence on EGFR oncogenic 
signaling for these transformed tumors (16,18,100).

In published cases of SCLC transformation of ALK-
positive NSCLC, transformed SCLC is similarly reported 
to have classic SCLC morphology with acquired expression 
of neuroendocrine markers; however, expression of ALK 
protein is variable and not uniformly lost as with EGFR-
mutant SCLC transformed tumors (57,67-73). Of the small 
overall number of published cases of SCLC transformation 
in ALK-positive NSCLC, only a handful report baseline 
next-generation panel-based sequencing data. As a result, 
there are not yet clearly established trends regarding rates 
of co-occurring mutations, for example loss-of-function 
mutations in p53 and/or RB1. 

Of note, another histologic entity that falls under the 
spectrum of neuroendocrine histology but is distinct from 
SCLC is large cell neuroendocrine carcinoma (LCNEC). 
LCNEC is characterized by cytologic features of NSCLC 
with tissue architecture and IHC markers consistent with 
neuroendocrine histology (102). The largest published 
cohort of genomic and transcriptomic profiling of LCNEC 
tumors to date revealed two distinct genomic subgroups 
defined by bi-allelic TP53 and STK11 (serine/threonine 
kinase 11)/KEAP1 (Kelch Like ECH Associated Protein 1) 
alterations (type I) versus bi-allelic inactivating mutations 
in TP53 and RB1 (type II) (103). While LCNEC tumors 
are genomically similar to NSCLC, transcriptional 
profiling demonstrates that type I LCNEC resembles 
neuroendocrine-high SCLC, and type II LCNEC more 
closely resembles neuroendocrine-low SCLC (103). A 
full characterization of LNEC is outside the scope of this 
review, but the significant degree of histologic heterogeneity 
within LCNEC highlights the inherent lineage plasticity 
of this tumor subtype and suggests that improved 
understanding of the molecular features of LCNEC will 
lead to more precision in diagnosis and treatment decision-
making. 

While these descriptions refer to de novo LCNEC 
tumors, histologic transformation from adenocarcinoma 
to LCNEC is also rarely identified as a mechanism of 
resistance to targeted therapies, including ALK TKIs 
(61,83,104-106) (Table 2). Molecular features associated with 
LCNEC transformation remain poorly defined, but there is 
variability in baseline p53/RB1 status and clinical outcomes 
among the few reported cases. Within EGFR-mutant 
NSCLC, there are reported cases of both TKI-sensitive and 
-resistant de novo EGFR-mutant LCNEC tumors (107-109), 
as well as published examples of histologic transformation T
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to LCNEC following treatment with EGFR-targeted 
therapies (83,106,110). Though the published examples of 
such cases are limited in number, the observed variability 
in responses to EGFR TKIs among EGFR-mutant 
tumors with LCNEC histology likely reflects the inherent 
molecular and histologic heterogeneity of LCNEC tumors 
more broadly. 

Molecular features of SCLC transformation 

As mentioned in the prior section, loss of function of 
tumor suppressors p53 and RB1 appears to be a critical 
biologic factor predisposing tumors to undergo SCLC 
transformation. The combined loss of these p53/RB1 
function has been described as necessary but not sufficient 
for SCLC transformation in the context of EGFR-mutant 
NSCLC (101). This is consistent with the genomic 
landscape of de novo SCLC in which >95% of tumors are 
deficient in both p53/RB1 (111-113). Beyond p53/RB1 
loss, however, multiple additional molecular mechanisms 
have been proposed as potentially important pathways in 
SCLC transformation. In the largest retrospective clinical 
cohort of transformed EGFR-mutant SCLC published to 
date, PIK3CA mutations were reported in 27% (n=14/52) 
of pre-transformed tumors (18) which was consistent 
with recurrent PIK3CA mutations observed in the initial 
report of SCLC transformation (54) and other subsequent 
case series (88). In another study comparing 7 pre-SCLC 
transformation tumors to 32 NSCLC tumors with baseline 
EGFR, TP53, and RB1 mutations that did not go on 
to SCLC transformation, the pre-transformed tumors 
were enriched for mutations or amplifications in SMYD1 
(SET and MYND domain containing 1), MYND (Mynd 
Domain-Containing Protein), NOTCH2 (neurogenic 
locus notch homolog protein 2), PIK3CA, MYC (Cellular 
Myelocytomatosis Oncogene), CREBBP (CREB-binding 
protein), PTEN (Phosphatase and TENsin homolog), 
CCNE1 (Cyclin E1) and ELF3 (E74 like ETS transcription 
factor 3) (16). Pre-transformed tumors were also enriched 
for whole-genome duplication (WGD) compared to EGFR/
TP53/RB1 co-mutated tumors that did not transform (16),  
and multiple studies have also identified APOBEC 
(Apolipoprotein B mRNA-Editing Enzyme, Catalytic 
Polypeptide) hypermutation signatures in pre-transformed 
EGFR-mutant NSCLC (16,101). Other case reports 
and case series of transformed SCLC tumors suggest 
that increased expression of FGF9 (fibroblast growth  
factor 9) (114), amplification of TERT (telomerase reverse 

transcriptase) (81), and overall increased burden of copy-
number variants (115) may also play a role in SCLC 
transformation. 

Mixed histology tumors have also become a valuable 
resource for comparing the biology of discordant histologic 
components of a single biopsy or resection specimen. 
In a series of 100 surgically resected cases of NSCLC, a 
component of SCLC or LCNEC histology was seen in 25% 
of cases (116). A recent report describing 11 EGFR-mutant 
SCLC transformed tumors from a retrospective cohort of 
7282 cases of lung cancer demonstrated discernable foci 
of SCLC histology in 8/11 ‘pre-transformation’ pathology 
specimens suggesting a true diagnosis of mixed histology at 
baseline (84). Finally, some component of mixed histology 
was present at the time of transformation in a subset of 
reported cases of EGFR-mutant NSCLC (54,92) and 
ROS1-rearranged transformed SCLC (12).

With increasingly powerful investigative tools such 
as spatial transcriptomics and single-cell sequencing 
technologies, we continue to gain more insights into the 
biology of these mixed histology tumors. A recent study 
comparing genomic, transcriptomic, and methylomic 
data from 11 mixed histology (adenocarcinoma/SCLC) 
tumors, 5 pre-transformed lung adenocarcinomas, and 3 
post-transformed SCLCs (including one matched case) to 
never-transformed lung adenocarcinomas (n=15) and to  
de novo SCLCs (n=18) was arguably the most comprehensive 
analysis of transformed and mixed NSCLC/SCLC cases 
published to date (117). In it, the authors demonstrate 
consistent genomic findings in NSCLC and SCLC 
components as previously published; specifically, enrichment 
of both chromosomal 3p loss and APOBEC hypermutation 
signatures is demonstrated in the NSCLC portions of 
mixed histology tumors, and increased expression of genes 
related to the PRC2 (polycomb repressive complex 2) 
complex, PI3K/AKT (Protein Kinase B) signaling, and 
NOTCH signaling pathways is seen in SCLC components 
of  transformed or mixed histology tumors (117).  
Interestingly but not surprisingly, transcriptional and 
methylation data reveal substantial overlap between the 
respective NSCLC and SCLC components of mixed 
histology tumors as compared to their never-transformed 
comparison cohorts (117). This finding affirms the 
hypothesis that these pre-/post-transformed and mixed 
histology tumors represent an intermediate state of lineage 
plasticity and further strengthens the view that the process 
of histologic transformation is likely one governed by 
transcriptional reprogramming. However, while there has 
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been work defining key transcriptional programs governing 
SCLC tumorigenesis (118), the mechanisms driving gene 
expression and methylation changes in the process of SCLC 
transformation remain incompletely understood. 

While it’s important to note that directionality of 
histologic transformation cannot be assumed in a mixed 
histology tumor, the available published data summarized 
above demonstrate clonality within mixed histology tumors. 
The presence of mixed histologic components prior to TKI 
or other treatment exposure raises the question of whether 
(or when) driver oncogene inhibition is required for the 
process of SCLC histologic transformation. While loss of 
EGFR expression in SCLC-transformed EGFR-mutant 
NSCLCs demonstrates a repression of driver oncogene 
pathway activity in SCLC transformed tumors (16,18,54), 
multiple studies investigating the clonal evolution of SCLC 
transformation suggest that, in some cases, the divergence 
of precursor SCLC clones occurs prior to TKI exposure 
(101,115). 

Finally, while the vast majority of de novo SCLC tumors 
show RB1 deficiency, the ~5% of SCLC tumors that are RB1 
proficient appear to represent a distinct subset characterized 
by decreased expression of classical neuroendocrine 
markers, distinct genomic alterations [CDKN2A (cyclin-
dependent kinase inhibitor 2A) mutation, CCND1 (cyclin 
D1) amplification, KEAP1/STK11 mutations, FGFR1 
(fibroblast growth factor receptor 1) amplification] and 
a more aggressive clinical phenotype (113). These RB1 
proficient tumors also more commonly demonstrate 
features of SCLC/NSCLC mixed histology, suggesting that 
‘mixed histology’ and ‘neuroendocrine-low’/RB1-proficient 
SCLC tumors may describe some component of an 
overlapping histologic subtype. In the context of clinically 
observed histologic transformations from adenocarcinoma 
to SCLC histology, extrapolation of data from mixed 
histology tumors is, at a minimum, hypothesis-generating, 
but may also provide key insights into mechanisms of 
lineage plasticity. Taken together, the sum of the data 
from the EGFR-mutant NSCLC literature about SCLC 
transformation suggests that it is a biologic process driven 
primarily by transcriptional reprogramming rather than 
acquired genomic alterations. 

Treatment approaches and clinical outcomes following 
SCLC transformation

As a field, we lack prospective data informing clinical 
treatment of patients with SCLC transformed tumors. 

The largest retrospective cohort published to date includes 
data from 58 patients with EGFR-mutant NSCLC across 8 
institutions whose tumors underwent SCLC transformation 
as a mechanism of EGFR TKI resistance (18). In it, the 
authors demonstrated an overall response rate of 54% 
and mPFS of 3.4 months after treatment with platinum/
etoposide-based chemotherapy. Taxane-containing 
chemotherapy regimens also conferred promising clinical 
benefit with a 50% overall response rate and mPFS of  
2.7 months.  No responses to immune checkpoint 
inhibitors were seen in this cohort. The median time to 
SCLC transformation was 17.8 months and the mOS was  
31.5 months. Median OS from the time of SCLC 
transformation was 10.9 months, comparable to the 
expected survival of de novo SCLC from the time of initial 
diagnosis (119,120).

Notably, the response rate to platinum etoposide 
chemotherapy reported in this retrospective case series is 
somewhat lower than the historical average of 60–65% 
to first-line platinum/etoposide-based chemotherapy in  
de novo SCLC (121,122). Though direct comparisons 
cannot be drawn between this retrospective study and 
independent prospective clinical trials, these data suggest 
decreased sensitivity to platinum-based chemotherapy 
regimens in the setting of transformed SCLCs compared 
to de novo SCLCs. Interestingly, the response rate to 
platinum/etoposide in patients who were previously treated 
with platinum-based chemotherapy for pre-transformed 
adenocarcinoma was 80% (n=8/10) suggesting that, if the 
lower overall response rate reflects truly differing clinical 
rates of response, this is more likely due to the underlying 
biology of transformed SCLCs than a result of prior 
platinum-based chemotherapy exposure (18). A more 
recently published cohort of 29 patients with EGFR-mutant 
NSCLC whose tumors underwent SCLC transformation 
following treatment with EGFR TKIs demonstrated a 
median time to transformation of 27.5 months and mOS 
from the time of SCLC transformation of 14.8 months (82). 
The mPFS for patients who received EGFR TKI treatment 
concurrently with chemotherapy at the time of SCLC 
transformation was significantly longer than those who 
received chemotherapy alone (5.0 vs. 3.7 mos) but there was 
no significant difference between the two groups in mOS 
from the time of transformation. 

No such large retrospective cohort analyses exist in the 
published literature for ALK-positive NSCLC following 
SCLC transformation, but data compiled from case series 
suggest an average time to SCLC transformation of  



Meador and Piotrowska. Lineage plasticity in NSCLC846

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2023;12(4):837-856 | https://dx.doi.org/10.21037/tlcr-22-867

20.5 months (Table 3). The most commonly reported 
treatment regimens following SCLC transformation in 
ALK-positive lung cancer are platinum-based chemotherapy 
alone with or without ALK TKI (Table 2). Response data 
from case reports of SCLC transformed ALK-positive lung 
cancers following specific treatment regimens are detailed 
in Table 2. Of note, there is at least one reported case of 
successful retreatment with alectinib after eradication of a 
SCLC histologic clone following transformation (57).

While no prospective trial data are yet available to 

guide treatment of SCLC transformed tumors, the first 
generation of clinical trials designed for this specific 
patient population are open to enrollment (Table 4). To our 
knowledge, all three of these trials enrolling in the United 
States are open only to EGFR-mutant transformed SCLC, 
not ALK-positive transformed SCLC or other non-EGFR-
mutant subsets. Extrapolating from the de novo SCLC 
literature (123), two trials are testing combination therapies 
with PD-L1 (programmed death-ligand 1) inhibitor 
durvalumab at the time of SCLC transformation, either 

Table 3 Compiled clinical outcomes of reported cases of lineage transformation in ALK-positive NSCLC

Transformed histology (references) SCLC (57,67-74) SCC (59,60,62,63,65) LCNEC (61) EMT (2,10,75-77)
Mixed histology 

(64,66)

Total number 9 6 2 9 4

Age at diagnosis if known (years)*, median [range] 53 [35–72] 52.5 [47–60] 64 [54–74] 38 [36–58] 68.5 [36–73]

Smoking hx, n [%]

Never 7 [78] 4 [67] 2 [100] 3 [33] 2 [50]

Former; Avg pack years 1 [11]; 40 2 [33]; 4.5 – – 2 [50]; 50

Unknown 1 [11] – – 6 [67] –

Time to transformation in mos**, median [range] 20.5 [6–72] 51.5 [4–138] 46 [17–75] 14 [4-64] 8 [8]

ALK TKI at the time of transformation^, n [%]

Crizotinib 3 [33] – – 1 [11] –

Alectinib 4 [44] 2 [33] 1 [50] 2 [22] 1 [25]

Ceritinib 1 [11] 2 [33] – 5 [56] –

Brigatinib – 1 [17] 1 [50] – –

Lorlatinib 1 [11] 1 [17] – 1 [11] –

Treatment after transformation, n [%]

ALK TKI monotherapy 2 [22] 1 [17] – 2 [22] –

Chemotherapy 3 [33] 1 [17] 2 [100] 2 [22] 3 [75]

ALK TKI + chemotherapy 2 [22] – – 1 [11] –

Other/unknown 2 [22] 4 [67] – 4 [44] 1 [25]

Response after transformation, n [%]

PR 4 [44] 1 [17] 1 [50] 1 [11] 1 [25]

SD 1 [11] 1 [17] – – –

PD 2 [22] 2 [33] 1 [50] 1 [11] –

Unknown 2 [22] 2 [33] – 7 [78] 3 [75]

*, 5 pts omitted as age not reported; **, 6 pts omitted as time to transformation not reported or not applicable (mixed histology at 
diagnosis); ^, 3 pts omitted as they were not treated prior to mixed histology biopsy. ALK, anaplastic lymphoma kinase; NSCLC, non-
small cell lung cancer; Adeno, adenocarcinoma; SCLC, small cell lung cancer; SCC, squamous cell carcinoma; LCNEC, large cell 
neuroendocrine carcinoma; EMT, epithelial-to-mesenchymal transition; TKI, tyrosine kinase inhibitor; PR, partial response; PD, progressive 
disease; SD, stable disease.
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together with PARP (Poly-ADP Ribose Polymerase 1)  
inhibitor olaparib (NCT04538378) or with platinum/
etoposide chemotherapy (NCT03944772; arm of the 
ORCHARD platform study). Interestingly, the third 
study open for this patient population is designed with 
the aim of delaying or preventing SCLC transformation 
by eradicating pre-existing SCLC subclones prior to the 
clinical emergence of transformation. This study enrolls 
patients with newly-diagnosed, high-risk EGFR-mutant 
NSCLC (those with concurrent TP53/RB1 mutations at 
baseline) and prospectively adds four cycles of platinum/
etoposide chemotherapy prior to transformation, after 
12 weeks of standard-of-care osimertinib monotherapy 
(NCT03567642). 

Of note, the list of trials described here does not 
comprehensively describe all clinical trial opportunities 
for these patients, as other trials designed specifically for 
de novo SCLC or other neuroendocrine cancers may allow 
transformed SCLC on a case-by-case basis. Thinking 
forward to additional therapeutics in this space, there are 
emerging data demonstrating rationale for other targeted 
therapies of potential biologic important in transformed 
SCLC. An example of one potential molecular target is 
the EZH2 (Enhancer of Zeste 2 Polycomb Repressive 
Complex 2 Subunit) H3K27 methyltransferase, a catalytic 
subunit of the PRC2 complex which has been shown to 
be dysregulated in neuroendocrine transformation (117). 
Preclinical data have shown that inhibition of EZH2 can 
shift cells from neuroendocrine to non-neuroendocrine 
morphology and may play a role in SCLC lineage plasticity 
in NSCLC and other solid tumors (56,124). EZH2 
inhibitors are currently being tested in early-phase clinical 
trials. 

Finally, recent progress in translational studies of  
de novo SCLC has resulted in a novel classification system 
categorizing de novo SCLC into molecular subtypes based 
on gene expression of key transcription factors [ASCL1 
(Achaete-Scute Homolog 1), NEUROD1 (neuronal 
differentiation 1), POU2F3 (POU Domain, Class 2, 
Transcription factor 3)] and immune-related genes (inflamed 
subtype). These classifications (SCLC-A, SCLC-N, 
SCLC-P, and SCLC-I) have been further shown in 
preclinical and retrospective studies to confer sensitivity to 
specific targeted therapies such as PARP inhibitors, AURK 
inhibitors, and BCL2 inhibitors (125); however they are not 
yet prognostic or predictive for patient outcomes. Initial data 
suggest representation of all transcription factor subtypes 
in transformed SCLC (117), though more investigation is 
required to understand the clinical relevance, if any, these 
subtypes will have in transformed SCLC.

Squamous histologic transformation

Incidence and diagnosis of squamous transformation

While SCLC transformation was the first identified 
category of lineage transformation and is the most 
c o m p r e h e n s i v e l y  d e s c r i b e d  t o  d a t e ,  s q u a m o u s 
transformation (from adenocarcinoma, within the 
NSCLC spectrum) is also a recurrent finding at the 
time of acquired resistance to targeted therapies in lung 
cancer. Characterized by changes in morphology and 
immunohistochemical staining from adenocarcinoma-
associated markers (e.g., napsin A and TTF-1) to squamous-
associated markers (e.g., p40 and p63) (126,127), it has been 
reported in at least six cases of resistance to ALK TKIs 

Table 4 Clinical trials for patients with NSCLC following lineage transformation

NCT identifier Trial phase Patient population Intervention Primary outcome(s) Trial status

NCT04538378 Phase II Stage IV EGFR-mutant NSCLC 
after transformation to SCLC or 

other NEC

Olaparib 300 mg bid plus 
durvalumab 1,500 mg monthly

Objective response 
rate

Recruiting

NCT03567642 Phase I Stage IV EGFR-mutant NSCLC 
with co-occurring baseline 
TP53 and RB1 mutations

Addition of cisplatin (60 mg/m2) 
or carboplatin (AUC 4–5) with 

etoposide (80–100 mg/m2) starting 
C4D1 osimertinib 80 mg daily

Maximum tolerated 
dose (MTD)

Recruiting

NCT03944772 Phase II 
(Platform 

study)

Stage IV EGFR-mutant NSCLC 
after transformation to SCLC

Etoposide 80–100 mg/m2 plus 
durvalumab 1,500 mg plus either 

cisplatin or carboplatin 

Objective response 
rate

Recruiting

NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; NEC, neuroendocrine carcinoma.
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(59,60,62,63,85,74) (Table 2 and Table 3). Similar to SCLC 
transformation, squamous transformation is also a recurrent 
phenomenon in EGFR-mutant NSCLC (17,19,128,129) 
and squamous histology has also been rarely reported as a 
component of EGFR-mutant NSCLC histology at diagnosis 
(130,131). ALK fusions are an exceedingly rare occurrence 
in de novo squamous cell carcinoma tumors (132). Overall, 
the full clinical spectrum of squamous transformation from 
adenocarcinoma histology remains understudied, though it 
seems to represent a true recurrent adaptive mechanism for 
tumor evasion of targeted therapy.

Molecular features of squamous transformation

Similar to SCLC transformation, investigation of mixed 
adenosquamous tumors provides a compelling opportunity 
to learn about mechanisms of lineage transformation 
along the adenocarcinoma-squamous spectrum of 
NSCLC histology. Early studies performing molecular 
characterization of separate histologic compartments of 
surgically resected, macro-dissected mixed adenosquamous 
tumors demonstrated expected clonality between the 
adenocarcinoma and squamous tumor components (133).  
Specifically, whole-exome sequencing of three mixed 
adenosquamous tumors showed common genomic 
alterations in the identified driver mutation (EGFR, BRAF, 
and MET respectively) as well as shared loss of tumor 
suppressor STK11 and chromosomal regions 3p, 15q, 19p. 
In addition to chromosomal amplification of 5p, focal 
amplification of SOX2 (SRY-Box Transcription Factor 2) 
was also identified in all three tumors. SOX2 amplification 
was previously shown to cause squamous differentiation 
in preclinical mouse models (134,135) and is amplified in 
40% of squamous cell carcinomas but almost never in lung 
adenocarcinomas (126).

In a recent study published by Quintanal-Villalonga 
and col leagues ,  the authors  performed genomic, 
epigenomic, and transcriptomic analysis of 11 micro-
dissected adenosquamous tumors, 4 pre-transformation 
adenocarcinoma tumors, and 7 post-transformation 
squamous tumors compared to never-transformed 
lung adenocarcinomas and de novo lung squamous cell 
carcinomas (136). Common mutations present in both 
adenocarcinoma and squamous histologic compartments 
were in EGFR, TP53, CDKN2A/B, and STK11, but these 
alterations were not specifically enriched in the transformed 
or mixed histology tumors compared to controls (136). 
However, mutations in TBX3 (T-Box transcription factor 3),  

MET, RBM10 (RNA Binding Motif Protein 10) were 
enriched in pre-transformed lung adenocarcinomas 
compared to never-transformed lung adenocarcinomas, and 
increased expression of genes related to PI3K/AKT, MYC, 
and PRC2 signaling pathways was found in squamous 
transformed components of either mixed histology or post-
transformation tumors (136). While further investigation 
is needed to confirm the role of these signaling pathways in 
squamous transformation, these data raise the hypotheses 
that squamous transformation may be primed by genomic 
alterations in TBX3, MET, RBM10 and that the process 
of lineage transformation is driven by transcriptional 
reprogramming rather than further acquired genomic 
mutational changes. 

Treatment approaches and clinical outcomes following 
squamous transformation

There are unfortunately very little clinical data informing 
optimal treatment regimens for patients whose tumors 
undergo squamous transformation following resistance 
to targeted therapies. Without any published prospective 
data or clinical trials specifically designed for this patient 
population, decisions regarding treatment at the time 
of squamous transformation still rely on anecdotal 
evidence and expert opinion. In reported cases of 
ALK-positive and EGFR-mutant tumors undergoing 
squamous transformation, systemic therapy at the time of 
transformation has been variable—ranging from continued 
TKI to chemotherapy and immune checkpoint inhibitors 
(Table 2) (17,59,60,62,63,65,74,137). Unfortunately, the 
number of cases with reported clinical outcomes remains 
too few to inform prospective decision-making for patients 
currently on treatment. In general, similar principles apply 
as in SCLC transformation, including a shift to histology-
based chemotherapy backbones (e.g., taxane-based regimens 
for squamous histology) and continuation of concurrent 
targeted therapy if safe and feasible versus shift to alternative 
targeted therapy if concurrent activation of bypass pathways 
are found on molecular analysis. Of note, while squamous 
transformation has been purported to be a primary and/or 
independent driver of TKI resistance, retrospective analyses 
in EGFR-mutant tumors with squamous transformation 
have shown concurrent known genomic mechanisms of 
resistance (17,137). It is not yet known whether these 
findings represent intra-tumoral heterogeneity in resistance 
mechanisms versus biologic association of these genomic 
changes with squamous transformation. 
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In  the  c a se  o f  NSCLCs  w i th  ba se l ine  mixed 
adenosquamous histology, historical data suggest that 
clinical outcomes are overall poorer compared to baseline 
pure adenocarcinoma (138). However, the genomic context 
of a particular oncogenic driver alteration and associated 
available treatment regimens is likely to be important for 
interpretation of prognosis and expected clinical outcomes. 
In EGFR-mutant NSCLCs, some component of admixed 
squamous histology at diagnosis was reportedly associated 
with comparable clinical outcomes in a retrospective study 
of 12 patients treated with first-generation EGFR TKI 
erlotinib (130). However, other preliminary data from a 
retrospective analysis of EGFR adenosquamous or purely 
squamous NSCLC at diagnosis suggests that these patients 
have inferior clinical outcomes compared to those with 
adenocarcinoma histology (137). We lack comparable 
data regarding clinical outcomes of ALK-positive mixed 
adenosquamous NSCLCs.

Epithelial-to-mesenchymal transition (EMT)

EMT is another example of lineage plasticity that has 
been observed in ALK-positive lung adenocarcinoma 
following resistance to targeted therapies (2,10,75-77). 
Less diagnostically definitive than a complete SCLC or 
squamous histologic transformation, EMT is characterized 
by a morphologic and immunophenotypic shift of increased 
expression of mesenchymal markers (e.g., vimentin) and 
decreased expression of epithelial markers (e.g., e-cadherin) (2).  
Multiple rigorous preclinical studies have further defined 
subtypes or distinct ‘modes’ of EMT and signaling pathways 
thought to be primarily responsible for driving this form 
of cellular plasticity across solid tumor types (139-141). 
While a comprehensive summary of these preclinically-
defined mechanisms of EMT is outside the scope of this 
narrative review, it is important to note that the biology of 
EMT—including predisposing factors, definitive diagnostic 
criteria, and clinical implications—remains an area of active 
study. Of note, characterization of the neuroendocrine-
low morphologic subvariant of SCLC has revealed some 
molecular and phenotypic similarities to EMT (142), but 
the molecular relationship between EMT and SCLC 
transformation remains incompletely understood. EMT 
has been reported as a mechanism of resistance in at least 
9 cases of acquired resistance to ALK TKIs in ALK-
positive NSCLC (Table 2 and Table 3) (2,10,75-77), though 
this is not a mechanism of resistance routine tested for or 
considered actionable on a clinical basis at this time.

Limitations and future directions

Lineage plasticity is an increasingly recognized but 
relatively rare mechanism of resistance to targeted therapies 
in ALK-positive NSCLC. Multiple forms of lineage 
plasticity have been implicated as methods of tumor cell 
evasion from the selective pressure of targeted therapies, 
and SCLC transformation, squamous transformation and 
EMT are the most well studied. This narrative review of 
the literature on lineage plasticity in ALK-positive NSCLC 
is limited in part by minimal available published data due 
to the rare occurrence of lineage transformation relative 
to other mechanisms of resistance to ALK TKIs. In order 
to address this limitation, we have referenced the relevant 
available literature about transformation in other genomic 
subtypes of NSCLC, such as EGFR-mutant NSCLC. 

Distinct from genomic mechanisms of TKI resistance 
such as second-site oncogene mutations and bypass pathway 
amplification, lineage transformation does not have reliable 
genomic markers that can be assessed via DNA sequencing. 
This precludes diagnosis of lineage transformation by non-
invasive plasma circulating tumor DNA sequencing assays, 
which are now commonly used to diagnose resistance 
mechanisms (143). As a result, lineage transformation can 
be easily missed if a repeat tissue biopsy is not obtained at 
the time of TKI resistance for the purpose of histologic 
analysis. At present, these tissue samples are also needed 
for ongoing translational studies to further understand the 
biology of lineage plasticity in NSCLC. In the future, non-
invasive plasma-based diagnostic assays that could detect 
lineage plasticity would obviate the need for repeat tissue 
biopsies, but this technology is not yet readily available for 
clinical application.

We also still lack reliable predictive biomarkers 
identifying tumors predisposed to undergo lineage 
transformation. While dual TP53/RB1 loss portends a 
higher likelihood of SCLC transformation in EGFR-
mutant lung adenocarcinoma, we have yet to define any 
other biomarker of a pre-transformed tumor that could 
potentially be clinically actionable. Discovery of predictive 
markers of lineage transformation would potentially enable 
more adaptive trial designs aimed at preventing or delaying 
lineage transformation, hopefully improving patient 
outcomes. Finally, the role that timing and potency of 
oncogene inhibition plays in driving lineage transformation 
also remains largely unknown. Whether TKI inhibition of 
driver oncogene (e.g., shutting down oncogenic epithelial 
signaling pathways) is required for lineage transformation 
in pre-disposed tumors and/or whether increasingly specific 
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and potent TKIs will drive lineage transformation at higher 
frequencies compared to on-target resistance mechanisms 
remains unknown. Ongoing clinical and translational 
investigative efforts are needed to answer these questions 
more definitively and move clinical care forward for these 
patients.
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