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Background: Patients with chronic obstructive pulmonary disease (COPD) have a high risk of developing 
lung cancer. Due to the high rates of complications from invasive diagnostic procedures in this population, 
detecting circulating tumor DNA (ctDNA) as a non-invasive method might be useful. However, clinical 
characteristics that are predictive of ctDNA mutation detection remain incompletely understood. This study 
aimed to investigate factors associated with ctDNA detection in COPD patients with lung cancer. 
Methods: Herein, 177 patients with COPD and lung cancer were prospectively recruited. Plasma ctDNA 
was genotyped using targeted deep sequencing. Comprehensive clinical variables were collected, including 
the emphysema index (EI), using chest computed tomography. Machine learning models were constructed to 
predict ctDNA detection. 
Results: At least one ctDNA mutation was detected in 54 (30.5%) patients. After adjustment for potential 
confounders, tumor stage, C-reactive protein (CRP) level, and milder emphysema were independently 
associated with ctDNA detection. An increase of 1% in the EI was associated with a 7% decrease in the odds 
of ctDNA detection (adjusted odds ratio =0.933; 95% confidence interval: 0.857–0.999; P=0.047). Machine 
learning models composed of multiple clinical factors predicted individuals with ctDNA mutations at high 
performance (AUC =0.774). 
Conclusions: ctDNA mutations were likely to be observed in COPD patients with lung cancer who had 
an advanced clinical stage, high CRP level, or milder emphysema. This was validated in machine learning 
models with high accuracy. Further prospective studies are required to validate the clinical utility of our 
findings.
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Introduction

Lung cancer often develops in patients with an underlying 
pulmonary disease. Of them, chronic obstructive pulmonary 
disease (COPD) is the most common disease, along 
with pulmonary fibrosis (1,2). Studies have documented 
that COPD is an established risk factor for lung cancer 
development, even in never-smokers or when smoking 
exposure is controlled (3-9). When lung cancer is 
radiologically suspected, patients with COPD have a higher 
likelihood of being diagnosed with lung cancer and have 
higher rates of complications from invasive procedures than 
those without COPD (10). In this context, some COPD 
patients with lung cancer do not receive histologic diagnosis 
even when the tumor stage is I or II (11), necessitating a 
non-invasive biomarker that could aid lung cancer diagnosis 
in this high-risk population. 

Cell-free DNA (cfDNA) is a non-encapsulating DNA in 
the peripheral blood, which was first discovered in 1948 (12). 
Many types of tumors release small DNA fragments through 
a combination of apoptosis, necrosis, and secretion (13). 

Although circulating tumor DNA (ctDNA) comprises only a 
small fraction of the total blood cfDNA (0.01% to 10%), the 
genomic alterations of ctDNA are highly specific to those of 
the original tumor and have been widely studied along with the 
development of next-generation sequencing (NGS). Analyses 
of ctDNA in plasma are intensively studied in patients with 
advanced-stage lung cancer to guide and monitor genotype-
directed therapies (14,15). However, attempts to integrate 
ctDNA analysis into the diagnosis of lung cancer have been 
faced with challenges (16,17). One of the major limitations 
is that not all tumors shed sufficient amounts of ctDNA into 
the peripheral circulation in earlier stages (18). Given the 
relatively low sensitivity and high cost of ctDNA analysis, it is 
important to identify patients who are more likely to benefit 
from it. Several predictors of ctDNA shedding have been 
established, including tumor size, stage, number and sites of 
metastasis, non-adenocarcinoma histology, and tumor necrosis  
(17-20). However, previous studies included lung cancer 
patients regardless of underlying COPD, and little is known 
about the clinical factors associated with ctDNA detection in 
COPD patients with lung cancer.

Thus, we analyzed ctDNA mutations in spirometry-
confirmed COPD patients with newly diagnosed lung 
cancer and sought to investigate which COPD-related 
clinical and imaging variables are associated with ctDNA 
detection. In addition, we developed prediction models 
to identify patients who are most likely to benefit from 
ctDNA analysis using multivariable machine learning 
(ML) methods. We present this article in accordance with 
the STARD reporting checklist (available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-23-633/rc).

Methods

A detailed description of the methods can be found in 
Appendix 1.

Study population

From October 2017 to September 2020, 461 patients with 
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spirometry-defined COPD [post-bronchodilator forced 
expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) 
<0.7] aged ≥40 years were prospectively enrolled from a 
single referral hospital. All of them did not have a significant 
pulmonary fibrosis. After excluding patients whose blood 
samples did not pass quality control or had technical issues 
in sample processing or library preparation (N=43), who 
withdrew consent or did not collect blood samples (N=11), 
and who had a history of malignancy other than lung cancer 
(N=3), 404 patients were included in the study population. 
For the present study, we further excluded patients without 
lung cancer (N=209), those with missing variables (N=10), 
and never smokers (N=8). Finally, 177 COPD patients with 
newly diagnosed lung cancer were included in the analysis. 
This study was approved by the Institutional Review Board 
(IRB) of Samsung Medical Center (IRB file No. SMC 
2017-08-128). In addition, surgically resected lung cancer 
tissues from three patients were banked and provided by 
the Samsung Medical Center Biobank (IRB file No. SMC 
2020-12-016). Informed consent was obtained from all the 
patients and the study was carried out in accordance with 
the Declaration of Helsinki (as revised in 2013). 

Sequencing data processing and somatic mutation calling

Details of the sample preparation, DNA extraction and 
library preparation were described in the Appendix 1. For 
the library construction of plasma cfDNA, hybrid selection 
was performed using three customized baits (LungCancer 
v1, LiquidSCAN v2-PanCancer, or IVD v1.0, GENINUS, 
Seoul, Korea; Table S1). Each capture bait targeted 36, 38, 
and 46 cancer-related genes and covered 340, 117, and 174 
kb genomic regions across the human genome. 

All liquid biopsy sequencing data were aligned to the 
hg19 reference using BWA-mem (v0.7.5). GATK v4.0.0 (21)  
and SAMTOOLS v1.6 (22) were used for base quality 
recalibration and cross-validation of the unique molecular 
identifier (UMI) family, and for sorting sequence alignment 
map (SAM) and binary alignment map (BAM) files, 
respectively. After sequencing alignment, discordant paired 
and off-target sequencing reads were removed. Picard 
(v2.9.4) was used to group reads into the same UMI families 
and in-house python (v2.7.10) scripts were used for error 
suppression. The error suppression method was based 
on previous studies (20) with minor modifications. First, 
all bases were subjected to Phred quality filtering using a 
threshold Q of 30 and only positions where total depths 
were above 500× were considered for variant identification. 

To exclude germline mutations in the analysis, non-
reference alleles present at a frequency greater than 1% 
in the matched white blood cell gDNA were removed. 
The error suppression method using UMIs was used to 
distinguish true somatic mutations from polymerase chain 
reaction (PCR) and sequencing errors. After applying 
the error suppression method to the sequencing data, 
the following selection steps were used to eliminate the 
remaining sequencing errors: (I) variants not significantly 
greater than the error found in the matched germline 
DNA (binomial Bonferroni-adjusted P<0.01) were filtered 
out; (II) variant candidates with a high strand bias (90% if 
supporting reads ≥20; Fisher’s exact test, P<0.1 if supporting 
reads <20) were removed; (III) if the z-statistic of the 
variants was not significantly higher than the background 
error obtained from gDNA (Bonferroni-adjusted P<0.05), 
they were excluded from the analysis.

Finally, the mutation candidates were selected according 
to the following conditions: Allele frequencies ≥0.15% 
and alternative allele counts ≥5 were selected. For tissue 
specimens, somatic variants were identified using different 
criteria: total depth ≥100× and allele frequency ≥2%. In 
the case of insertions or deletions, variants with an allele 
frequency ≥5% were selected. Variants were annotated 
using variant effect predictor (VEP) (v102) (23) and 
nonsynonymous variants were used in this analysis.

Clinical variables

Demographic and clinical information were obtained from 
electronic medical records, including age, sex, body mass index 
(BMI), smoking status, tumor stage (24) and centrality (25).  
Regarding COPD, modified Medical Research Council 
(mMRC) grade, COPD assessment test (CAT), pulmonary 
function tests (26,27), and chest CT parameters were 
collected. Using automatic segmentation software (Aview, 
Coreline Soft, Seoul, Korea) (28,29), we measured the 
emphysema index (EI), defined as the percentage of lung area 
with CT attenuation values <−950 HU in the whole lung 
at inspiration. WBC count and high-sensitivity C-reactive 
protein (hsCRP) levels were also measured in blood samples.

Statistical analysis

Logistic regression (LR) analyses were performed to analyze 
the clinical factors associated with the detection of ctDNA. 
In multivariable LR models (Models 1–5), we used a panel 
as an adjusted variable. To estimate the prediction score of 
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ctDNA detection in COPD patients, we used the sum of 
beta coefficients of significant variables from Model 5. To 
predict ctDNA detection using the variables, we considered 
four binary classifying machine learning (ML) models 
[logistic regression (LR), elastic net logistic regression (EN), 
random forest (RF), and support vector machine (SV)]. 
After splitting the dataset into training and test sets within 
the frame of leave-one-out cross-validation, we selected 
variables as features for ML models that showed significant 
association (P<0.1) with the presence of ctDNA mutation 
in a univariable LR model within each training set. The 
hyperparameters for EN, RF, and SV models were optimized 
by using grid search 5 cross-validation for accuracy in each 
training set. EN model was tuned by alpha from 0.0001 to 
100, and L1 ratios between 0.0 and 1. RF model was allowed 
to have 10 to 1,000 estimators, maximum depth between 6 
and 12, minimum samples per leaf between 8 and 18, and 
minimum samples per split between 8 and 20. SV model was 
allowed to use either radial or linear kernels, with gamma 
and C parameters between 0.001 to 100. To evaluate each 
model, we estimated the area under the receiver operating 
characteristics (ROC) curve (AUC), accuracy, sensitivity, 
specificity, and positive predictive value in the test set, and 
represented the performance of each model using an ROC 
curve plot. The model with the highest AUC was selected as 
the best prediction model for the ctDNA detection.

Results 

Clinical characteristics of COPD patients with lung cancer

The clinical variables of patients with COPD and 
treatment-naïve lung cancer (N=177) are summarized in 
Table 1. Overall, the mean (standard deviation, SD) age 
was 69.8 (6.7) years, and most patients were male (94.4%) 
with former (67.8%) or current (32.2%) smoking exposure. 
Symptomatic burden measured using the mMRC dyspnea 
scale and CAT was relatively mild. Pulmonary function 
tests showed that the mean FEV1 was 70.3% pred, and the 
majority of patients (90.4%) had FEV1 ≥50% pred. The 
mean (SD) EI was 4.43% (6.8%) and 24 (13.6%) patients 
had an EI ≥10%. The clinical stages of lung cancer were 
classified as stage I (41.8%), II (17.5%), III (29.9%), and 
IV (10.7%), respectively. There were eight patients whose 
lung cancers were not histologically confirmed, mainly due 
to poor lung function, although the clinical diagnosis of 
lung cancer was unequivocal. Most patients (92.9%) had 
non-small cell lung cancer (NSCLC) and adenocarcinoma 
accounted for 40% of NSCLC cases. 

Detection of ctDNA mutations in overall study population

Among the 177 patients with COPD and treatment-naïve 
lung cancer, at least one ctDNA mutation was detected 
in 54 patients (30.5%). Detection rate was 8.1%, 25.8%, 
52.8%, and 63.2% in stage I, II, III, and IV, respectively. 
The median number of detected mutations per patient was 
2 (range, 1–8) and the median VAF of the mutations was 
6.0% (range, 0.7–85.3%). The most frequently mutated 
genes were TP53 (70%), RB1 (19%), CSMD3 (15%), 
KEAP1 (9%), and LRP1B (9%) (Figure 1A). TP53 was the 
most frequently mutated gene in both adenocarcinoma 
(52.9%) and squamous cell carcinoma (69.6%). Among 
the 54 patients, 19 underwent surgical resection without 
neoadjuvant treatment. Tumor tissues and adjacent normal 
lung tissues were banked in three patients. To confirm that 
ctDNA mutations identified by our pipeline were derived 
from tumor tissues, we compared ctDNA mutations and 
mutations identified in tumor tissues of the same patient 
(Figure 1B). All ctDNA mutations (16 mutations within 6 
genes) were also detected in tumor tissues across the three 
patients, while 62.5% (10/16) of tumor tissue mutations 
were detected in ctDNA, suggesting that ctDNA mutations 
are derived from the tumor tissues and can be used in the 
subsequent analyses as tumor mutations in COPD patients 
with lung cancer.

Clinical factors associated with ctDNA detection

To identify ctDNA detection-associated factors, we first 
compared the variables of patients with ctDNA detection 
(N=54) and those without ctDNA detection (N=123) 
using univariable models (Table 1). As a result, patients 
with ctDNA mutations (N=54) had higher mMRC grade, 
lower EI, higher CRP, larger tumor size, more advanced 
clinical stages, more centrally located tumors, and a higher 
prevalence of small cell lung cancer (SCLC) than patients 
without ctDNA detection (Table 1). As different sequencing 
panels were used in our mutation data, we further conducted 
multivariable LR analyses with the same variables adjusted 
for sequencing panel type (Table 2), considering different 
types of EI (continuous variable in Model 2, binary variable 
using cut-off of 10% in Model 3, or continuous variable of 
tumor located lobes in Model 4). Tumor stages were most 
strongly associated with ctDNA detection in all the models 
{adjusted odds ratio (OR) comparing stage II, III, and IV 
to stage I: 3.82 [95% confidence interval (CI): 1.14–13.58], 
9.01 (95% CI: 3.23–28.61), and 15.52 (95% CI: 4.15–66.14), 
respectively, in Model 2}. Lower EI values of the total lung 
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Table 1 Characteristics of COPD patients with lung cancer according to ctDNA detection

Clinical variables Overall (N=177)
ctDNA not detected 

(N=123)
ctDNA detected 

(N=54)
Univariable OR  

(95% CI)
P

Age (years) 69.8 (6.7) 70.3 (6.6) 68.5 (6.8) 0.96 (0.91–1.01) 0.082

Sex, male 167 (94.4) 115 (93.5) 52 (96.3) 1.81 (0.43–12.26) 0.440

Smoking 

Former 120 (67.8) 88 (71.5) 32 (59.3) Reference

Current 57 (32.2) 35 (28.5) 22 (40.7) 1.73 (0.88–3.38) 0.111

BMI (kg/m2) 23.2 (2.8) 23.3 (2.7) 23.1 (3.0) 0.98 (0.87–1.10) 0.731

mMRC ≥2 48 (27.1) 26 (21.1) 22 (40.7) 2.56 (1.28–5.16) 0.008

CAT total ≥10 99 (55.9) 65 (52.8) 34 (63.0) 1.52 (0.79–2.96) 0.21

Pulmonary function

FVC, % pred 88.9 (13.7) 89.0 (14.6) 88.7 (11.6) 1.00 (0.98–1.02) 0.907

FEV1, % pred 70.3 (15.4) 69.7 (15.7) 71.5 (14.7) 1.01 (0.99–1.03) 0.489

FEV1/FVC, % 55.6 (10.1) 54.8 (10.3) 57.5 (9.3) 1.03 (1.00–1.07) 0.089

FEV1 <50% pred, n 17 (9.6) 13 (10.6) 4 (7.4) 0.68 (0.18–2.02) 0.502

EI

% total lung 4.43 (6.8) 5.07 (7.2) 2.98 (5.6) 0.94 (0.88–1.00) 0.041

≥10%, n 24 (13.6) 21 (17.1) 3 (5.6) 0.29 (0.07–0.88) 0.027

% tumor-located lobe (N=175) 4.24 (8.2) 5.11 (9.5) 2.22 (3.4) 0.92 (0.83–0.98) 0.010

CRP (mg/dL) 1.06 (1.9) 0.66 (1.4) 2.00 (2.6) 1.41 (1.18–1.72) <0.001

Tumor size (mm) 37.2 (19.5) 32.1 (15.1) 48.9 (23.1) 1.05 (1.03–1.07) <0.001

Clinical stage of lung cancer

I 74 (41.8) 68 (55.3) 6 (11.1) Reference

II 31 (17.5) 23 (18.7) 8 (14.8) 3.94 (1.24–13.15) 0.020

III 53 (29.9) 25 (20.3) 28 (51.9) 12.69 (4.98–37.32) <0.001

IV 19 (10.7) 7 (5.7) 12 (22.2) 19.43 (5.85–73.40) <0.001

Centrally located tumor 71 (40.1) 39 (31.7) 32 (59.3) 3.13 (1.63–6.14) <0.001

Histology (N=169)

NSCLC 157 (92.9) 112 (97.4) 45 (83.3) Reference

SCLC 12 (7.1) 3 (2.6) 9 (16.7) 7.47 (2.12–34.82) <0.001

Histology of NSCLC (N=157)

Non-adenocarcinoma 94 (59.9) 66 (58.9) 28 (62.2) Reference

Adenocarcinoma 63 (40.1) 46 (41.1) 17 (37.8) 0.87 (0.42–1.76) 0.703

Sequencing panel

IVDv1 82 (46.3) 58 (47.2) 24 (44.4) Reference

LCv1 41 (23.2) 27 (22.0) 14 (25.9) 1.25 (0.55–2.78) 0.583

PCv2 54 (30.5) 38 (30.9) 16 (29.6) 1.02 (0.47–2.15) 0.964

Values indicate the number of number (%) or mean (standard deviation) for categorical and continuous variables, respectively. COPD, 
chronic obstructive pulmonary disease; ctDNA, circulating tumor DNA; OR, odds ratio; CI, confidence interval; BMI, body mass index; 
mMRC, modified medical research council; CAT, COPD assessment test; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 
second; EI, emphysema index; CRP, c-reactive protein; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer.



Translational Lung Cancer Research, Vol 13, No 1 January 2024 117

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(1):112-125 | https://dx.doi.org/10.21037/tlcr-23-633

and higher CRP levels were also significantly associated 
with ctDNA detection. In Model 2, a 1% increase in EI of 
the total lung was associated with a 7% decrease in the odds 
of ctDNA detection (adjusted OR: 0.933, 95% CI: 0.857–
0.999, P=0.047).

Prediction of ctDNA detection using machine learning 
models

To predict ctDNA mutation detection using multiple 
variables, we selected variables with P<0.1 from the 
univariable LR models as the features of four ML prediction 
models (LR, EN, RV, SV) (Table 3 and Table S2). As shown 

in Figure 2, the LR model showed the highest AUC (0.774) 
with an accuracy of 71.8%, sensitivity of 42.6%, and 
specificity of 84.6% for predicting the presence of ctDNA 
mutations. We further estimated the prediction score per 
sample to show the effect of the significant variables on 
the risk of ctDNA detection in COPD patients with lung 
cancer using the beta coefficients of the multivariable LR 
model (Model 5, composed of variables with P<0.05 of the 
Model 2 adjusted by panel). After classifying samples based 
on the risk scores, we found that 82.4% of the patients in 
the highest (10th) decile group had ctDNA mutations while 
all patients in the lowest (1st) decile group had no ctDNA 
mutations (Figure 3 and Table S3).

Figure 1 Mutations identified in ctDNA of 54 patients with COPD and lung cancer. (A) Overview of the mutated genes in patients with 
ctDNA detected. (B) Comparison of genetic alteration between ctDNA and surgically resected tumor tissues in three patients. For one 
patient (COPD_268) who had a missense mutation in NFE2L2 and CSMD3 in ctDNA, these two mutations could not be compared with 
those in the tissue because NFE2L2 and CSMD3 were not included in the panel used for tissue sequencing. SqCC, squamous cell carcinoma; 
Adeno, adenocarcinoma; SCLC, small cell lung cancer; LCNEC, large cell neuroendocrine carcinoma; COPD, chronic obstructive 
pulmonary disease; ctDNA, circulating tumor DNA.
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Prognostic values of ctDNA detection

During the median follow-up of 20.7 (interquartile range, 
10.9–31.8) months, 51 (28.8%) patients with lung cancer 
died. The proportion of patients who died was significantly 
higher in those with ctDNA detection than in those 
without ctDNA detection (51.9% vs. 18.7%, P<0.001). In 
an unadjusted Cox regression model, ctDNA detection was 

associated with an increased risk of death [unadjusted hazard 
ratio (HR): 3.27, 95% CI: 1.87–5.72; Figure S1). However, 
after adjustment for major confounders, including tumor 
stage and histology, this association was not statistically 
significant. In a subgroup of patients with stage I and II 
lung cancer (N=105), ctDNA detection was independently 
associated with increased mortality (fully adjusted HR: 

Table 2 Multivariable models for clinical factors associated with ctDNA detection in COPD patients with lung cancer 

Clinical variables
Model 1* Model 2† Model 3† Model 4†

OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

Age 0.96 (0.91–1.01) 0.081

Sex 1.73 (0.41–11.8) 0.482

Smoking

Former Reference

Current 1.71 (0.86–3.38) 0.126

BMI (kg/m2) 0.98 (0.87–1.10) 0.710

mMRC ≥2 2.57 (1.27–5.23) 0.009 2.05 (0.88–4.79) 0.095 1.97 (0.86–4.52) 0.108 2.09 (0.89–4.93) 0.091

CAT total ≥10 1.50 (0.78–2.94) 0.221

FEV1 <50% pred 0.67 (0.18–2.00) 0.484

EI

% total lung 0.94 (0.88–1.00) 0.043 0.93 (0.86–0.999) 0.047

≥10%, n 0.29 (0.07–0.89) 0.029 0.29 (0.06–1.07) 0.064

% tumor located 
lobe

0.92 (0.83–0.98) 0.009 0.93 (0.83 –1.00) 0.061

CRP (mg/dL) 1.41 (1.18–1.74) <0.001 1.39 (1.12–1.78) 0.002 1.42 (1.14–1.83) 0.001 1.39 (1.11–1.79) 0.003

Clinical stage of lung cancer

I Reference Reference Reference Reference

II 3.96 (1.25–13.23) 0.020 3.82 (1.14–13.58) 0.029 4.10 (1.24–14.41) 0.021 3.55 (1.06–12.59) 0.040

III 12.87 (4.99–38.30) <0.001 9.01 (3.23–28.61) <0.001 10.17 (3.75–31.67) <0.001 8.10 (2.90–25.71) <0.001

IV 19.16 (5.75–72.59) <0.001 15.52 (4.15–66.14) <0.001 17.43 (4.73–73.20) <0.001 14.23 (3.63–63.06) <0.001

Centrally located 
tumor

3.14 (1.63–6.17) 0.001 1.75 (0.79–3.86) 0.164 1.77 (0.80–3.93) 0.160

Sequencing panel

IVDv1.0 – Reference Reference Reference

LCv1 0.78 (0.28–2.09) 0.620 0.77 (0.28–2.06) 0.602 0.83 (0.30–2.25) 0.719

PCv2 0.88 (0.34–2.25) 0.790 0.92 (0.36–2.32) 0.864 0.87 (0.33–2.22) 0.767

*, adjusted only for sequencing panels. †, variables with P<0.05 from Model 1 were used in forward selection. The selected variables 
were then used in the construction of Models 2, 3, and 4. For the EI, continuous and binary values of EI of the total lung areas were used 
in Models 2 and 3, respectively. Continuous values of EI of the tumor located in lobes were used in Model 4. In Model 4, 175 samples 
were used as described in Table 1. ctDNA, circulating tumor DNA; COPD, chronic obstructive pulmonary disease; OR, odds ratio; CI, 
confidence interval; BMI, body mass index; mMRC, modified medical research council; CAT, COPD assessment test; FEV1, forced 
expiratory volume in 1 second; EI, emphysema index; CRP, C-reactive protein.
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7.91, 95% CI: 1.55–40.36). VAF (per 1% increase) was also 
significantly associated with an increased risk of death in 
patients with stage I and II lung cancer (fully adjusted HR: 
1.25, 95% CI: 1.01–1.56) (Table S4).

Discussion

Despite having a high risk of developing lung cancer, 
pat ients  wi th  COPD exper ience  h igher  ra tes  o f 
complications from invasive diagnostic procedures 

compared to those without COPD. To focus on these 
high-risk populations, this study exclusively included 
patients with COPD with newly diagnosed lung cancer and 
analyzed ctDNA mutations using targeted deep sequencing. 
At least one ctDNA mutation was detected in 30.5% of 
patients (8.1% in stage I to 63.2% in stage IV). Of the 
comprehensively collected clinical and imaging variables, 
advanced clinical stage, lesser degree of emphysema, and 
increased CRP levels were associated with ctDNA detection 
among COPD patients with lung cancer. While this finding 
must be further validated, ML models with cross-validation 
demonstrated a satisfactory performance in identifying 
patients with ctDNA mutations, suggesting a potential 
clinical utility of ctDNA analysis assisted by a prediction 
model. We also confirmed that ctDNA detection and VAF 
levels were prognostic factors for poor overall survival (OS), 
particularly in early stage lung cancer patients. 

We found an inverse relationship between emphysema 
and ctDNA detection, which is a novel finding. Figure 4 
shows representative cases of two patients with similar 
smoking exposure and lung function and the same stage 
IIB squamous cell carcinomas, which were located 
centrally. However, one patient with an EI of 1% had 
ctDNA mutations detected (RB1 and TP53) whereas the 
other patient, with an EI of 10%, was negative for ctDNA 
mutation. Given that the major process of ctDNA shedding 
is tumor cell apoptosis and release into the bloodstream, it 
might be attributable to impaired pulmonary vasculature 
in the emphysematous lung. Earlier histological studies 
reported vascular alterations in emphysema (30). Another 
study showed that endothelial dysfunction (decreased 
expression of VEGF) is associated with the extent of 
emphysema (31). Indeed, the cross-sectional area of small 
pulmonary vessels is inversely correlated with the extent of 
emphysema (32). Thus, the lower rate of ctDNA shedding 

Table 3 Performance of prediction models for ctDNA detection using machine learning

Performance LR EN SV RF

Accuracy (%) 71.8 65.5 71.8 70.1

Specificity (%) 84.6 72.4 94.3 92.7

Sensitivity (%) 42.6 50.0 20.4 18.5

PPV (%) 54.8 44.3 61.1 52.6

AUC 0.774 0.678 0.663 0.711

AUC, area under the receiver-operating-characteristics curve; ctDNA, circulating tumor DNA; EN, elastic net regression; LR, logistic 
regression; PPV, positive predictive value; RF, random forest; SV, support vector machine.

Figure 2 ROC curves of four machine learning prediction models 
for ctDNA detection in COPD patients with lung cancer. ROC, 
receiver operating characteristic; AUC, area under the ROC curve; 
LR, logistic regression; EN, elastic net regression; SV, support 
vector machine; RF, random forest; ctDNA, circulating tumor 
DNA; COPD, chronic obstructive pulmonary disease.
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Figure 3 Distribution of prediction scores for ctDNA detection in all individual COPD patients with lung cancer and proportion of 
patients with ctDNA mutations detected per decile group according to risk scores. The prediction score for ctDNA detection is a score for 
an individual patient estimated by sum of beta coefficients of variables from Model 5, which is composed of variables with P<0.05 of the 
multivariable Model 2 (please refer Table S3). ctDNA, circulating tumor DNA; COPD, chronic obstructive pulmonary disease.

in patients with severe emphysema in this study might be 
due to loss of vessels. This inverse correlation between 
emphysema and ctDNA detection in COPD patients 
with lung cancer suggests that ctDNA might have limited 
clinical utility in patients with severe emphysema who are 
in greater need for non-invasive diagnosis of lung cancer. 
Negative ctDNA mutation in this population cannot 
exclude lung cancer diagnosis. Therefore, it should be used 
as complementary to other modalities, such as chest CT 
scans. 

Despite the limitations regarding insufficient shedding 
of ctDNA, several factors related to ctDNA detection 
have been reported. This study showed that advanced 
clinical stage is strongly associated with ctDNA detection 
in COPD patients with lung cancer, which was consistent 
with the correlation between tumor stage and ctDNA 
detection in many previous studies, as well as the number 
of metastatic sites (19). Based on several studies using NGS 
of multiple recurrent genetic alterations in lung cancer 
for the purpose of non-invasive diagnosis or residual disease 
detection (16,20,33,34), the sensitivity for stages II and III 
was up to 100% but the sensitivity was 50% or less for stage I 
NSCLC (16,34). Tumor size has been consistently associated 
with ctDNA shedding and a minimum tumor volume of 
10 cm3, which corresponds to a nodule diameter of 2.6 cm 
(T1c stage), is required to quantify VAF of 0.1% (20). In 
addition, 18F-FDG avidity or metabolic tumor volume on 
positron emission tomography-CT scans were positively 
associated with ctDNA detection and VAF levels (17,20,35). 
Other radiologic parameters associated with the ctDNA 
detection rate include necrosis and nodule density (17). 

Among histological parameters, non-adenocarcinoma 
histology, SCLC, Ki67 proliferation index, necrosis, and 
lymphovascular invasion are known to predict ctDNA 
detection (20,36,37). This study did not include histological 
parameters in the multivariable models because we aimed 
to determine clinical factors predicting ctDNA detection 
before or even without histological confirmation as patients 
with COPD often have a high complication risk of invasive 
procedures.

Regarding the prognostic value of ctDNA detection, this 
study confirmed the findings of previous studies by showing 
that ctDNA detection and VAF levels are associated with 
shorter OS, particularly in early stages (17,38-40). Poor 
survival with positive ctDNA in early-stage lung cancer 
might stem from the higher recurrence rate after the 
surgery. Numerous studies have shown that preoperative 
and postoperative ctDNA detection was associated with 
shorter recurrence-free survival and OS after curative 
surgery (41-43). Accordingly, previous studies suggested 
the presence of ctDNA mutations from liquid biopsy into 
cancer staging as TNM “B” tumor staging, as ctDNA 
detection may reflect the presence of micrometastasis or 
minimal residual disease beyond a mere reproduction of 
information from tissues (44). Moreover, recent studies have 
shown that specific mutational profile or tumor mutational 
burden in ctDNA can also predict poor clinical outcome 
with polyclonal metastasis pattern and treatment response 
to immune checkpoint inhibitors (45,46).

In addition, the most frequently mutated genes in our 
data were also significantly mutated in lung adenocarcinoma 
(TP53, RB1, and KEAP1) and lung squamous cell carcinoma 
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(TP53 and RB1) in a previous large-scale study using whole 
exome sequencing (47). Similarly, TP53 was the most 
frequently mutated gene in both lung adenocarcinoma 
[52.9% vs. 54.1%; our study vs. Campbell et al. (47)] and 
lung squamous cell carcinoma (69.6% vs. 86.4%). 

The strength of this study is the use of data from 
targeted deep sequencing and the adoption of ML models 
to predict ctDNA detection in an individual patient with 
COPD and lung cancer. The model can assist in non-
invasive lung cancer diagnosis by estimating a probability 
of ctDNA detection. For example, based on the prediction 
scores, more than 82% of patients with the top 10% score 

had ctDNA mutations, suggesting that the diagnosis of lung 
cancer can be established using ctDNA in these patients. 
On the other hand, for some patients with low prediction 
scores (low probability of ctDNA detection), clinicians 
should also utilize other diagnostic tests rather than solely 
rely on the ctDNA analysis. In addition, this study only 
included patients with spirometry-confirmed COPD, who 
are at a higher risk of developing lung cancer compared to 
matched smokers, and collected comprehensive information 
regarding COPD, such as COPD symptoms, lung function, 
and quantitatively measured emphysema on CT. 

This study also has several limitations. First, it was 

Figure 4 Representative cases of two COPD patients with lung cancer, with or without ctDNA mutation detection. (A) This 80-year-
old male patient had 36 pack-year of smoking history and spirometry-confirmed COPD (post bronchodilator FEV1/FVC =0.57, FEV1 
89% pred). Emphysema index in chest CT was 1.14%. He was diagnosed with squamous cell carcinoma (clinical stage T2bN1M0) and 
ctDNA mutations were detected for RB1 and TP53. (B) This 70-year-old male patient had 42 pack-year of smoking history and spirometry-
confirmed COPD (post bronchodilator FEV1/FVC =0.42, FEV1 67% pred). Emphysema index in chest CT was 10.39%. He was diagnosed 
with squamous cell carcinoma (clinical stage T2aN1M0) and ctDNA mutations were not detected. (C,D) Corresponding color map of 
emphysema index for two patients. COPD, chronic obstructive pulmonary disease; ctDNA, circulating tumor DNA; FEV1, forced expiratory 
volume in 1 second; FVC, forced vital capacity; CT, computed tomography.
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conducted in a single referral center and the study results 
were not externally validated. To address this limitation, we 
adopted machine learning models with cross-validation. In 
addition, as this study focused on COPD patients recruited 
from pulmonology clinics, our cohort predominantly 
consisted of men and smokers (>90%), which is consistent 
with the multicenter studies from Korea that are based 
on pulmonology clinics (48,49). This may limit the 
generalizability of our findings to other populations. As 
all patients were current or former smokers, the relatively 
lower prevalence of EGFR mutations in our cohort might 
be attributable to smoking and COPD (36,50). The lack of 
never-smokers made it impossible to explore the association 
between smoking exposure and ctDNA detection. Similarly, 
due to the unavailability of occupational information, the 
association between occupational exposure and ctDNA 
detection was not investigated. Second, genotyping in 
this study was limited to the pre-determined genes that 
were included in the panel, which are relatively fewer 
in number compared to previous studies (17,33). Thus, 
ctDNA detection might be underestimated compared to 
targeted sequencing with more genes, whole exome, or 
whole genome sequencing. Moreover, due to the difference 
in the genes between the panels used, the data regarding 
individual mutational features were not included in the 
current analysis. Nevertheless, we used panels as an adjusted 
covariate in multivariable models to minimize the effect of 
different panels on the outcomes. Finally, the mutations 
between ctDNA and tumor tissues were compared in only 
three patients. However, considering that all mutations 
from ctDNA were detected in the tumor tissues, which 
is consistent with previous reports (17,51,52), it was 
appropriate to use our ctDNA mutation data as a surrogate 
for tumor mutation data from the other patients in our 
analyses.

Conclusions

Using NGS of targeted genes, this study showed that 
approximately one-third of COPD patients shed ctDNA at 
the time of lung cancer diagnosis. In addition to the well-
known correlation with the tumor stages, we found that 
patients with severe emphysema were less likely to have 
ctDNA detected, despite the presence of lung cancer. We 
also constructed ML models to predict ctDNA detection 
with high accuracy. Further studies incorporating individual 
mutational features and detailed radiologic parameters 
are needed to improve the prediction model for ctDNA 

detection and to develop prediction models for lung cancer 
diagnosis in COPD patients.
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Supplementary

Appendix 1 Supplementary methods

Sample preparation and DNA extraction

Whole blood samples were collected using a BCT (Streck Inc., Omaha, NE, USA). Plasma was prepared using three 
centrifugation steps with increasing centrifugal force. After centrifugation, plasma and plasma-depleted whole blood was 
stored at −80 ℃ until cfDNA extraction. cfDNA was extracted from plasma using a QIAamp Circulating Nucleic Acid Kit 
(Qiagen, Santa Clarita, CA, USA). Genomic DNA (gDNA) was isolated from blood samples using a QIAamp DNA Mini Kit 
(Qiagen, Santa Clarita, CA, USA). DNA concentration and purity were quantified using an Infinite M200 Pro NanoQuant 
(Tecan, Switzerland) and a Picogreen fluorescence assay on a Qubit 4.0 fluorometer (Thermo Fisher Scientific, Waltham, 
MA, USA). Fragment size distribution was measured using a 4200 TapeStation instrument (Agilent Technologies, Santa 
Clara, CA, USA). An AllPrep DNA/RNA Mini Kit (Qiagen, Santa Clarita, CA, USA) was used to purify gDNA from frozen 
tissues. After extraction, DNA was quantified and fragmented in the same manner as gDNA from plasma-depleted whole 
blood, and ≤100 ng of sheared DNA was used for library preparation.

Library preparation

Purified gDNA was sonicated (7 min, 0.5% duty, intensity of 0.1, and 50 cycles/burst) into 150–200 bp fragments using a 
Covaris S2 (Covaris Inc. Woburn, MA, USA). gDNA and plasma DNA libraries were created using a KAPA Hyper Prep Kit 
(Kapa Biosystems, Woburn, MA, USA). Briefly, after completing end repair and A-tailing according to the manufacturer’s 
protocol, we performed adaptor ligation at 4 ℃, overnight, using a customized adapter (Integrated Device Technology, San 
Jose, CA, USA). For the library construction of plasma cfDNA, hybrid selection was performed using three customized baits 
(LungCancer v1, LiquidSCAN v2-PanCancer, or IVD v1.0, GENINUS, Seoul, Korea, Table S1). Each capture bait targeted 
36, 38, and 46 cancer-related genes and covered 340, 117, and 174 kb genomic regions across the human genome. 

Detection of somatic mutations 

First, all bases were subjected to Phred quality filtering using a threshold Q of 30 and only positions where total depths were 
above 500× were considered for variant identification. To exclude germline mutations in the analysis, non-reference alleles 
present at a frequency greater than 1% in the matched white blood cell gDNA were removed. The error suppression method 
using UMIs was used to distinguish true somatic mutations from PCR and sequencing errors. After applying the error 
suppression method to the sequencing data, the following selection steps were used to eliminate the remaining sequencing 
errors: (I) variants not significantly greater than the error found in the matched germline DNA (binomial Bonferroni-adjusted 
P<0.01) were filtered out; (II) variant candidates with a high strand bias (90% if supporting reads 20; Fisher’s exact test, P<0.1 
if supporting reads <20) were removed; (III) if the z-statistic of the variants was not significantly higher than the background 
error obtained from gDNA (Bonferroni-adjusted P<0.05), they were excluded from the analysis. 

Finally, the mutation candidates were selected according to the following conditions: Allele frequencies ≥0.15% and 
alternative allele counts ≥5 were selected. For tissue specimens, somatic variants were identified using different criteria: total 
depth ≥100× and allele frequency ≥2%. In the case of insertions or deletions, variants with an allele frequency ≥5% were 
selected. Variants were annotated using VEP (v102) (23) and nonsynonymous variants were used in this analysis.

Clinical variables

Demographic and clinical information were obtained from electronic medical records, including age, sex, body mass 
index (BMI), and smoking status. Tumors were staged using the eighth edition of the American Joint Committee on 
Cancer (24) and central location was defined as ‘within the inner one-third of the hemithorax by concentric lines arising 
from the midline’ (25).

Regarding COPD, dyspnea was measured using the modified Medical Research Council (mMRC) grade, symptom burden 
measured using the COPD assessment test (CAT), pulmonary function tests (26,27), and chest CT parameters were collected. 
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All spirometry tests were performed in a pulmonary function lab, using a Vmax 22 system (SensorMedics, Yorba Linda, CA, 
USA) according to the American Thoracic Society/European Respiratory Society criteria (26). Absolute values were obtained, 
and the percentages of predicted values were calculated using a reference equation obtained from a representative South 
Korean sample (27). All chest CT scans were analyzed using automatic segmentation software (Aview, Coreline Soft, Seoul, 
Korea) (28,29). We measured whole lung volume at inspiration and the emphysema index (EI), defined as the percentage of 
lung area with CT attenuation values <−950 HU in the whole lung at inspiration. We also measured the EI of the tumor-
located lobe. At the time of blood sampling for cfDNA analysis, white blood cell count and high-sensitivity C-reactive protein 
(hsCRP) were measured together. 

Statistical analysis

To analyze the clinical factors associated with the detection of ctDNA in the study participants, we performed logistic 
regression analyses for continuous variables (age, BMI, EI, and CRP) and categorical variables (sex, mMRC ≥2, CAT ≥10, 
FEV1 <50% pred, EI 10%, central location, sequencing panels, and tumor stages). Odds ratios (ORs), 95% confidence 
intervals (CIs), and p-values were obtained from each analysis. In multivariable logistic regression models (Models 1–5), we 
used a panel type as an adjusted variable because three different panels were used to generate the mutation data. Variables 
with P<0.05, in Model 1, were included in the multivariable models (Models 2–4) after forward variable selection. Model 5 
was constructed by including variables with P<0.05 in Model 2 adjusted by panel. To estimate the prediction score of ctDNA 
detection in COPD patients, we used the sum of beta coefficients of significant variables from Model 5 (P<0.05; EI (%), CRP, 
and tumor stage).

To predict ctDNA detection using the variables, we considered four binary classifying ML models [logistic regression (LR), 
elastic net logistic regression (EN), random forest (RF), and support vector machine (SV)]. After splitting the dataset into 
training and test sets within the frame of leave-one-out cross-validation, we selected variables as features for ML models that 
showed significant association (P<0.1) with the presence of ctDNA mutation in a univariable logistic regression model within 
each training set. The hyperparameters for EN, RF, and SV models were optimized by using grid search 5 cross-validation 
for accuracy in each training set. EN model was tuned by alpha from 0.0001 to 100, and L1 ratios between 0.0 and 1. RF 
model was allowed to have 10 to 1,000 estimators, maximum depth between 6 and 12, minimum samples per leaf between 
8 and 18, and minimum samples per split between 8 and 20. SV model was allowed to use either radial or linear kernels, 
with gamma and C parameters between 0.001 to 100. To evaluate each model, we estimated the area under the receiver 
operating characteristics (ROC) curve (AUC), accuracy, sensitivity, specificity, and positive predictive value in the test set, and 
represented the performance of each model using an ROC curve plot. The model with the highest AUC was selected as the 
best prediction model for the shedder.

The Kaplan–Meier method was used to estimate the overall survival (OS). Data of patients who were alive or those who 
could not be traced during follow-up were censored for OS at the time they were last known to be alive. Hazard ratios (HRs) 
and 95% CIs were calculated using the Cox proportional hazards model. All analyses were performed using R 3.6.0, Stata 
14.0, and Python 3.8.8.
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Figure S1 Overall survival according to ctDNA detection in COPD patients with lung cancer of (A) all stages (N=177) and of early stage 
(N=105).

Table S1 List of cancer-related genes included in targeted deep sequencing panels

Panels List of genes

Lung cancer v1 AKT1 ALK ARAF ATM BRAF BRCA1 BRCA2 CDKN2A

EGFR ERBB2 FGFR1 FGFR2 FGFR3 HRAS IDH1 IDH2

JAK2 KEAP1 KIT KRAS MAP3K1 MDM2 MET MYC

MYCL MYCN NF1 NFE2L2 NRAS NTRK1 NTRK2 NTRK3

PDGFRA PIK3CA PTEN RAF1 RB1 RET RICTOR ROS1

SMARCA4 STK11 TP53 TSC1 U2AF1

LiquidSCAN v2—pan cancer AKT1 APC BRAF CBFB CDH1 CDKN1B CDKN2A CSMD3

CTNNB1 EGFR EPHA5 ERBB2 ESR1 FBXW7 FGFR2 GATA3

GRM8 HIST1H3B KEAP1 KRAS LRP1B MAP2K4 MAP3K1 MYC

NFE2L2 NRAS NTRK3 PIK3CA PIK3R1 PPP2R1A PTEN RB1

RUNX1 RYR2 SMAD4 STK11 TBX3 TP53

IVD v1.0 AKT1 ALK APC AR ATM BRAF BRCA1 BRCA2

CDH1 CDKN2A CTNNB1 EGFR ERBB2 ESR1 FBXW7 FGFR3

GNAS HRAS HSPH1 KIT KRAS MET MTOR MYC

NF1 NOTCH1 NRAS PDGFRA PIK3CA POLE PTEN RB1

RET (fusion) ROS1(fusion) SMAD4 SMARCA4 STK11 TP53

A B
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Table S2 Performance of prediction models for ctDNA detection using machine learning according to different variables for the emphysema index

Performance
LR EN SV RF

Model a* Model b Model c Model a Model b Model c Model a Model b Model c Model a Model b Model c

Accuracy (%) 71.8 71.8 70.3 68.4 65.5 68.0 66.1 71.8 58.3 71.2 70.1 68.6

Specificity (%) 85.4 84.6 83.6 81.3 72.4 75.4 88.6 94.3 78.7 93.5 92.7 91.8

Sensitivity (%) 40.7 42.6 39.6 38.9 50.0 50.9 14.8 20.4 11.3 20.4 18.5 15.1

PPV (%) 55.0 54.8 51.2 47.7 44.3 47.4 36.4 61.1 18.8 57.9 52.6 44.4

AUC 0.767 0.774 0.754 0.650 0.678 0.642 0.557 0.663 0.539 0.719 0.711 0.692

*, for the EI, continuous and binary values were used in model a and model b, respectively, and continuous value of EI of the tumor 
located in lobes was used in model c. LR, logistic regression; EN, elastic net regression; SV, support vector machine; RF, random forest; 
PPV, positive predictive value; AUC, area under the receiver operating characteristic curve; EI, emphysema index.

Table S3 Prediction score of the 10th decile group of COPD patients with lung cancer according to Model 5

Sample ctDNA mutation EI (%) of total lung CRP (mg/dL) Tumor stage Prediction score Decile group

COPD_352 Detected 1.098 9.43 3 5.560 10th

COPD_444 Detected 2.556 8.94 3 5.303 10th

COPD_261 Detected 0.067 8.43 3 5.275 10th

COPD_17 Detected 8.031 7.75 4 5.232 10th

COPD_34 Detected 0.054 8.2 3 5.196 10th

COPD_407 Not detected 1.806 6.24 4 5.082 10th

COPD_31 Detected 0.204 4.96 4 4.734 10th

COPD_102 Not detected 7.173 6.95 3 4.335 10th

COPD_393 Detected 1.925 2.42 4 3.749 10th

COPD_227 Detected 0.778 3.9 3 3.661 10th

COPD_190 Not detected 7.626 4.97 3 3.621 10th

COPD_186 Detected 5.823 3.72 3 3.295 10th

COPD_117 Detected 0.030 2.67 3 3.279 10th

COPD_216 Detected 3.620 3.28 3 3.275 10th

COPD_450 Detected 0.708 0.8 4 3.260 10th

COPD_340 Detected 0.601 0.6 4 3.197 10th

COPD_32 Detected 0.283 2.46 3 3.191 10th

Prediction score = −0.060*EI (%) + 0.347*CRP +1.389*Tumor_stage2 + 2.354*Tumor_stage3 + 3.025*Tumor_stage4.
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Table S4 Risk of all-cause mortality in COPD patients with lung cancer according to ctDNA detection or VAF (%)

Stage
Unadjusted Adjusted*

HR for death P HR for death P

All stages (N=177)

ctDNA detection 3.27 (1.87–5.72) <0.001 1.39 (0.71–2.70) 0.337

VAF (%) 1.04 (1.02–1.05) <0.001 1.00 (0.98–1.03) 0.687

Stage I, II (N=105)

ctDNA detection 3.32 (1.91–22.91) 0.003 7.91 (1.55–40.36) 0.013

VAF (%) 1.19 (1.08–1.31) <0.001 1.25 (1.01–1.56) 0.042

Stage III, IV (N =72)

ctDNA detection 0.96 (0.51–1.79) 0.886 1.27 (0.63–2.57) 0.511

VAF (%) 1.02 (1.00–1.03) 0.108 1.02 (0.99–1.04) 0.185

*, adjusted for age, smoking (current vs. former), BMI, FEV1 % pred, emphysema index of total lung (%), CRP, clinical stage of lung cancer, 
central location, and small cell histology. In a subgroup analysis by early and advanced stages, clinical stage was not adjusted. BMI, body 
mass index; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; ctDNA, circulating tumor DNA; EI, emphysema index; 
HR, hazard ratio; VAF, variant allele frequency.
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