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Lung adenocarcinoma (LUAD) is the most commonly 
diagnosed form of non-small cell lung cancer, and is 
associated with high frequency of tumor recurrence, 
severe malignancy and vast heterogeneity (1). Moreover, 
this histological diversity is compounded by the LUAD 
tumor microenvironment’s (TME) extensive cellular 
diversity and accompanying immune infiltration patterns. 
These properties have been linked to unpredictable 
tumor recurrence, poor patient response to therapy, and  
mortality (2). Integrative application of existing tools 
and methods geared towards understanding epigenetic 
contributions to LUAD heterogeneity is imperative to 
answering these questions (3). 

In the recent issue of Clinical Cancer Research, Guidry 
et al. repurposed established DNA methylation patterns 
associated with cellular age to define signatures that can act 
as an index for distinct subtypes of LUAD (4). In establishing 
the relationship between epigenetic signatures and LUAD 
subtypes, they were able to ascribe phenotypic and molecular 
characteristics to each subclassification, including enrichment 
for oncogenic driver mutations and immune composition of 
the TME (5-9). Further to this, Guidry drew correlations 
between immune microenvironment composition, ethnic 
background and patient smoking history. 

Previous studies have utilized genome-wide methylation 
alterations within LUAD to define relevant subtypes. These 
investigations yielded three [3] major DNA methylation 
classifications in LUAD; CpG-island methylation 
phenotype (CIMP)-low, CIMP-intermediate, and CIMP-
high (10). DNA methylation patterns have also been 
associated with TME molecular characteristics and immune 
cell composition within LUAD tumors (11). The study by 
Guidry et al. improves on these associations by refining 
genome-wide methylation patterning to the 353 CpG sites 
within the Horvath DNA methylation CLOCK (6). The 
authors were then able to use methylation levels at these 
sites to subdivide LUAD into six [6] distinct subgroups, 
each associated with distinct pathologic and molecular 
features of LUAD. Subgroups with higher DNAm age 
were associated with better patient survival and specific 
oncogenic driver mutations. 

Aberrant oncogenic driver gene expression plays an 
integral role in tumorigenesis and progression in LUAD. 
To understand the relationship between DNAm-defined 
LUAD subclusters and oncogenic drivers, Guidy et al. 
conducted mutational analysis on tumor samples and 
focused on established LUAD oncogenic driver mutations 
that included: KRAS, TP53, EGFR, STK11, ATM and 
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KEAP1. Their results indicate that specific oncogenic 
driver mutations were associated with disparate immune 
cell composition and thus not only influences tumor 
immune response, but also TME heterogeneity. This was 
consistent with previous work that linked oncogenic drivers 
with TME immune cell composition (12) and innovatively 
connected these observations with DNA methylation-
defined age. Having performed pathway analysis and 
quantifiably contrasting oncogenic expression to delineate 
which pathways underlie LUAD tumorigenesis, Guidry  
et al. underscored which included MAPK, RAS, PI3K-AKT 
and cellular senescence. They observed that not only were 
these genes the most differentially methylated, but that they 
were also key players in tumor progression, invasiveness and 
metastasis. These findings suggest a connection between 
differentially methylated pathways in LUAD to observed 
varying degrees of malignancy.

To examine how the DNAm-defined subclusters 
influenced cellular composition of the TME, the 
bioinformatic tool MethylCIBERSORT (13) was used to 
determine immune cell composition in each DNAm-defined 
subcluster. Varying DNAm age elicited distinct immune 
responses consisting of unique assortments of immune cell 
populations. The resulting tumor subtypes were further 
categorized as being either immune “hot” or “cold”. Global 
DNA methylation loss and CpG hypermethylation has 
previously been associated with the “cold” immune refractory 
state (14). The Guidry et al., study extends these findings and 
furthers our understanding of how tumor immune response 
capitulates more precise and targeted therapeutics and 
advances the immunotherapeutic clinical model.  

The study also comparatively assessed immune cell 
composition based on specific oncogenic driver mutations 
and uncovered differences in immune infiltration in tumors 
based on TP53 or KRAS mutational status. Intriguingly, 
oncogenic driver mutations elicited contrasting DNAm-
age and unique immune infiltration patterns across LUAD 
mutational subtypes. Further characterization of driver 
mutations and correlative methylation characteristics may 
advance our understanding relative to LUAD histologic 
subtypes that are confounded by race, smoking and sex. 

Differential oncogenic mutation prevalence within and 
across ethnic groups has been well established. For example, 
KRAS G12C most prevalently occurs in White populations 
while EGFR exon 21 L858R point mutation is seen 
predominantly in Asians when compared to other racial 
groups (15,16). Guidry et al.’s deconvolution of LUAD 
heterogeneity by integrating well established genetic 

and molecular analysis platforms with DNA methylation 
analysis may address demonstrative health disparities 
that exist in cancer care. Currently, there is no consensus 
around the prevalence of oncogenic driver mutations in 
Blacks as driver mutations are not well defined in this 
demographic when compared to their White and Asian  
counterparts (15,17).

Guidry’s approach prompts continued characterization 
of oncogenic drivers, further stratification of diverse 
patient populations, enhanced biomarker identification 
and improved patient selection for specific therapies. 
Additionally, this platform may advise about differential 
efficacy and adverse effects of therapeutics across different 
racial groups. Employing DNA methylation analysis may 
enhance our understanding of molecular pathogenesis in 
underrepresented minority populations. 

It is known that TME composition may influence 
sensitivity to immunotherapy and that the unique TME 
cellular composition may modify the interplay observed 
between a tumor and subsequent immune response (18).  
Thi s  d i scovery  has  ushered  in  the  use  o f  nove l 
immunotherapeutics; including checkpoint inhibitors 
with adjuvant therapy, that have transformed the clinical 
intervention arsenal. Among the most notable of these 
discoveries is the humanized antibody pembrolizumab 
which has yielded improved NSCLC overall survival to  
5 years (19). Enhanced activation of tumor-specific T cells are 
instrumental in the engineering of effective immunotherapy. 
Immune checkpoints are a rapidly emerging area of focus 
in cancer. PD-L1, TIM-3, LAG-3 and CTLA 4 are among 
the most notable and exploited immune checkpoints. 
Deconvoluting T cell phenotypic heterogeneity, uncovering 
additional relevant immune checkpoints and further 
characterization of antigen presenting cells (APCs) and major 
histocompatibility complex (MHC) proteins within TME, 
may yield improved biomarker and immunotherapeutic 
discovery and development. Understanding the interchange 
between DNA methylation of checkpoint gene promoter 
regions and oncogenic aberrations and DNAm-age holds 
significant implications for refinement of diagnostic criteria 
used in precision medicine while raising the possibility that 
combination small molecule inhibitor and immunotherapy 
may be optimized to increase positive responses in diverse 
patient populations.

Finally, Guidry et al.’s classification system revealed 
a DNAm signature associated with variation in the 
aggressiveness of LUAD presentation and suggests that 
smoking history, ethnicity and age confound poorer 
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outcomes. DNA methylation has a well-established role 
in gene regulation and has been exploited clinically as 
biomarkers for cancer screening (20). Multiple consortia 
are actively pursuing the identification of DNA methylation 
signatures in LUAD (21-23), with special emphasis on 
their use as a companion diagnostic for CT-scanning. This 
innovative diagnostic combination may serve as a way to 
manage the exceedingly high false positive rates or as a 
companion surveillance method for patient response to 
therapy (24). However, these efforts have had inconclusive 
results, which have often failed to recapitulate in diverse 
patient populations. The Guidry et al., study may improve 
on the current state of DNAm as a biomarker of disease by 
both reducing the complexity of DNAm signatures from 
genome-wide to the DNAm-age associated CpGs and 
classifying LUAD subtypes. 

Taken together, the vast, heterogenous landscape of 
LUAD has been a major factor impeding progress in 
treatment and patient outcomes. While lung cancer survival 
has increased ~10% over the past 10 years, it is still the 
deadliest form of cancer (25). The associated poor survival is 
further exacerbated as a result of specific oncogenic mutations 
and inadequate stratification modalities. Another caveat is 
variable patient response to therapeutics. While significant 
progress has been made in cancer care, many patients simply 
do not benefit from current therapeutic modalities. This is 
largely in part due to immunosuppressive TMEs, inadequate 
discovery and development of targeted small molecule 
inhibitors of oncogenic driver mutations, insufficient 
early detection biomarkers, and a poor understanding of 
the societal and ancestral genetic contributions to cancer 
disparities. Untangling LUAD heterogeneity therefore 
represents the future of personalized medicine. Employing 
a multifaceted approach that utilizes DNAm-age to 
stratify clinically relevant LUAD subtypes may reshape 
the framework of clinical intervention and management. 
Guidry et al.’s multiplexed approach featuring DNAm-age 
will enhance discovery and development of more diverse and 
specific biomarkers, thereby providing a specific epigenetic 
signature that can serve as an index for diagnosis, metastasis 
and tumor recurrence. This integrative approach will advance 
the precision medicine model for LUAD and provide a viable 
tool to address health inequities.
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