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Introduction

Chest computed tomography (CT) scans are an essential 
tool for preoperative evaluations, clinical staging, and 
response monitoring in patients with lung cancer. The 
prognostic importance of CT features, including the tumor 

dimension (1,2), density (2), and radiomics features (3), 
has been summarized previously. Deep learning-based 
survival probability estimation and feature extraction are 
also feasible. This mini-review briefly introduces both 
qualitative and quantitative tumor-associated prognostic 
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factors that are extractable from chest CT scans.

Tumor dimensions

The tumor dimensions, which can be measured as diameter 
or volume, are among the most potent and reliable 
prognostic factors in lung cancer. These measurements 
can be easily obtained from CT scans. For clinical staging, 
the single largest dimension is measured on thin-section 
CT scans, and the tumor is then classified according to the 
clinical T categorization system (4). For part-solid nodules, 
the long axis dimension of the largest solid component is 
used (4). The solid component on CT scans is a surrogate 
for the invasive component on microscopy, although the 
CT measurements often overestimate the pathological 
measurements (5).

Since the publication of the eighth-edition staging 
system for lung cancer (6), multiple validation studies 
have been published (7,8). Those studies have shown that 
the solid component size is a strong prognostic factor 
in adenocarcinomas manifesting as part-solid nodules. 
Nevertheless, the total tumor size, defined as the maximum 
measurement of the ground-glass component, still matters. 
The prognoses of part-solid nodules with the same solid 
component size may vary depending on the total tumor 
size (9). For cases of clinical T1b disease, Kim et al. (9) 
suggested upstaging part-solid nodules with a total tumor 
size larger than 3.0 cm to clinical T1c, considering their 
worse postoperative survival than clinical T1b nodules with 
a total tumor size ≤3.0 cm [hazard ratio (HR) =3.796; 95% 
confidence interval (CI): 1.006, 14.317; P=0.049].

In addition, multiple solid components are often 
observed in part-solid nodules. The staging manual suggests 
measuring the single largest solid component, but there is 
little clinical evidence on how many solid portions should 
be measured and how to summarize those components 
into a single value. A recent study reported that measuring 
multiple solid components did not improve predictions 
of the prognosis of stage IA lung adenocarcinomas (10). 
Survival discrimination using the single largest solid portion 
was comparable to that based on measuring up to three solid 
portions (C-index, 0.82 vs. 0.79; P=0.25). Furthermore, 
multiplicity of the solid component was not a prognostic 
factor for recurrence-free survival (P=0.83) (10).

Tumor volume has been proposed to be more accurate 
than tumor diameter in patients with early and advanced-
stage lung cancer (11,12). Volume is more sensitive for 
detecting dimensional changes than size, and it is more 

accurate for nodules with irregular shapes. Gross tumor 
volume, encompassing both the volume of the primary 
tumor and metastases, is also an important prognostic  
factor (1). A recent meta-analysis on the prognostic factors 
for overall survival in patients with stage III non-small cell 
lung cancer found that gross tumor volume was significant 
in 7 out of 9 multivariable analyses (1).

However, there are obstacles to employing tumor 
volume measurements in practice, including measurement 
variability and the limited accessibility of easy-to-use, well-
validated software. It is also crucial to obtain measurements 
promptly to avoid delaying the clinical workflow. Deep 
learning algorithms are expected to show superior 
segmentation performance for lung cancer than rule-based 
models and may help solve those obstacles (13). Studies 
on volume-based cutoffs for clinical staging or response 
evaluation are warranted.

Presence of ground-glass opacity (GGO)

Early-stage lung adenocarcinomas frequently manifest 
as part-solid nodules on CT scans. As mentioned above, 
the solid component is a CT surrogate for the invasive 
component, and the area of GGO indicates the lepidic 
component (4). In the past decade, researchers have reported 
that the presence of GGO in lung adenocarcinomas is 
associated with better postoperative survival. Aokage  
et al. (14) suggested that the overall survival in patients with 
part-solid nodules was longer than in patients with solid 
nodules in clinical stages IA2 (log-rank test: P<0.01) and IA3 
(log-rank test: P<0.01). Hattori et al. (15) observed similar 
results in clinical stage IA lung adenocarcinomas, using the 
5-year overall survival rate as the study outcome (stage IA1: 
97.8% versus 86.6%, P=0.026; IA2: 89.3% versus 75.2%, 
P=0.007; IA3: 88.5% versus 62.3%, P=0.003). Those 
observations were also supported by parallel pathologic 
data comparing lepidic versus invasive components (stage 
IA1: 97.9% versus 85.6%, P=0.031; IA2: 86.1% versus 
69.4%, P=0.007; IA3: 77.5% versus 55.8%, P=0.001). In 
this context, the same authors suggested revising the clinical 
T categorization system according to the presence or 
absence of GGO in clinical T1 disease (16). GGO was also 
associated with long-term survival in a cure model analysis 
of clinical stage IA lung adenocarcinomas [odds ratio (OR), 
0.40, 95% CI: 0.18–0.92, P=0.03] (8).

Nevertheless, debate continues regarding the validity of 
GGO as a prognostic variable. Some studies have argued 
that its prognostic value was insignificant after including 
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other prognostic factors (17,18). In fact, prognostic 
studies on the GGO component of early-stage lung 
adenocarcinomas have been heterogeneous in terms of 
cancer stage (e.g., stage IA vs. higher); histology (e.g., 
the inclusion of non-mucinous adenocarcinomas or non-
adenocarcinoma histology); the inclusion of pure ground 
glass nodules or adenocarcinomas in situ, which usually 
show an extremely good prognosis; study endpoints; survival 
analytic methods; and covariates. Therefore, a confirmatory 
study (e.g., a prospective observational cohort study or 
meta-analysis) would be required to verify the prognostic 
role of GGO in adenocarcinomas.

Tumor margin characteristics

In cancer development, the stroma becomes a supportive 
environment for cancer cells. The tumor stroma combines 
a desmoplastic reaction with a proliferation of fibroblasts 
and dense deposition of extracellular matrix (19). Cancer-
associated fibroblasts (CAFs) promote malignant growth, 
angiogenesis, invasion, and metastasis through the secretion 
of growth factors, cytokines, chemokines, and other 
immune modulators (19). In the setting of tumor growth, 
CAFs produce transforming growth factor β, platelet-
derived growth factor, and fibroblast growth factor 2, which 
are profibrotic growth factors (19). Of these, fibroblast 
growth factor 2 plays a fundamental role in tissue fibrosis 
and desmoplasia and exerts effects on endothelial cells (20). 
Accordingly, CAFs and fibrotic stroma are associated with 
worse prognoses in patients with lung cancer (21).

The CT manifestation of fibrotic stroma or desmoplasia 
is margin spiculation. However, the association of tumor 
spiculation with survival has not been well established for 
lung cancer. Park et al. (22) reported that the presence 
of spiculation was associated with brain metastasis in 
resectable-stage lung cancers (OR, 3.34; P=0.006), but it 
is unclear whether tumor spiculation is truly a prognostic 
factor for overall survival or recurrence-free survival. 

Pleural retraction or tag

Pleural retraction or a pleural tag on CT is a predictor of 
visceral pleural invasion, which is an established prognostic 
factor and a T2 descriptor in lung cancer. Nevertheless, 
CT definitions of pleural tag or retraction are highly 
variable among radiologists and often yield false-positive 
diagnoses for pathological visceral pleural invasion. Kim 
et al. (23) investigated combinations of CT findings, 

including tumor contact with the pleura, pleural retraction, 
and tags. None of the combinations were associated with 
recurrence-free survival in clinical T1N0 lung cancers. 
Therefore, it is uncertain whether these CT features can be 
reliably identified and whether these features are genuinely 
indicative of patients’ survival.

Tumor location

Central tumor location is associated with occult nodal 
metastasis and mediastinal nodal disease in radiologically 
node-negative, early-stage lung cancers (24). Therefore, 
staging guidelines recommend invasive diagnostic 
procedures such as endobronchial ultrasound-guided 
transbronchial needle aspiration or mediastinoscopy, both 
for locally advanced disease and for stage I disease involving 
central lung cancer (25).

In addition, a central tumor location predicts a less 
favorable prognosis in pathologically node-negative, early-
stage lung cancers. Recent studies revealed that central 
lung cancer on chest CT, defined either qualitatively 
or quantitatively, was an independent adverse factor for 
recurrence-free survival in stage IA lung adenocarcinomas 
(HR, 2.90; 95% CI: 1.06, 7.96; P=0.04) (26,27). This might 
be attributable to more crowded vessels and lymphatic 
vessels in the central lung, leading to a higher chance of 
undetectable micrometastasis at the time of treatment (26).  
However, there is no consensus on the radiologic definition 
of central lung cancer. A subjective assessment of the 
tumor location is vulnerable to reader variability, and in 
this context, quantitative measurement using anatomic 
landmarks has been suggested (24,26). Nevertheless, an 
automated, objective tool is necessary to exploit the tumor 
location as a meaningful clinical variable for practice and 
research.

Deep learning-based prognostic CT features

Radiomics and radiogenomics studies have demonstrated 
that chest CT scans contain both anatomical information 
for clinical staging and quantitative prognostic data beyond 
what human eyes can visualize (28). Deep learning models 
such as convolutional neural networks have recently enabled 
an end-to-end analysis of chest CT scans without manual 
feature engineering. For example, a deep learning model 
can elicit prognostic factors from a CT tumor patch, either 
three-dimensional or two-dimensional (29-38). One study 
proposed a three-dimensional convolutional neural network 
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consisting of dense blocks and transitional layers to estimate 
the cumulative disease-free survival probability up to 3 years 
in patients with lung adenocarcinoma undergoing curative 
resection (29). The model-derived prediction was obtained 
using a discrete-time survival model and was an independent 
prognostic factor in an external cohort comprising stage 
I lung adenocarcinomas (HR, 3.6; 95% CI: 1.6, 8.5;  
P=0.003) (29). This model was then applied to patients with 
early-stage lung adenocarcinomas treated with stereotactic 
ablative radiotherapy and showed good discrimination 
performance for local recurrence-free survival [area under 
the curve (AUC), 0.72], disease-free survival (AUC, 0.70), 
and overall survival (AUC, 0.66) (39). Interestingly, the 
model showed relatively robust performance regarding the 
CT acquisition settings considering that the radiotherapy 
cohort underwent planning CT scans with larger fields of 
view and lower in-plane resolution than the diagnostic CT 
scans (39). In addition, multivariable regression analysis 
showed that the model-derived prognostic factors or CT 
features were associated with histopathologic risk factors, 
such as an aggressive adenocarcinoma subtype (cribriform, 
morular, solid, or micropapillary predominant subtype; 
OR, 1.03; 95% CI: 1.002, 1.05; P=0.03), venous invasion 
(OR, 1.03; 95% CI: 1.004, 1.06; P=0.02), and visceral 
pleural invasion (OR, 1.08; 95% CI: 1.06, 1.10; P<0.001), in 
patients with resected lung adenocarcinoma (40). Therefore, 
it can be inferred that the deep learning model could extract 
CT imaging surrogates for the histopathologic factors of 
lung adenocarcinomas (40).

Deep learning-based prognostication is also feasible 
in advanced-stage lung cancers. Deng et al. (35) recently 
proposed a deep learning model using pre-therapy CT 
scans, which provided a probability score to identify low-
risk or high-risk patients receiving tyrosine kinase inhibitors 
and immune checkpoint inhibitors. The model was able to 
identify which patients would receive additional survival 
benefits beyond the median progression-free survival.

Deep learning is not limited to obtaining the cumulative 
survival probability; this method can be applied to capture 
the semantic features of lung cancer more broadly. Ahn  
et al. (41) reported that automatic measurements of the 
solid portions of lung cancer were comparable with manual 
measurements made by radiologists (intraclass correlation 
coefficient, 0.82–0.89) and showed good agreement with 
the invasive component size on microscopic examinations 
(intraclass correlation coefficient, 0.67). Kawaguchi  
et al. (42) showed that the solid component volume 
measured using deep learning had higher prognostic 

discrimination for recurrence or death (AUC, 0.752) than 
the solid component size (AUC, 0.722) or traditional 
three-dimensional volumetric analysis (AUC, 0.723). The 
presence of visceral pleural invasion was also estimated using 
preoperative CT scans (31). In a study by Choi et al. (31),  
the diagnostic performance of the deep learning model 
(AUC, 0.75) for visceral pleural invasion was on par with 
that of board-certified radiologists (AUC, 0.73–0.79).

Conclusions

CT scans include rich prognostic information that could 
be extracted either by manual human interpretation or 
machine learning algorithms. In addition to measurements 
of tumor dimensions and T categorization in the staging 
system, CT images can be used to assess tumor volume, 
density, morphology, margin characteristics, and tumor-
based survival probability. Future research should focus on 
the automated extraction and integrative modeling of these 
tumor-related prognostic factors.
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