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Background: Immunotherapies, such as programmed death 1/programmed death ligand 1 (PD-1/PD-
L1) antibodies have been shown to improve overall and progression-free survival (PFS) in patients with 
locally advanced or metastatic non-small cell lung cancer (NSCLC). However, not all patients derive a 
meaningful clinical benefit. Additionally, patients receiving anti-PD-1/PD-L1 therapy can experience immune-
related adverse events (irAEs). Clinically significant irAEs may require temporary pause or discontinuation of 
treatment. Having a tool to identify patients who may not benefit and/or are at risk for developing severe irAEs 
from immunotherapy will aid in an informed decision-making process for the patients and their physicians. 
Methods: Computed tomography (CT) scans and clinical data were retrospectively collected for this study 
to develop three prediction models using (I) radiomic features, (II) clinical features, and (III) radiomic and 
clinical features combined. Each subject had 6 clinical features and 849 radiomic features extracted. Selected 
features were run through an artificial neural network (NN) trained on 70% of the cohort, maintaining 
the case and control ratio. The NN was assessed by calculating the area-under-the-receiver-operating-
characteristic curve (AUC-ROC), area-under-the-precision-recall curve (AUC-PR), sensitivity, and 
specificity.
Results: A cohort of 132 subjects, of which 43 (33%) had a PFS ≤90 days and 89 (67%) of which had a PFS 
>90 days was used to develop the prediction models. The radiomic model was able to predict progression-
free survival with a training AUC-ROC of 87% and testing AUC-ROC, sensitivity, and specificity of 83%, 
75%, and 81%, respectively. In this cohort, the clinical and radiomic combined features did add a slight 
increase in the specificity (85%) but with a decrease in sensitivity (75%) and AUC-ROC (81%). 
Conclusions: Whole lung segmentation and feature extraction can identify those that would see a benefit 
from anti-PD-1/PD-L1 therapy.
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Introduction

Lung cancer, of which non-small cell lung cancer (NSCLC) 
makes up about 80–85% of all new cases, is the leading 
cause of cancer-related deaths with a median survival of  
13 months (1,2). While there have been recent improvements 
in early detection of lung cancer, the proportion of disease 
diagnosed at a localized stage is only 28% (1). The use of 
programmed death 1/programmed death ligand 1 (PD-
1/PD-L1) immune checkpoint inhibitors (ICI) have been 
shown to improve the outcomes of patients with locally 
advanced and metastatic NSCLC (3-6).

Pembrolizumab (in KEYNOTE-010, 024, 189, 407 trials) 
(7-11), nivolumab (Checkmate 017 and Checkmate 057) 
(6,12), and atezolizumab (IMpower130, OAK trials) (13,14) 
have been investigated to treat metastatic NSCLC in 1st 
line and 2nd line settings as monotherapy or in combination 
with chemotherapy. In 1st line setting, pembrolizumab and 
atezolizumab when combined with chemotherapy have 
been shown to improve both progression-free survival (PFS) 
and overall survival compared to chemotherapy alone. In 
the KEYNOTE-407 study, the PFS benefit associated with 
pembrolizumab incrementally improved with increasing 
PD-L1 tumor proportion score (TPS). A similar trend 
was noted in the Impower130 trial except for patients with 
liver metastases and EGFR/ALK genomic alterations. In 
KEYNOTE-189, the hazard ratio for PFS was less than 
1.00 across all subgroups of PD-L1 TPS, however, the 

upper boundary of the 95% confidence interval crossed 
1.00 for patients with PD-L1 TPS <1% (9,10,13). In 
these 1st line clinical trials, where ICIs were combined 
with chemotherapy, 14–18% of patients developed 
progression indicating primary refractory disease to both 
ICIs and chemotherapy. Whereas studies evaluating ICIs 
as monotherapy have shown an objective response rate 
of ≤20% in a non-selective patient population (6,12,14) 
emphasizing the critical need for a biomarker. All the above 
studies, including KEYNOTE-024, support the use of PD-
L1 TPS as a potential biomarker to select patients who are 
likely to benefit from ICI. However, spatial, and temporal 
heterogeneity of PD-L1 expression in the tumor along with 
variability in commercially available assays limits its use as a 
predictive biomarker (15). 

Identifying patients that are unlikely to benefit from ICI 
before beginning treatment, can be useful in shared decision-
making discussions where other downsides of immunotherapy 
can also be considered. Weighed into this decision is the 
high cost of treatment ($130,155/QALY) (16), and the risk 
of severe immune-related adverse events (irAEs) (17). 
Immunotherapy treatment-related adverse events occur in 
64–73% of patients and grade 3 or higher adverse events 
occur in 7–27% of patients. (6,11,12,18). Pneumonitis is a 
particularly serious irAE, reported to occur in about 3–5% 
of patients (19), resulting in a high morbidity and mortality 
rate for those with a grade 3 or higher (20). Predicting 
patients who are at risk of developing pneumonitis with 
immunotherapy could aid in patient monitoring, including 
increased frequency of imaging.

Chest computed tomography (CT) images are the 
primary imaging modality used to diagnose, stage, and 
monitor lung cancer patients (21,22); hence, are readily 
available to use for treatment planning and the ICI selection 
decision. Prior work has been done using radiomic features 
extracted from the CT images to develop methods to 
predict the efficacy of PD-1/PD-L1 and the risk of irAEs 
in NSCLC (23-35). However, these previous studies have 
only looked at the lung lesion. This requires an experienced 
chest radiologist to create a 3D segmentation, or approve 
of the semi-automated segmentation, leading to a more 
time-consuming and subjective evaluation that is not as 
easily incorporated into the clinical setting. Prior work 
from our group has indicated that radiomic features from 
the surrounding lung parenchyma in addition to nodule 
features extracted from CT data are highly effective in 
distinguishing malignant from benign pulmonary lesions 
(36-38). Recently, we demonstrated that radiomic features 
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from automated whole lung segmentation could be used 
for classification of malignant and benign pulmonary 
nodules, without requiring specialized segmentation and 
feature extraction from the lesion (39). In this study, a 
neural network framework achieved high performance 
in training and testing (AUC 0.77 and 0.79 respectively), 
while in comparison, the least absolute shrinkage and 
selection operator (LASSO) approach had less stable testing 
performance (training AUC 0.80, vs. testing AUC 0.62) (39). 
Radiomic features from the whole lung quantify markers of 
lung disease such as chronic obstructive pulmonary disease 
(COPD). A current review article by Lin et al highlighted 
potential prognostic benefit of ICI treatment in patients 
with lung cancer and COPD (40), and Noda et al. found 
the Goddard scoring system for severity of emphysema 
useful in predicting PFS in NSCLC treated with ICI (41). 
Based on these prior studies, we hypothesize that quantified 
radiomic features from the whole lung could be useful in 
predicting response to ICI in NSCLC, without requiring 
labor intensive image segmentation of every pulmonary 
lesion. 

This study explores the use of selected radiomic features 
extracted from the whole lung parenchymal tissue from 
‘baseline’ CT images to develop a method to predict 
progression free survival benefit from immunotherapy. We 
also explore the utility of these radiomic features to predict 
the development of pneumonitis irAE. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-22-763/rc). 

Methods 

Subjects

For this retrospective study, patients with stage IV NSCLC 
who received at least one treatment of an immunotherapy 
agent between January 1, 2013, and March 13, 2021, 
at the University of Iowa Hospitals and Clinics were 
reviewed. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013), and approved 
by the University of Iowa Hospitals and Clinics Institutional 
Review Board (#202004142). Individual consent for this 
retrospective analysis was waived with approval from the 
Institutional Review Board. The study sample included 
all eligible patients within the retrospective study window 
with appropriate imaging and outcome data available. Four-
fold cross validation was used. In each fold, the cohort 

was randomly split into 70/30 training and testing sets 
maintaining the proportion of cases to controls as the entire 
cohort. Figure 1 provides an overview of the developed 
image analysis feature extraction and classification pipeline. 
Two prediction models were explored by dividing the 
cohort based on: (I) PFS calculated as the number of days 
from the start of immunotherapy to progression or death. 
Those without a recorded date of death or progression were 
calculated based on the last known date alive. Cases were 
defined as those with a PFS of less than or equal to 90 days. 
(II) Pneumonitis diagnosis in the clinical record during or 
after immunotherapy (cases with pneumonitis vs. controls 
without pneumonitis). REDCap electronic data capture 
was utilized to control access to patient identifiers and class 
outcomes. 

Clinical features

Demographic, diagnostic, treatment, and clinical features 
were collected through chart review and managed 
using REDCap electronic data capture tool (42). These 
features included age, sex, race, smoking history, use of 
immunotherapy with/without concurrent chemotherapy, 
history of radiation treatment to the chest, baseline laboratory 
results (i.e., lymphocyte count, PD-L1 expression), PFS, and 
diagnosed irAEs such as pneumonitis (grade ≥2 per Common 
Terminology Criteria for Adverse Events v4.03). 

Radiomic features

Existing standard-of-care CT scans that included the 
complete chest within ±150 days from the start of 
immunotherapy treatment were included in the image 
collection data. Automated lung segmentation was 
performed using Pulmonary Analysis Software Suite 
(PASS). PASS extracted 19 histogram features from the 
lung parenchyma. An additional 11 first-order features, 24 
grey level co-occurrence matrix (GLCM) features, 14 gray 
level dependence matrix (GLDM) features, 16 gray level 
run length matrix (GLRLM) features, 16 gray level size 
zone matrix (GLSZM) features, and 5 neighboring gray-
tone difference matrix (NGTDM) features were extracted 
from the segmented lung parenchyma using PyRadiomics 
(v3.0.1)  with default  parameters (see Appendix 1  
for parameter details) (43). A wavelet filter was applied to 
the original image to obtain eight wavelet decompositions 
for which the above-mentioned PyRadiomic features 
were also pulled with an addition of 7 first-order features. 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-763/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-763/rc
https://cdn.amegroups.cn/static/public/TLCR-22-763-Supplementary.pdf
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A total of 849 radiomic features were extracted for each 
segmentation.

Neural network (NN)

Four cross validation sets were created from the data, each 
with a 70/30 training and testing split that maintained the 
case vs. control proportions. Using the 70% training set, 
minimum Redundancy Maximum Relevance (mRMR) (44), 
feature reduction and selection was performed with the R 
package for parallelized mRMR ensemble from De Jay  
et al. (45). Three prediction models were developed using 
(I) radiomic features, (II) clinical features, (III) radiomic 
and clinical (radiomic + clinical) features combined. The 
selected features were then run through an artificial NN 
trained on the 70% training cohort. Each epoch left out 
10% of the subjects to validate the NN before updating and 
refining the weights. The receiver operating characteristic 
(ROC) or precision recall (PR) in conjunction with Youden’s 
index was used to determine the optimum dichotomous 
cut-off point for the NN output (which ranges from 0–1). 
The remaining 30% of subjects were then used to test the 

trained NN, in which the Youden’s index from training 
was used to categorize test subjects based on the NN 
output value. The classification was explored for two use 
cases: (I) progression-free survival prediction (cases with 
≤90 days PFS, vs. controls with >90 days PFS) and (II) 
pneumonitis development during immunotherapy (cases 
with pneumonitis vs. controls without pneumonitis). 

Statistical analysis

Demographic data were analyzed using GraphPad Prism 
(version 8.3.1). Normality was tested using the Shapiro-
Wilk test. Unpaired t-tests with Welch’s correction or 
Mann-Whitney test were used for parametric or non-
parametric data, respectively. Chi-squared test was used 
for discrete variables. As inclusion in the study required 
appropriate image data availability, model construction 
(feature reduction, selection and NN) utilized complete 
case analysis. The NN performance was assessed using 
the area-under-the-receiver-operating-characteristic curve 
(AUC-ROC), area-under-the-precision-recall curve (AUC-
PR), sensitivity, and specificity. Confidence intervals were 

Figure 1 Pipeline outline for the development of the PFS prediction model. PFS, progression-free survival; PASS, Pulmonary Analysis 

Software Suite; mRMR, minimum Redundancy Maximum Relevance; AUC, area under the curve; ROC, receiver operating characteristic; 
PR, precision recall; NN, neural network.
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calculated using Student’s t distribution.

Results

A total of 132 subjects were included in the study; 43 
(33%) of which had a PFS less than or equal to 90 days 
and 89 (67%) of which had a PFS greater than 90 days. 
Between the two groups, statistical difference was found for 
lymphocyte count (P=0.0147) and pneumonitis diagnosis 
(P=0.0230) as seen in Table 1. PD-L1 expression and 
acquisition results are further described in Table S1. Table 2  
describes the CT variables for the cohort. No statistical 
differences were found between the two PFS groups. The 
clinical demographics for the pneumonitis classification are 
presented in Table S2. 

Automated segmentation of the chest CT data to identify 
the lung parenchyma with PASS was successful for all 
cases. It was found that the automated algorithm excluded 
lesions and consolidation attached to the chest wall. All 
other pulmonary lesions without attachment to the chest 
wall were included in the segmentation. To explore the 
performance of the algorithm without requiring manual 
interaction, no editing of the automated lung segmentation 
was performed before feature extraction. 

To prevent overfitting of the PFS prediction model, based 

on the number of cases in our study, the selected features 
were restricted to a maximum of 9 features (1 feature per 
5 cases). The clinical features model incorporated age, sex, 
pack-years, prior chest radiation, concurrent chemotherapy, 
lymphocyte count, and PD-L1 expression. Table 3 highlights 
the individual features that were selected in the radiomic 
and radiomic + clinical prediction models. From the 
features included in the prediction models, 4 features were 
statistically significant between the groups: wavelet.LLL_
glszm_HighGrayLevelZoneEmphasis (P=0.0005), wavelet.
HHL_glcm_ClusterShade (P=0.0134), wavelet.HHH_
firstorder_Skewness (P=0.0368), and lymphocyteCount 
(P=0.0147). The three significant radiomic features were 
selected in both the radiomic and radiomic + clinical models 
as well as the other 4 non-statistically significant radiomic 
features. Table S3 details the equivalent feature table for the 
pneumonitis prediction model. Cross validation cohorts also 
chose majority wavelet features. Seven wavelet features were 
selected by at least two of the folds: wavelet.LLL_glszm_
HighGrayLevelZoneEmphasis, wavelet.HHH_firstorder_
Skewness, wavelet.LLL_firstorder_Minimum, wavelet.
HHH_glrlm_GrayLevelVariance, wavelet.HHH_firstorder_
Mean, wavelet.HHH_glszm_LargeAreaEmphasis, wavelet.
HLH_glszm_LargeAreaHighGrayLevelEmphasis.

The PFS prediction models’ performances are listed in 

Table 1 Clinical variables

Parameter All ≤90 days PFS (cases) >90 days PFS (controls) P value

N 132 43 89 –

Age, years (mean ± SD) 64.1±10.4 63.4±9.7 63.8±12.6 0.5743

Sex (Male:Female) 67:65 24:19 43:46 0.4193

Race (White: African American/Black:Asian:Declined) 126:3:2:1 41:1:1:0 85:2:1:1 0.8589

Pack years (>20 yrs:<20 yrs:never smoker) 100:16:16 34:4:5 66:12:11 0.7698

Immunotherapy type (Pemb:Nivo:Avel) 97:30:5 27:14:2 70:16:3 0.1473

Programmed death ligand 1 (PD-L1) expression 
(<1%:1–49%:≥50%:Unknown)

53:29:49:11 22:6:9:6 31:23:30:5 0.0501

Immunotherapy concurrent with chemotherapy (Yes:No) 28:104 6:37 18:71 0.3813

Lymphocyte count (per μL) (mean ± SD) 1,921±8,168 940±647 2,395±9,921 0.0147

Pneumonitis (Yes:No) 15:117 1:42 14:75 0.0230

Line of treatment (Naïve:2nd Line:3rd Line:4th Line) 77:44:7:4 20:17:4:2 57:27:3:2 0.1918

Prior chest radiation (Yes:No) 54:78 18:25 36:53 0.8772

Days PFS (mean ± SD) 288.6±317.5 47.7±23.0 404.5±326.7 <0.0001

PFS, progression-free survival; SD, standard deviation; Pemb, pembrolizumab; Nivo, nivolumab; Avel, avelumab; yrs, years.

https://cdn.amegroups.cn/static/public/TLCR-22-763-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-763-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-763-Supplementary.pdf
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Table 2 CT characteristics

Parameter All ≤90 days PFS (cases) >90 days PFS (controls) P value

N 132 43 89 –

Days ± from start of immunotherapy and CT (mean ± SD) 25.11±37.54 16.74±14.36 29.15±44.14 0.1520

Reconstruction Kernel (B31f:I31f:Bf40:B30f:I30f:Qr40d) 23:50:26:28:2:3 5:14:9:11:1:3 18:36:17:17:1:0 0.1167

Contrast enhanced (Yes:No) 121:11 40:3 81:8 0.6951

Slice thickness, mm (mean ± SD) 2.967±0.24 2.90±0.42 3±0 0.1044

Voltage, kV (mean ± SD) 109.84±12.72 111.62±14.62 108.98±11.68 0.5056

Tube current, mA (mean ± SD) 454.007±269.84 414.06±291.11 473.30±258.43 0.1629

Siemens Scanner Model (Definition AS+:Definition 
AS:Force:Biograph 40:Biograph 64)

17:56:29:13:17 5:14:12:4:8 12:42:17:9:9 0.3787

PFS, progression-free survival; CT, computed tomography; SD, standard deviation; kV, kilovoltage; mA, milliampere.

Table 3 Feature reduction and selection results used for PFS prediction model

Feature Radiomic + Clinical Radiomic ≤90 days PFS >90 days PFS P value

wavelet.LLL_glszm_
HighGrayLevelZoneEmphasis

X X 2,446±497.1 2,062±695.3 0.0005

wavelet.HHH_firstorder_TotalEnergy X X 1.48×108±9.64×108 1.94×108±1.62×108 0.1805

wavelet.HHL_glcm_ClusterShade X X −9.55×10−2±1.52×10−1 −4.01×10−2±1.05×10−1 0.0134

wavelet.LLH_ngtdm_Strength X X 2.24×10−2±1.69×10−2 3.91×10−2±5.62×10−2 0.1019

wavelet.LLH_glszm_ZoneVariance X X 3.48×106±8.77×106 1.02×106±9.74×105 0.1205

wavelet.HHH_firstorder_Skewness X X 5.83×10−2±1.14×10−1 1.69×10−2±8.94×10−2 0.0368

concurrentChemo (Yes:No) X 6:37 18:71 0.3813

lymphocyteCount X 940±646.5 2,395±9,921 0.0147

wavelet.LLL_firstorder_Minimum X X −2,894±77.32 −2,869±107.4 0.1927

wavelet.HHL_glszm_LargeAreaEmphasis X 1.208×108±1.103×108 2.012×108±4.879×108 0.2386

wavelet.HHH_firstorder_Median X −8.39×10−3±1.09×10−2 −7.78×10−3±1.264×10−2 0.7725

Data are shown as mean ± SD. PFS, progression-free survival; SD, standard deviation.

Table 4. The best performance was seen in the radiomic 
model with a testing AUC-ROC, sensitivity, and specificity 
of 83% (95% CI: 65–101%), 83%, and 81%, respectively 
(Figure S1). Two clinical models were run, one with PD-
L1 expression and one without. The model with PD-L1 
expression resulted in a testing AUC-ROC of 44% (95% 
CI: 38–50%) vs. 47% (95% CI: 34–60%) in the model 
without and sensitivity and specificity of 17% vs. 50% and 
81% vs. 56%, respectively. The pneumonitis prediction 
model results are featured in Table S4, for which the best 
performing model was radiomic + clinical with a sensitivity 

of 75% and specificity of 71% however, there was a large 
drop in AUC-PR from training (60%; 95% CI: 42–78%) to 
testing (24%; 95% CI: 11–37%), indicating instability. 

Discussion

In this study, it was observed that baseline chest CT 
imaging features from the whole lung parenchyma can 
predict PFS in patients receiving ICI, perhaps better than 
clinical features alone. The PFS prediction model using 
only radiomic features was able to predict patients that 

https://cdn.amegroups.cn/static/public/TLCR-22-763-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-763-Supplementary.pdf
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did see a meaningful benefit from immunotherapy in the 
form of >90 days PFS (81% specificity) and was slightly 
more effective in identifying those with ≤90 days PFS (83% 
sensitivity). The addition of clinical features did add a slight 
increase in the ability to predict those with a beneficial 
outcome (85% specificity) but with a decrease in the ability 
to predict unbeneficial outcomes (75% sensitivity).

Due to the small number of patients with pneumonitis 
(N=15), it is difficult to train a model that can effectively 
predict this important irAE. The developed pneumonitis 
prediction models were not stable in their prediction 
performance as demonstrated by the drop from a training 
AUC-PR of 63% to a testing AUC-PR of only 24%. Unlike 
the PFS prediction models, the addition of clinical features 
to the radiomic features resulted in an increased ability to 
predict those who developed pneumonitis (50% to 75% 
sensitivity) and decreased ability to predict those who did 
not (86% to 71% specificity). 

As highlighted in the introduction, some prior results 
have been published with a focus on radiomics features 
for predicting immunotherapy outcomes. A unique aspect 
of the work in this paper is that the feature extraction 
was performed from the whole lung parenchyma as 
opposed to the segmented pulmonary lesions. Whole lung 
segmentation and feature extraction does not require an 
expert user identification and segmentation of pulmonary 
lesions. Hence, our approach is highly suited to background 
processing of the data without expert input and may be 
more suitable for clinical workflow adoption. Despite the 
difference in the area from which features were extracted, 
the incorporation of wavelet decomposition features has 
been found useful in our study and others for survival 
prediction of lung cancer patients (46). The inclusion of 
wavelet features has also been used to predict outcomes in 
immunotherapy by other studies (25,27,28,35). Wavelets 
were the most selected radiomic features for both PFS and 
pneumonitis prediction, reinforcing them as a non-invasive, 

informative radiomic marker for immunotherapy efficacy. 
Development of immune-related pneumonitis in 

NSCLC has been associated with an increase in the efficacy 
of immunotherapy (23), however, some studies (24,25) 
found that the development of pneumonitis in NSCLC 
patients is linked to significantly lower survival. Concurrent 
chemotherapy, chest radiation, or history of prior chest 
radiation, pre-existing interstitial lung disease, use of 
tyrosine kinase inhibitor before or in combination with 
ICI, and peripheral blood eosinophilia are associated with 
increased risk of ICI-related pneumonitis (47).

Lymphocyte count is one clinical feature that has been 
associated with OS (48); in this cohort, it was found to be 
statistically different between the two PFS groups and was 
selected by the mRMR feature selection method for the 
PFS prediction model (Radiomic + Clinical) but not for 
the pneumonitis prediction model (Radiomic + Clinical). 
Another clinical feature, PD-L1 TPS, was found to have no 
statistically significant difference and adding PD-L1 TPS to 
the Clinical model did not increase its performance. Though 
PD-L1 TPS is the only Food and Drug Administration-
approved biomarker for ICI therapy in advanced NSCLC, 
it is not an ideal biomarker. Besides the inherent issues in 
using PD-L1 TPS as a biomarker i.e., spatial, and temporal 
tumor heterogeneity in PD-L1 expression, our study may 
have additional limitations explaining why PD-L1 TPS did 
not help predict patients’ outcomes. Determination of PD-
L1 TPS in the majority of our patients (n=92, 70%) was 
made by utilizing E1L3N antibody. In addition, 31% of the 
samples that were used to assess PD-L1 TPS were obtained 
via fine-needle aspirates (E1L3N =29, 22C3 =12). 

Addit ional  l imitat ions  of  this  s tudy should be 
acknowledged. First, this was a retrospective study with 
data collected from only a single institution leading to 
selection biases. Second, this study had a small sample 
size. The proportion of positive pneumonitis cases (1.1%) 
in this cohort is less than what has been seen in others. 

Table 4 Performance results from the developed PFS prediction models using the image and/or clinical features.

PFS prediction model Training AUC (95% CI) Testing AUC (95% CI) Sensitivity Specificity

Radiomic + clinical without PD-L1 0.86 (0.82–0.90) 0.81 (0.61–1.01) 0.75 0.85

Radiomic 0.87 (0.85–0.89) 0.83 (0.65–1.01) 0.83 0.81

Clinical without PD-L1 0.65 (0.58–0.72) 0.47 (0.34–0.60) 0.50 0.56

Clinical with PD-L1 0.63 (0.61–0.65) 0.44 (0.38–0.50) 0.17 0.81

PFS, progression-free survival; AUC, area under the curve; PD-L1, programmed death ligand 1 expression.
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The promising results from this small, single institution 
study indicate the potential of this approach and support 
future investigation including multi-center data and an 
external validation cohort. Lastly, to obtain the maximum 
study cohort, restrictions on the inclusion of CT images 
had to be minimal. This led to diverse CT parameters and 
acquisitions. About 10% of the >90 days PFS subjects’ 
scans and about 13% of <90 days PFS subjects’ scans were 
non-contrast. The PFS prediction models which included 
radiomics features (Radiomic and Radiomic + Clinical) both 
correctly predicted all non-contrast scans. This suggests 
that the radiomics features selected by the prediction 
models are not heavily influenced by the presence or 
absence of contrast enhancement, such that either CT 
scan data can be applied to the prediction model. Of the 
diverse acquisitions, only 6 of the 30 PET/CT scans were 
misclassified by the PFS prediction models (Radiomic and/
or Radiomic + Clinical). The number of days between the 
start of immunotherapy and the CT scan used for analysis 
was not statistically different for the PFS groups, despite 
differences in the ranges (>90 days PFS subjects had an 
SD of 44 days, ≤90 days PFS subjects had SD of 14 days). 
Again, this suggests a robust prediction model that can be 
used effectively in most cases.

Conclusions

To the authors’ knowledge, this is the first immunotherapy 
efficacy prediction model to have used whole-lung 
parenchymal features, without requiring segmentation of 
pulmonary lesions. Future work could see an increase in 
performance with the addition of lesion features. As the 
use of immunotherapy increases, the selection of patients 
that would see a clinically relevant benefit over traditional 
treatments needs to be defined. For patients and physicians, 
the cost-effectiveness of this type of treatment, risk of severe 
irAEs, and survival benefit are important factors to consider 
in treatment planning. While PD-L1 TPS is clinically 
utilized, diversity in the method and sample source for this 
biomarker in the real-world setting may limit its predictive 
value, a gap that can be filled by more readily available and 
validated radiomics biomarkers.
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Supplementary

Appendix 1

PyRadiomics settings were specified in the parameter file which used the default binWidths = 25 for the original image and 
the wavelet decomposition extraction. No kernel, image normalization or resampling options were used. Images were filtered 
through all the [“coif1”] wavelet decomposition levels (LLL, LLH, LHL, HLL, HLH, HHL, & HHH) with the default 
settings for ‘start_level’ and ‘level’. For both the original and wavelet images the following feature classes were included: 
first order, shape, GLCM, GLRLM, GLSZM, GLDM, and NGTDM. Shape features were excluded in feature selection/
reduction process since the whole lung was segmented.

Figure S1 Area under the curve (AUC) performance results from the developed PFS prediction model using CT based radiomic features. 
PFS, progression-free survival.

Table S1 Programmed death ligand 1 (PD-L1) expression and acquisition results

PFS Pneumonitis

≤90 days PFS 
(cases)

>90 days PFS 
(controls)

Pneumonitis  
(cases)

No Pneumonitis
(controls)

PD-L1 TPS (Biopsy) (<1%: 1-49%: ≥50%) 16:4:7 19:12:22 5:2:3 30:14:26

PD-L1 TPS (Cytology)  (<1%: 1-49%: ≥50%) 6:2:2 12:11:8 0:4:0 18:9:10

PD-L1 TPS (All samples) (<1%: 1-49%: ≥50%: Unknown) 22:6:9:6 31:23:30:5 5:6:3:1 48:23:36:10

PD-L1 Assay (E1LN3:22C3:Unknown) 29:8:6 63:21:4 12:2:1 81:27:9

PFS, progression-free survival; SD, standard deviation.



© Translational Lung Cancer Research. All rights reserved.  https://dx.doi.org/10.21037/tlcr-22-763

Table S2 Pneumonitis clinical demographics

Parameter All
Pneumonitis 

(cases)
No Pneumonitis 

(controls)
P value

N 132 15 117 -

Age, years (mean ± SD) 64.1±10.4 64.3±8.06 64.1±10.7 >0.9999

Sex (Male: Female) 67:65 5:10 62:55 0.1516

Race (White:African American/Black: Asian: Declined) 126:3:2:1 13:2:0:0 113:1:2:1 0.0220

Pack years (>20 yrs:<20 yrs:never smoker) 100:16:16 10:2:3 90:14:13 0.5851

Immunotherapy type (Pemb: Nivo: Avel) 97:30:5 8:6:1 89:24:4 0.1714

Programmed death ligand 1 (PD-L1) TPS 
(<1%:1-49%:≥50%:Unknown)

54:28:40:10 5:6:3:1 48:23:36:10 0.3507

Immunotherapy concurrent with chemotherapy (Yes:No) 28:104 3:12 25:92 0.9029

Lymphocyte count (per uL) (mean ± SD) 1,921±8,168 994.3±773.2 2,040±8,669 0.1390

Pneumonitis (Yes:No) 15:117 15:0 0:117 <0.0001

Line of treatment (Naïve:2nd Line:3rd Line:4th Line) 77:44:7:4 6:6:1:2 71:38:6:2 0.0661

Prior chest radiation (Yes:No) 54:78 9:6 45:72 0.1102

Days PFS (mean ± SD) 288.6±317.5 427.2±418.9 270.7±299.6 0.0405

PFS, progression-free survival; SD, standard deviation; Pemb, pembrolizumab; Nivo, nivolumab; Avel, avelumab.

Table S3 Feature reduction of selection results for pneumonitis prediction

Feature (mean ± SD)
PNEUMO_Radiomic 

+ Clinical
PNEUMO_
Radiomic

Pneumonitis No Pneumonitis P value

wavelet.HHH_glcm_ClusterProminence X X 0.9599±0.5444 0.9369±3.595 0.0001

original_glcm_ClusterShade X X 5106±3050 3899±1482 0.0409

wavelet.HLH_glcm_ClusterShade X X 0.8151±0.5282 0.2964±0.4593 0.0003

wavelet.LHH_firstorder_Mean X X 12.15±2.315 12.29±2.988 0.4995

HistoryofSystemicRadiation X 9:6 45:72 0.1102

wavelet.HLH_gldm_SmallDependence-
HighGrayLevelEmphasis

X X 12.29±15.26 5.638±13.87 <0.0001

wavelet.LLH_glcm_Idmn X X  0.9959±0.0022 0.9966±0.0015 0.6182

wavelet.LHH_glrlm_GrayLevelVariance X   6.551±1.636 4.492±1.692 <0.0001

Smoker X 10:2:3 90:14:13 0.5851

wavelet.LHL_gldm_SmallDependenceEmphasis X 0.0598±0.0187 0.0475±0.0189 0.0522

wavelet.HLH_glcm_InverseVariance X 0.4729±0.0062 0.4756±0.0065 0.2118

wavelet.LHH_glcm_ClusterShade X 0.7727±0.7312 0.1391±0.3272 <0.0001
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Table S4 Performance results of pneumonitis prediction from developed models using image and/or clinical features

Pneumonitis prediction model Training AUC (95% CI) Testing AUC (95% CI) Sensitivity Specificity

Pneumo_Radiomic + Clinical (AUC-PR) 0.60 (0.42–0.78) 0.24 (0.11–0.37) 0.75 0.71

Pneumo_Radiomic (AUC-PR) 0.63 (0.5–0.76) 0.24 (0.03–0.45) 0.5 0.86

Pneumo_Clinical without PD-L1 (AUC-PR) 0.19 (0.14–0.24 0.13 (0.03–0.23) 0.75 0.54

Pneumo_Clinical with PD-L1 (AUC-PR) 0.13 (–0.49–0.75) 0.10 (0.05–0.15) 0.25 0.74

AUC, area under the curve; PR, precision recall; PD-L1, programmed death ligand 1 expression.
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