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Original Article

PFKP confers chemoresistance by upregulating ABCC2 
transporter in non-small cell lung cancer
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Background: Chemoresistance is a significant factor contributing to tumor recurrence and treatment 
failure in non-small cell lung cancer (NSCLC). The phosphofructokinase, platelet (PFKP) is highly 
expressed in NSCLC and is associated with a poor prognosis. Exploring the molecular mechanism and 
identifying effective strategies to overcome chemoresistance will have important clinical significance in 
improving the diagnosis and treatment of NSCLC.
Methods: The correlation between PFKP and cisplatin resistance in NSCLC patients was assessed by 
organoids and immunohistochemistry. The impact of PFKP on the prognosis of NSCLC patients was 
analyzed using The Cancer Genome Atlas (TCGA) database. In NSCLC cell lines, the expression of PFKP 
was modulated using lentivirus, and cisplatin sensitivity was assessed by flow cytometry. Subsequently, the 
therapeutic effect of cisplatin was tested in BALB/c nude mice implanted subcutaneously with tumor cells. 
We performed luciferase assay and immunohistochemistry (IHC) to investigate the correlation between 
PFKP and ABCC2 (ATP-binding cassette sub-family C member 2).
Results: Overexpression of PFKP was correlated with poorer survival rates in NSCLC patients who 
received platinum-based chemotherapy. Using NSCLC organoid, we found that the expression of PFKP 
was elevated in cisplatin (CDDP)-resistant patients with NSCLC. Overexpression of PFKP decreased the 
sensitivity of NSCLC cells to CDDP, while genetic inhibition of PFKP enhanced CDDP sensitivity both 
in vitro and in vivo. Furthermore, we found that PFKP upregulated ABCC2 by increasing the levels of 
phosphorylation of IκBα and nuclear p65 NF-κB subunit protein.
Conclusions: PFKP can regulate the expression of ABCC2 through the activation of NF-κB, which in 
turn promotes chemoresistance in NSCLC. PFKP has the potential to be a personalized therapeutic target 
for NSCLC patients with chemoresistance.

Keywords: Phosphofructokinase, platelet (PFKP); chemoresistance; ABCC2; NF-κB; non-small cell lung cancer 

(NSCLC)

2309

https://crossmark.crossref.org/dialog/?doi=10.21037/tlcr-23-567


Translational Lung Cancer Research, Vol 12, No 11 November 2023 2295

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2023;12(11):2294-2309 | https://dx.doi.org/10.21037/tlcr-23-567

Introduction

Lung cancer has the second-highest incidence and the first-
highest mortality rate among all cancers (1). Lung cancer can 
be classified into two main pathological types: non-small cell 
lung cancer (NSCLC) and small-cell lung cancer. NSCLC 
is the predominant type, accounting for approximately 80–
85% of all cases (2). Patients with early-stage NSCLC have 
achieved a good prognosis due to advancements in surgical 
techniques in recent years (3,4). Despite the different 
treatment options available for advanced NSCLC patients, 
such as concurrent chemoradiation, immune-chemotherapy 
combination, and targeted therapy (5), the 5-year relative 
survival rate for regional advanced cases is 33%, while it is 
only 6% for distant metastasis (2). Chemotherapy, including 
platinum-based agents, is still an important treatment option 
for patients with advanced NSCLC (6). Chemoresistance 
is becoming more common in clinical practice, which 
has dramatically affected the prognosis of such patients 
and posed a barrier to treatment (7). Therefore, it will be 
very important for elucidating the molecular mechanisms 
underlying chemoresistance in NSCLC and identifying 
crucial therapeutic targets for NSCLC chemoresistance.

Phosphofructokinase-1 (PFK-1), an allosteric enzyme 
that regulates glucose oxidation in cellular respiration, 

plays a vital role in glycolysis. The cancer-specific isoform 
of PFK-1, phosphofructokinase, platelet (PFKP), is 
highly expressed in various tumors and often promotes 
tumorigenesis and metastasis (8,9). PFKP also interacts 
with cyclic adenosine monophosphate (AMP)-activated 
protein kinase to maintain cellular energy and redox 
homeostasis, allowing cells to survive under oxidative stress  
conditions (10). Previous study verified that PFKP is highly 
expressed in lung cancer by regulating the process of 
glycolysis, which promotes tumor cell proliferation and is 
connected to a poorer prognosis of lung cancer patients (8).  
However, the specific molecular mechanism underlying 
the potential involvement of PFKP in chemoresistance 
in NSCLC, as well as its regulatory mechanisms is still 
unclear. Therefore, a comprehensive understanding of 
these questions is necessary to provide insights into the 
developing effective therapies for NSCLC treatment.

The ATP-binding cassette (ABC) superfamily members 
play an essential role in tumor multi-drug resistance 
(MDR) in various types of cancer, including lung cancer 
(11-13). As a member of the ABC subfamily, ABCC2 
transports chemotherapeutic agents, such as erythromycin, 
methotrexate, and etoposide, which in turn affect the drug 
response of patients with advanced NSCLC (14). ABCC2 
enhances the drug resistance of tumor cells by pumping 
intracellular drugs (e.g., CDDP and vincristine) out of 
the cells (15). Accordingly, the expression of ABCC2 has 
a significant impact on the prognosis of patients with  
NSCLC (16). NF-κB, an inducible transcription factor, 
regulates ABCC2 expression in lung cancer cells, thereby 
attenuating their drug resistance (17). Thus, exploring the 
regulatory mechanism of ABC family proteins may help to 
solve the challenges arising from to chemoresistance.

In this study, we provide evidence to demonstrate a novel 
role of PFKP in mediating chemoresistance in NSCLC. 
Mechanistically, PFKP decreases the content of CDDP by 
upregulating ABCC2in NSCLC cells, thereby changing 
their sensitivity to CDDP. Furthermore, PFKP activates the 
activity of NF-κB through promoting the phosphorylation 
IκBα, thereby enhancing the expression of ABCC2 and 
drug resistance of NSCLC cells. These findings may 
provide a new framework for understanding the mechanism 
underlying chemoresistance in NSCLC. We present 
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this article in accordance with the ARRIVE and MDAR 
reporting checklists (available at https://tlcr.amegroups.
com/article/view/10.21037/tlcr-23-567/rc).

Methods

Reagents and antibodies

Cisplatin (purity =99.70%), paclitaxel (purity =99.96%) 
and DMSO were purchased from MCE (Shanghai, China). 
Advanced DMEM/F-12 (Cat 12634028), HEPES (Cat 
#15630080), GlutaMAXTM (Cat 35050061), penicillin-
streptomycin (Cat 15140122), Tumor Tissue Digestion 
Solution (Cat 9522), fetal bovine serum (FBS) (Cat 10100147) 
and RPMI-1640 (Cat 11875093) were from Thermo Fisher 
Scientific (Waltham, MA, USA). MatrigengeL Matrix (Cat 
0827555) was from ABW (Shanghai, China). γ-H2AX 
(Ser139) (Cat 2577), p-IκBα (Cat 5209), IκBα (Cat 4814), 
p-p65 (Cat 3033) and p65 (Cat 8242T) were brought from 
Cell Signaling Technology (Beverly, MA, USA). ABCC2 (Cat 
ab172630), and Survivin (Cat ab76424) were from Abcam 
(Shanghai, China). PFKP (Cat 13389-1-AP), GAPDH (Cat 
60004-1-Ig) and α-Tubulin (Cat 11224-1-AP) were from 
Proteintech (Chicago, IL, USA).

Clinical specimen selection

The human samples were taken from lung cancer patients 
who had undergone radical surgery at Taizhou Hospital, 
Zhejiang Province from December 2021 to March 
2022. Informed consent was obtained prior to tissue 
collection from each patient. The patients did not receive 
chemotherapy or radiotherapy prior to the surgery. Patient 
data including clinicopathological information and follow-
up records were collected (Table S1). Cells were isolated 
from the tumor tissue of seven NSCLC surgery patients for 
the organoid assays and proteins were extracted for further 
Western blot analyses. The study has obtained approval 
from the Ethics Committee of Taizhou Hospital of Zhejiang 
Province affiliated to Wenzhou Medical University (No. 
2021-07-138-01). The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Construction of lung cancer organoids

The culture medium comprised Advanced DMEM/
F-12, HEPES 10 mM, GlutaMAXTM 2 mM, penicillin-
streptomycin and 5% FBS. First, the tissue sample was 

imaged, weighed, and the volume was measured. The sample 
was washed with PBS 2–3 times until clear, and the tissue 
was cut into 1–3 mm3 pieces using scissors. The tissue was 
then resuspended in 3 mL digestion solution and transferred 
to a centrifuge tube. The tube was inverted on a single-cell 
suspension preparation system, with a temperature set at 
38.5 ℃ and speed set at 100 ×g, and it was rotated clockwise 
and counterclockwise for 5 minutes. After centrifugation, 
the mixture was passed through a 70 μm cell filter, and the 
remaining sample was washed with 5 mL of basic culture 
medium. The collected cells were then counted using a cell 
counter and resuspended in a complete culture medium with 
the addition of matrix gel. Cells (1×105/10 μL) were added 
to each well of a 24-well plate, which was then inverted and 
incubated in a cell culture incubator for 30 minutes to allow 
the matrix gel to solidify. Afterwards, 1.5 mL of culture 
medium was added to each well.

In vitro drug sensitivity screening

After 2 days of inoculation of lung cancer organoids, the 
spheroid state was observed, photographed, and ATP 
activity was measured in 2–3 randomly selected wells using 
the ATP-TCA kit (Thermo Cat# A22066). The following 
concentrations of cisplatin and paclitaxel solutions 50, 
25, 12.50, 6.25, 3.13, 1.56, and 0.78 μM were configured 
using culture medium. After 3 days of inoculation, the 
organoids were administered by aspirating the medium and 
supplementing each well with 130 μL of the appropriate 
solution. The ATP activity was measured after 24 hours 
using the kit and the IC50 value was calculated.

Cell lines and cell culture

Human NSCLC cell  l ines A549 and A549/CDDP 
were obtained from Shanghai Cell Bank (Shanghai, 
China). The cells were cultured routinely in RPMI-1640 
medium supplemented with 10% FBS and 1% penicillin-
streptomycin, and maintained at 37 ℃ in a 5% CO2 
incubator. The concentration of CDDP in the medium was 
maintained at 5 μg/mL for the A549/CDDP cells.

Colony formation assay

A549-vector, A549-PFKP, A549/CDDP sh-control, A549/
CDDP sh#1, A549/CDDP sh#2, and A549-PFKP ABCC2-
siRNA cells [1,000] were inoculated into 35 mm cell culture 
dishes using complete culture medium incubated for  

https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-567/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-23-567/rc
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7 days. After fixation using 4% paraformaldehyde (PFA) 
and staining with a 0.1% crystalline violet solution, the cells 
were photographed and counted.

Preparation of plasmids and viral constructs

PFKP-coding sequences were cloned into the pCDH vector 
by polymerase chain reaction (PCR) amplification and 
insertion, using the cytomegalovirus (CMV) promoter and 
a 3Flag tag, as well as an EF1 promoter, CopGFP reporter 
gene, T2A element, and Puromycin resistance gene. 
ShRNA oligonucleotide sequences specific to human PFKP 
were cloned into PLKO-U6-EGFP-P2A-PURO vector to 
generate PFKP-shRNA. PFKP plasmids and shRNA were 
transfected using Lipofectamine 3000 reagent (Invitrogen, 
Carlsbad, CA, USA), following the manufacturer’s protocol. 
After infection, stable cell lines were selected for 10 days 
using 0.5 μg/mL puromycin to obtain the desired gene 
expression. The pBabe-Puro-IκBα-mut (plasmid 15291) 
expressing mutant IκBα was from Addgene (Cambridge, 
MA, USA). IkBalpha-mutant A549 cells was obtained by 
transfection of IκBα-mut plasmids was performed using the 
Lipofectamine 3000 reagent (Invitrogen) according to the 
manufacturer’s instruction.

Western blot analysis

To extract proteins, cells and tissues were lysed with RIPA 
buffer containing PMSF and phosphatase inhibitors on 
ice, followed by centrifugation at 12,000 rpm and 4 ℃ 
for 15 minutes. The protein concentration was measured 
using the BCA Protein Assay Kit (Beyoncé, Shanghai, 
China) following the manufacturer’s instructions; 40 μg  
of protein samples were separated on 8–12% SDS-
PAGE and then transferred onto a polyvinylidene fluoride 
(PVDF) membrane (0.22 μm pore size, Millipore, CA, 
USA). After blocking with 5% skimmed milk for 2 hours, 
the membranes were incubated with PFKP (1:1,000), 
ABCC2 (1:1,000), IκBα (1:1,000), p-IκBα (1:1,000), p-p65 
(1:1,000), p65 (1:1,000), α-Tubulin (1:5,000), and GAPDH 
(1:5,000) antibodies at 4 ℃ overnight. Then, after washing, 
the appropriate secondary antibodies were used based on 
the primary antibodies. Horseradish peroxidase (HRP)-
conjugated rabbit anti-goat IgG (1:3,000) and HRP-
conjugated goat anti-mouse IgG (1:5,000) were applied 
and incubated for 1 hour at room temperature. After 
washing with Tris Buffered Brine and Tween20 (TBST), 

a chemiluminescent reagent (Millipore, Burlington, USA) 
was used to observe the bands. ImageQuant LAS 500 (GE 
Health Care, CA, USA) was used to visualize the signal, 
and ImageJ software (Bio-Rad, CA, USA) was utilized to 
quantify and analyze the bands.

Quantitative real-time PCR

The Trizol method was used to isolate total RNA from the 
cultured cells. The PrimeScript ™ RT reagent Kit (Takara, 
Japan, No. RR047A) and PCR equipment (Bio-Rad, USA) 
were used for cDNA synthesis. The cDNA was amplified 
using an ABI 7500 real-time PCR instrument ( Applied, CA, 
USA) and TB Green® Premix Ex Taq™ II (Takara, Japan, 
No. RR820L). Normalized cycling threshold (Ct) values 
using the housekeeping gene GAPDH were employed to 
evaluate the expression of each group of target genes with 
the 2−ΔΔCt method.

The primer sequences used are as follows: 
PFKP, 5'-GACCTTCGTTCTGGAGGTGAT-3' 

(forward) and 5'-CACGGTTCTCCGAGAGTTTG-3' 
(reverse); GAPDH 5'-GGACCTGACCTGCCGTC 
TAG-3' (forward) and 5'-CACGGTTCTCCGAGAG 
TTTG-3' (reverse); ABCC2, 5'-CCCTGCTGTTCG 
ATATACCAATC (forward) and 5'-TCGAGAGAATCCAG 
AATAGGGAC-3' (reverse).

siRNA transfection

Prior to siRNA transfection, A549-PFKP stable cell lines, 
which had been pre-screened with puromycin, were treated 
with trypsin and incubated overnight to reach a fusion 
rate of 60–70%. ABCC2-siRNA was then transfected into 
the A549-PFKP cells using Lipofectamine 3000 (Thermo 
Fisher, L3000015).

Animal experiments

Female BALB/c nude mice (5–6 weeks old) were obtained 
from Charles River (Beijing, China). Mice (6 mice per 
group) were implanted subcutaneously with 1×106 A549 
(vector and PFKP high expression) and A549/CDDP (sh-
control and shRNA#1) cells mixed with Matrix (purchased 
from ABW). When the maximum tumor volume reached 
100 mm3, CDDP (2 mg/kg, CDDP/animal weight) was 
injected intraperitoneally every three days. On day 42, the 
tumors in mice were removed, measured for weight, and 
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photographed after sacrifice. We formulated a protocol 
prior to the commencement of the study and all operations 
involving experimental animals were approved by the 
Animal Ethics Committee of Taizhou Hospital, Zhejiang 
Province (No. tzy-2022001), and were carried out in 
compliance with Taizhou Hospital, Zhejiang Province 
institutional guidelines for the care and use of animals.

Immunohistochemistry (IHC) and immunofluorescence 
analysis

The paraffin-embedded tissue sections were deparaffinized, 
rehydrated, and subjected to antigen retrieval using sodium 
citrate buffer (pH =6.0). Immunohistochemical staining 
was conducted using the streptavidin-peroxidase (SP) 
method as per the instructions provided in the kit. Blocking 
was performed using 10% FBS. The appropriate primary 
antibodies were added individually in drops according to 
the dilution ratios in the antibody instructions and being 
kept at 4 ℃ overnight, appropriate secondary antibodies 
were applied. The following concentrations were used for 
primary antibodies: PFKP (1:800), survivin (1:800), ABCC2 
(1:500), p65 (1:2,000), and 1:500 for secondary antibodies. 
Prepared Diaminobenzidine (DAB) chromogenic solution 
working solution was added dropwise to the tissue sections 
and the staining was developed for 10 min and observed 
under the microscope. ImageJ was used to calculate the area 
of the stained region.

The experimental procedure involved treating the cells 
with 4% PFA for 15 minutes, followed by blocking with 5% 
FBS for 1 hour at 37 ℃. Later, primary antibody γ-H2AX 
(1:400) was added and incubated overnight at 4 ℃. Further, 
Alexa Fluor 488 or Alexa Fluor 594 was used as secondary 
antibody for 1 hour at room temperature. DAPI was then 
used for a final 5-minute incubation at 37 ℃. A Nikon 
microscope (Nikon, Tokyo, Japan) was used to randomly 
capture images of a field of view of cells, which were then 
stored for computational analysis of fluorescence intensity 
using ImageJ.

TUNEL (TdT-mediated dUTP nick end labeling)

Cells (5×104) were inoculated and cultured overnight on 
cover slip and were subject to a TUNEL assay, and an 
in-situ cell death detection kit was used for this purpose. 
Images of the samples were taken through AxioVision 
Rel.4.6 computerized image analysis system (Carl Zeiss, 
Oberkochen, Germany).

Intracellular cisplatin and DNA-bound cisplatin analysis

In order to detect intracellular CDDP content, we 
collect the indicated cells in the log phase of growth 
were suspended in medium at a density of 1×106/mL 
and incubated for 4 h in the presence of CDDP at 37 ℃ 
in a humidified atmosphere containing 5% CO2. The 
intracellular platinum level was determined by atomic 
absorption spectrophotometry. At the same time, the total 
cell protein and DNA levels was measured and the CDDP 
content in the total protein and DNA levels was analyzed.

Dual-luciferase analysis

The activity of NF-κB signaling was assessed via a dual-
luciferase reporter gene assay kit (Promega, USA). The 
transfected cells were lysed and the supernatant was collected. 
Data were read using BioTek Synergy (Bio-Rad, USA).

Bioinformatics analysis

Data from microarray experiments were obtained through 
The Cancer Genome Atlas (TCGA) (http://www.tcga.org/) 
and Gene Expression Omnibus (GEO) databases (https://
www.ebi.ac.uk/arrayexpress/).

The Venn  d i agram was  c rea ted  us ing  ht tp : / /
bioinformatics.psb.ugent.be/webtools/Venn/. Gene Set 
Enrichment Analysis (GSEA) was performed with GSEA 
2.0.9 from http://www.broadinstitute.org/gsea/.

Statistical analysis

The results are presented as the mean ± standard deviation 
of independent experiments. The statistical analyses and 
graphing were done using GraphPad Prism 8.0. For 
intergroup comparisons, we used analysis of variance 
(ANOVA) and a Student’s t-test. Results with a P value 
less than 0.05 were considered statistically significant. 
All statistical data were obtained from at least three 
independent biological replicates, and each experiment 
included at least two technical replicates.

Results

High PFKP expression correlates with poorer prognosis 
and chemoresistance in NSCLC

To explore the role of PFKP in NSCLC, we analyzed the 
relationship between the expression levels of PFKP in lung 

https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
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tumors and survival of lung cancer patients using the online 
Kaplan-Meier survival analysis tool available at (http://
kmplot.com/analysis/index.php?p=service&cancer=lung). 
The results showed that among 478 patients with NSCLC, 
those with high PFKP expression had lower overall survival 
(OS) and disease-free survival (DFS) rates compared to 
those with baseline expression (Figure 1A). For lung cancer 
patients receiving chemotherapy across CaArray dataset, 
high expression of PFKP was associated with poorer OS 
and post-progression survival (PPS) compared to those with 
low expression. Similarly, in the GSE14814 database, high 
PFKP expression was significantly correlated with poorer 
OS. The combined analysis of more than 17 cohorts’ data 
also revealed a significant correlation between high PFKP 
expression and poorer OS and first-progression survival 
(FPS) (Figure 1B).

Cisplatin (CDDP) was used as a first-line chemotherapy 
for NSCLC. The GSEA analysis revealed that PFKP 
overexpression was closely associated with CDDP 
chemotherapy markers not found in methotrexate and 
fluorouracil, indicating that PFKP expression may 
contribute to CDDP resistance in NSCLC (Figure 1C). 

We next established organoids using specimens 
from clinical NSCLC patients to investigate the role 
of PFKP in chemoresistance (Figure S1). The results 
showed that the expression of PFKP was significantly 
elevated in chemotherapy-resistant organoids compared 
with the chemotherapy-sensitive samples (Figure 1D). 
Correspondingly, the immunohistochemical results yielded 
the same results (Figure 1E,1F). These results suggest 
that PFKP expression could be closely associated with 
chemotherapy resistance.

PFKP confers chemoresistance in NSCLC cells

To further investigate the direct role PFKP plays in 
chemoresistance, we established a cisplatin-resistant A549 
cell line (A549/CDDP). In the cytotoxicity assay, the 
cisplatin-resistant A549 cells better resisted the toxicity 
of CDDP (CDDP concentration of 5 μg/mL), P<0.05  
(Figure 2A). Also, PFKP expression in A549/CDDP cells 
was higher than that in A549 cells at both mRNA and 
protein levels (Figure 2B,2C).

Next, we used lentivirus to knock down PFKP in A549/
CDDP cells or overexpress PFKP in A549 cells (Figure 2D).  
The results demonstrated that overexpression of PFKP 
increased cell surviving fractions (Figure 2E) and decreased 
CDDP-induced cell apoptosis (Figure 2F) in A549 

cells. In contrast, knockdown of PFKP inhibited the 
cell proliferation (Figure 2G,2H) and increased CDDP-
induced cell apoptosis (Figure 2I) in A549/CDDP cells. 
These findings suggest that high expression of PFKP 
protects chemo-resistant cells from the pro-apoptotic effect  
of CDDP. 

PFKP promotes chemoresistance of NSCLC tumors in vivo

To determine whether the expression profile of PFKP 
influences the killing effect of CDDP on tumor cells in vivo, 
we injected A549 and A549/CDDP cells subcutaneously into 
BALB/c nude mice to establish xenograft models. When 
the average volume of tumors had reached approximately 
100 mm3, CDDP (2 mg/kg) was injected intraperitoneally 
every three days up to 42 days when mice were sacrificed, 
and the subcutaneous tumors were excised (Figure 3A). The 
tumor weights of PFKP-overexpressing A549 tumors were 
obviously larger than those in the vector control vector-
expressing tumors, while the tumor weights of PFKP-
knockdown A549/CDDP tumors were smaller than the 
control group (Figure 3B). Survivin was highly expressed 
in tumor tissues and played important role in preventing 
CDDP-induced cell death (18,19). Immunohistochemical 
staining of xenograft sections showed that the expression of 
survivin was increased in the PFKP-overexpressing tumors 
compared to the control group (Figure 3C). In contrast, 
knockdown of PFKP in A549/CDDP tumors resulted in 
a decrease in the expression of survivin (Figure 3C). The 
above results suggest that PFKP significantly enhances drug 
resistance in NSCLC tumor cells in vivo.

PFKP promotes cellular drug resistance through 
upregulating the expression of ABCC2

Next, we tested whether PFKP promotes cellular drug 
resistance through affecting intracellular CDDP content. 
Following treatment with 5 μg/mL CDDP, the intracellular 
amount of CDDP in PFKP-overexpressing cells was notably 
lower than that in the control A549 cells (Figure 4A).  
Correspondingly, the knockdown of PFKP resulted in a 
significant increase in intracellular CDDP (Figure 4A). 
Also, we observed a similar trend in the amount of DNA-
bound CDDP (Figure 4B). To further investigate the effect 
of PFKP on CDDP-induced DNA double-strand breaks 
(DSBs), immunocytochemical analyses were performed 
with the γ-H2AX antibody (20). We observed that the 
level of γ-H2AX was significantly decreased in the PFKP-

http://kmplot.com/analysis/index.php?p=service&cancer=lung
http://kmplot.com/analysis/index.php?p=service&cancer=lung
https://cdn.amegroups.cn/static/public/TLCR-23-567-Supplementary.pdf
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Figure 1 High PFKP expression correlates with poorer prognosis and chemotherapy resistance in NSCLC. (A) Relationship between PFKP 
expression levels with OS and DFS in lung cancer patients. (B) OS and PPS of lung cancer patients with different PFKP expression levels after 
chemotherapy treatment in CaArry dataset; OS analysis in GSE14814 dataset; OS and FPS in more than 17 cohorts’ data. (C) GSEA analysis 
shows the relationship between PFKP expression and common chemotherapy drugs. (D) The expression of PFKP in clinical samples was detected 
by Western blot, and GAPDH was used as a control. (E) The expression of PFKP in chemotherapy resistance and chemotherapy-sensitive tumor 
samples was detected by IHC staining (200×). (F) Statistical analysis of the IHC staining results showed a significant increase in PFKP expression 
in the chemotherapy resistance group. Scale bar =30 μm. **, P<0.01 (one-way ANOVA, Student’s t-test). PFKP, phosphofructokinase, platelet; 
TPM, transcripts per million; HR, hazard ratio; GSE, Gene Expression Omnibus (GEO) Series Entry; ES, Enrichment Score; NES, Normalized 
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Figure 2 PFKP confers chemoresistance in NSCLC cells. (A) A549 and A549/CDDP cells were treated with 5 μg/mL of CDDP for 24 h  
followed by TUNEL analysis using a situ cell death detection kit. (B,C) PFKP expression in A549 and A549/CDDP cells was detected 
using qRT-PCR and Western blot, respectively. (D,G) After transfecting A549 cells with the corresponding vector and PFKP plasmids; 
shRNA#1, shRNA#2 and sh-control transfected A549/CDDP cells, PFKP expression was analyzed using Western blot assays. (E,H) The 
colony formation method was used to detect the proliferation of the five cell types, staining with a 0.1% crystalline violet solution and 
then photographed using a scanner (10×). The data are expressed as the mean ± standard deviation of three independent experiments. 
(F,I) Apoptosis was detected using an Annexin V-FITC kit after 48 h of CDDP treatment. *, P<0.05; **, P<0.01 (one-way ANOVA). The 
experiment was independently replicated three times. PFKP, phosphofructokinase, platelet; NSCLC, non-small cell lung cancer; CDDP, 
cisplatin; qRT-PCR, quantitative reverse transcription polymerase chain reaction; ANOVA, analysis of variance. 
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overexpressing cells and increased in the PFKP-knockdown 
cells (Figure 4C). These results suggest that PFKP 
expression may influence the therapeutic effect of CDDP by 
decreasing intracellular CDDP levels and CDDP-mediated 
DNA-damage.

To investigate how PFKP affects intracellular CDDP 
content, we performed a classical enrichment analysis 
using GSEA analysis to investigate the correlation between 
PFKP expression and the ABC drug exporters (Figure 4D). 
Approximately 50+ members of the ABC family are known 
to exist (21), and further analysis using the TCGA database 
identified 10 ABC family proteins that were significantly 

elevated in lung cancer. Among these ten transporter 
proteins, only ABCC2 was closely associated with PFKP 
(Figure 4E,4F, Figure S2). The results demonstrated 
that overexpression of PFKP increased the expression 
of ABCC2, whereas knockdown of PFKP decreased the 
expression of ABCC2 (Figure 4G). As expected, knockdown 
of ABCC2 increased the CDDP content in the A549/
PFKP cells (Figure 4H). The knockdown of ABCC2 
reduced the capacity of monoclonal formation (Figure 4I) 
and enhanced the cell-killing effect (Figure 4J) of CDDP in 
PFKP-overexpressing A549 cells. The above data suggest 
that ABCC2 upregulation is required for PFKP-mediated 
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Figure 3 PFKP promotes chemoresistance of NSCLC tumors in vivo. (A,B) Four groups (n=6) of BALB/c nude mice inoculated with the 
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tumors were measured. (C) HE staining was performed on mouse tumor tissues, and the expression of survivin was detected using IHC. 
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Figure 4 PFKP promotes cellular drug resistance through upregulating the expression of ABCC2. (A,B) The amount of intracellular CDDP 
and the amount of CDDP bound to DNA were determined after treatment with 5 μg/mL of CDDP for 48 h. (C) Immunofluorescence staining 
of the five cell types after treatment with 5 μg/mL of CDDP for 48 h. Antibodies against γ-H2AX (Ser139) (red), as well as Hoechst 33342 (blue; 
nuclei), were used (200×). The results represent the mean ± SEM of five independent experiments. (D) GSEA analysis shows the relationship 
between PFKP expression and the ABC transporter protein family. (E,F) Flow chart of ABCC2 screening from the ABC family in the LUAD 
TCGA database. The correlation between PFKP and ABCC2 expression. (G) Western blot analysis of ABCC2 expression in the five post-
transfected cells. (H-J) A549 cells with a high expression of PFKP were transfected with ABCC2-siRNA and treated with 5 μg/mL of CDDP 
to detect intracellular CDDP content, monoclonal formation capacity [staining with a 0.1% crystalline violet solution and then photographed 
using a scanner (10×)], and apoptosis, respectively. Data represented as means ± SDs. *, P<0.05; **, P<0.01 (one-way ANOVA, Student’s t-test). 
PFKP, phosphofructokinase, platelet; TCGA, The Cancer Genome Atlas; TPM, transcripts per million; CDDP, cisplatin; GSEA, Gene Set 
Enrichment Analysis; SEM, standard error of the mean; LUAD, lung adenocarcinoma; SD, standard deviation; ANOVA, analysis of variance. 
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Figure 5 PFKP upregulates ABCC2 through activating NF-κB. (A) GSEA analysis shows the relationship between PFKP expression and 
the NF-κB pathway. (B) Effect of PFKP expression on NF-κB reporter genes using a dual-luciferase reporter gene assay. (C) Analysis of 
p-IκBα and p65 expression in the nucleus in the transfected cells using Western blot, to assess activation of the NF-κB pathway. (D-F) 
After transfecting high-expressing PFKP A549 cells with the IκBα-mut plasmid, the expression of ABCC2 was detected using qRT-PCR 
and Western blot; *, P<0.05 (one-way ANOVA). ES, Enrichment Score; PFKP, phosphofructokinase, platelet; CDDP, cisplatin; qRT-PCR, 
quantitative reverse transcription polymerase chain reaction; ANOVA, analysis of variance.

cellular drug resistance.

PFKP upregulates ABCC2 through activating NF-κB

Previous study demonstrated that NF-κB transcription factor 
acts as a positive regulator of ABCC2 transcription (22).  
Thus, we wondered whether PFKP may upregulating 
ABCC2 by activating the NF-κB pathway. The GSEA 
analysis revealed that PFKP was closely associated with 
NF-κB signaling (Figure 5A). To explore whether PFKP 
is essential for activating NF-κB signaling, we compared 
the luciferase activity in cells with each PFKP expression 
profile. The overexpression of PFKP in A549 cells induced 
a significant increase in NF-κB activity, while PFKP 
knockdown A549/CDDP cells showed a significant decrease 
in NF-κB activity (Figure 5B). To further investigate 
how PFKP regulates ABCC2 expression through NF-

κB pathway, we examined the phosphorylation of IκBα, a 
negative regulator of NF-κB, and the expression of NF-
κB subunit p65 in the nucleus. Western blot results showed 
that p-IκBα and nuclear p65 expression were elevated in 
PFKP-overexpressing A549 cells, and decreased in PFKP-
knockdown A549-CDDP cells (Figure 5C).

To elucidate whether an increase in IκBα leads to a rise 
in ABCC2 protein levels, we introduced mutant form of 
IκBα (IκBα-mut) in A549 cells and then examined the levels 
of ABCC2 mRNA in IκBα-mut A549 and control cells. 
Compared with control A549 cells, the IκBα-mut A549cells 
showed a significant decrease in both mRNA and protein 
levels of ABCC2 (Figure 5D,5E). The IκBα-mut A549 cells 
also showed reduced monoclonal formation compared to 
control A549 cells (Figure 5F). The above results suggest 
that PFKP upregulate ABCC2 expression probably through 
activating NF-κB pathway.



Translational Lung Cancer Research, Vol 12, No 11 November 2023 2305

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2023;12(11):2294-2309 | https://dx.doi.org/10.21037/tlcr-23-567

Clinical relevance of PFKP and ABCC2 in NSCLC

The immunohistochemical results of tumor sections from 
NSCLC patients showed increased ABCC2 expression 
and p65 nuclear localization in the tumor tissues with 
high PFKP expression compared to those with low PFKP 
expression (Figure 6A). To investigate whether ABCC2 
and the p65 (also called RELA) subunit of NF-κB are 
relevant to patients’ survival prognosis, we analyzed the 
relationship between ABCC2 or p65 expression and survival 
in lung cancer patients using the online Kaplan-Meier 
survival analysis (www.kmplot.com). Among 1,925 NSCLC 
patients, OS and first-progression (FP) of the patients with 
high ABCC2 expression was lower than those with low 
ABCC2 expression (P=0.014) (Figure 6B). Similarly, OS 
and FP of the patients with high p65 expression was lower 
than those with low p65 expression (P=0.0075) (Figure 6B). 
Collectively, high expression of PFKP could be associated 
with activation of NF-κB-dependent ABCC2 upregulation 
in NSCLC.

Discussion

In this study, we unveiled that PFKP caused an increase in 
ABCC2 expression, which, thanks to the effect of the efflux 
pump, enabled NSCLC cells to acquire the ability to resist 
chemotherapeutic drugs This was accompanied by PFKP-
induced phosphorylation of IκBα to activate the NF-κB 
signaling pathway, which may upregulate the expression of 
ABCC2 (Figure 6C).

PFKP is one of the three isomers of phosphofructokinase 
1 (PFK1), the other two are phosphofructokinase liver type 
(PFKL) and phosphofructokinase muscle type (PFKM) (23). 
PFKP was previously reported to be upregulated in most 
tumor types, including breast cancer, hepatoma, and kidney 
cancers, and be strongly associated with prognosis. PFKP 
expression was higher in oral squamous cell carcinoma 
tissues than in paraneoplastic non-cancerous tissues and was 
linked with tumor cell differentiation and metastasis (24). 
In contrast to normal brain tissue, PFKP is upregulated 
in glioblastoma and functions as a pro-oncogene (25). 
Interestingly, recent studies have shown that PFKP is a 
nuclear shuttle protein with active nuclear transport and 
nuclear localization sequences (NLSs) (26). Although PFKP 
is a critical enzyme in glycolysis, PFKP may promote tumor 
cell proliferation through its non-glycolytic-related function 
by regulating PI3K and YAP/TAZ activity (27). PFKP also 
promotes long-chain fatty acid oxidation in the context of 

tumor cell glucose starvation, maintains cellular homeostasis 
of redox and energy metabolism, and enhances tumor cell 
resistance to oxidative stress (10). Overexpression of PFKP 
promoted β-catenin (S552) phosphorylation and epithelial-
to-mesenchymal transition in NSCLC cells under hypoxia, 
thereby enhancing cell survival and proliferation (28). These 
findings suggest that PFKP may not only function as a key 
enzyme in glycolysis but also contributes significantly to 
the survival of tumor cells through non-enzyme functions. 
Our organoid experiments have demonstrated that NSCLC 
samples with high PFKP expression exhibit variable degrees 
of resistance to conventional chemotherapeutic agents such 
as CDDP and paclitaxel. Additionally, our observations of 
lower intracellular drug concentrations of CDDP induced 
by ABCC2 upregulation induced by PFKP further support 
the potential significance of PFKP in NSCLC progression 
and chemoresistance. 

In previous studies, the ABC superfamily has been 
shown to play an essential role in the development of 
MDR in tumors, with the primary mechanism of action 
being the efflux pump, which reduces intracellular drug 
concentrations and protects them from the effects of drugs, 
thereby avoiding cell death (11,12,15). This phenomenon 
was also observed in our experiments, which showed 
that PFKP induced a significant decrease in intracellular 
cisplatin drug concentration in NSCLC cells, and this 
process was reversed by knockdown of ABCC2. Thus, 
the altered intracellular drug concentration may be due 
to the pumping activity of ABCC2, which to some extent 
explains the tolerance to chemotherapeutic drugs in 
NSCLC cells with high PFKP expression. These results 
provide significant insights into the underlying molecular 
mechanisms involved in PFKP-mediated chemoresistance.

NF-κB, a well-known transcription factor, has been 
shown to have a regulatory role in tumor MDR (29). IκBα 
is a critical negative regulator of the NF-κB signaling 
pathway. When IκBα is phosphorylated, IκBα is quickly 
degraded by proteasome, thus promoting the activation 
of p65/p50, which enters the nucleus to regulates the 
expression of related genes, thus exerting a corresponding 
effect (30). Existing studies demonstrate that transcription 
factor Nrf2 binds to the promoter region of ABCC2 and 
thereby regulates its expression (31). Further evidence 
reveals that NF-κB activates Nrf2 expression by binding to 
a specific promoter region (32,33). Accordingly, inhibition 
of NF-κB downregulates Nrf2 and therefore triggering 
the downregulation of ABCC2 expression (22). Our data 
further suggest that nuclear activation of p65 is observed 
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in tumor tissues with high PFKP expression. Additionally, 
the luciferase experiments show that PFKP potentially 
activates NF-κB via phosphorylating IκBα. These findings 
indicate that NF-κB may upregulate ABCC2 by activating 
NF-κB pathway in NSCLC, which could have important 
implications for the development of targeted therapeutic 
strategies.

In conclusion, we elucidated the underlying mechanism 
by which PFKP mediates chemoresistance in tumor tissues. 
Specifically, PFKP enhanced the expression of ABCC2 
through increasing the activity of NF-κB. The findings of 
this study enhance our comprehension of the molecular 
mechanisms associated with chemoresistance in NSCLC 
and may have significant implications for the development 
of more efficacious therapeutic interventions for this 
pathology.

Conclusions

In conclusion, our study reveals a potential mechanism 
underlying chemoresistance in NSCLC. We found that 
overexpression of PFKP is associated with poor prognosis 
and reduced sensitivity to platinum-based chemotherapy in 
NSCLC patients. Through in vitro and in vivo experiments, 
we demonstrated that PFKP regulates chemosensitivity by 
upregulating ABCC2 via NF-κB activation. These findings 
highlight PFKP as a potential personalized therapeutic 
target for overcoming chemoresistance in NSCLC. Further 
investigation into the PFKP-NF-κB-ABCC2 signaling 
pathway could offer new therapeutic strategies to improve 
the diagnosis and treatment of NSCLC.
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Figure S1 In vitro drug sensitivity screening of patient-derived organoid models. (A) Tumor-like organoid models were constructed using 
samples taken from patients undergoing surgery for lung cancer. Observed using an inverted light microscope and photographed (×10). (B) 
Organoid models were subjected to treatment with varying concentrations of CDDP, and the resultant inhibition was measured using a 
dedicated kit. Of these, 006, 007, 009, 013, and 017 exhibited resistance to CDDP. CDDP, cisplatin.

Supplementary

Table S1 The clinical and specimen information of patients in this study

Patient_number Sample_number Age, year Gender Smoking history Tumor size (cm) Histology pTNM stages

Patient 1 006 72 Male No 1.6×1.2×1.2 IAC pT1bN0M0

Patient 2 007 64 Female No 3.5×2.5×2 IAC pT2abN0M0

Patient 3 009 63 Female No 2.2×1.5×1.5 IAC pT1cN0M0

Patient 4 011 54 Female No 1.7×1.2×0.6 IAC pT1bN0M0

Patient 5 013 71 Female Yes 2.7×2.2×2 IAC pT1cN0M0

Patient 6 017 79 Female No 2.2×1.5×1 IAC pT1cN0M0

Patient 7 018 67 Male Yes 1.8×1.5×0.9 IAC pT1bN0M0

IAC, invasive adenocarcinoma. 
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Figure S2 Correlation analysis of 9 ABC transporters with PFKP. (A) 10 ABC transporters with fold change >2.0 were analyzed for 
correlation with PFKP using GEPIA correlation, with ABCC2 showing the strongest correlation with PFKP (Figure 5C). (B) After 
transfecting A549 cells with the corresponding vector and PFKP plasmids, shRNA#1, shRNA#2, and sh-control transfected A549/CDDP 
cells, PFKP expression was analyzed using qRT-PCR. *, P<0.05. 
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