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Background: In the context of surgical interventions for lung adenocarcinoma (LADC), precise 
determination of the extent of LADC infiltration plays a pivotal role in shaping the surgeon’s strategic 
approach to the procedure. The prevailing diagnostic standard involves the expeditious intraoperative 
pathological diagnosis of areas infiltrated by LADC. Nevertheless, current methodologies rely on the visual 
interpretation of tissue images by proficient pathologists, introducing an error margin of up to 15.6%.
Methods: In this study, we investigated the utilization of Micro-Raman technique on isolated specimens 
of human LADC with the objective of formulating and validating a workflow for the pathological diagnosis 
of LADC featuring diverse degrees of infiltration. Our strategy encompasses a thorough pathological 
characterization of LADC, spanning different tissue types and levels of infiltration. Through the integration 
of Raman spectroscopy with advanced deep learning models for simultaneous diagnosis, this approach offers 
a swift, precise, and clinically relevant means of analysis.
Results: The diagnostic performance of the convolutional neural network (CNN) model, coupled with the 
microscopic Raman technique, was found to be exceptional and consistent, surpassing the traditional support 
vector machine (SVM) model. The CNN model exhibited an area under the curve (AUC) value of 96.1% for 
effectively distinguishing normal tissue from LADC and an impressive 99.0% for discerning varying degrees 
of infiltration in LADCs. To comprehensively assess its clinical utility, Raman datasets from patients with 
intraoperative rapid pathologic diagnostic errors were utilized as test subjects and input into the established 
CNN model. The results underscored the substantial corrective capacity of the Micro-Raman technique, 
revealing a misdiagnosis correction rate exceeding 96% in all cases.
Conclusions: Ultimately, our discoveries highlight the Micro-Raman technique’s potential to augment 
the intraoperative diagnostic precision of LADC with varying levels of infiltration. And compared to the 
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Introduction

Lung cancer,  a prevail ing malignancy worldwide, 
contributes to 18% of total mortality in neoplastic 
conditions (1,2). Lung adenocarcinoma (LADC) is the 
predominant histologic subtype of primary lung cancer, 
representing over 40% of cases, and a major contributor 
to mortality, especially in advanced stages (3-5). Treating 
LADC poses significant challenges due to tumor cell 
recurrence and lymphatic metastasis (6,7). The degree of 
infiltration in LADC dictates the surgical approach, with 

patients diagnosed with invasive adenocarcinoma (IAC) 
often requiring lobectomy and systematic lymph node 
dissection. Conversely, for microinvasive adenocarcinomas 
(MIA), sublobar resection and lymph node sampling (8,9).

Quantitative immunohistochemical analysis of tumor 
markers in formalin-fixed paraffin-embedded (FFPE) assays 
can assist in detecting tumor infiltration (10), and positron 
emission tomography/computed tomography (PET/
CT) scans are effective in identifying metastatic lesions in 
LADCs based on molecular metabolism (11,12). However, 
current diagnostic and medical imaging methods encounter 
challenges in accurately assessing the intraoperative 
extent of LADC infiltration. The only reliable option, 
intraoperative rapid pathology, is often prone to inherent 
subjectivity based on the specimen site and pathologist, 
resulting in the oversight of lesions and significant inter- 
and intra-observer disparities. A study has reported 15.6% 
discrepancy between intraoperative rapid pathology and 
postoperative gold standard results (13), underscoring the 
profound impact of these discrepancies on the management 
of LADC patients, given the distinct clinical significance 
between minimally invasive and invasive cases.

Research has shown that lymph node dissection 
compromises the systemic anti-tumor immune response, 
increasing the risk of complications such as lymphedema in 
patients (14). Although broader lymph node clearance can 
enhance recurrence-free survival rates, extensive clearance 
often results in various complications and does not 
significantly improve overall survival rates and prognosis for 
these patients (15,16). Therefore, accurately determining 
the infiltration depth of LADC intraoperatively is crucial for 
designing appropriate surgical strategies. This approach not 
only effectively prevents tumor recurrence and metastasis 
but also reduces complications from excessive lymph node 
removal, such as infection, lymphedema, and weakened 
immune response to tumors. Currently, there is a lack of 
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an effective intraoperative tool with high specificity for 
determining the infiltration depth of LADC, highlighting 
the need to supplement or replace intraoperative rapid 
pathology diagnostic results.

The Micro-Raman technique is an optical technique 
based on laser-molecule interaction, offering high 
molecular specificity and allowing comprehensive 
molecular characterization of pathological tissue sections 
(17-19). Given the dynamic changes in the composition 
and structural configuration of biological molecules in 
tissues and cells during carcinogenesis, this technique 
aids in assessing the infiltration depth of LADC through 
parameters such as the characteristics and intensity of 
Raman spectral peaks. McGregor et al. (20) presented a 
multivariate analysis and band selection method using 
endoscopic Raman spectroscopy that demonstrated the 
ability to detect highly heterogeneous hyperplasia (HGD) 
and malignant lung lesions with high sensitivity (90%) 
and good specificity (65%). Qi et al. (21) reported that the 
diagnosis of LADC and squamous cell carcinoma tissues 
by deep learning combined with Raman spectroscopy 
had high sensitivity and specificity. Subsequently, other 
research groups have reported the ability of combining 
surface-enhanced Raman scattering (SERS) to differentiate 
between lung cancer and cell lines of different diseases  
(22-24). Although Raman spectroscopy has demonstrated 
its potential in lung cancer identification, to the best of our 
knowledge, this technique has not been used to diagnose the 
depth of infiltration of LADC or to correct intraoperative 
rapid pathologic diagnosis. 

In this investigation, we integrated Micro-Raman 
techniques into the comprehensive workflow of LADC 
tumor surgery. Figure 1 provides an overview of our 
approach pipeline, which encompasses the entire LADC 
clinical surgical process and highlights the role of Micro-
Raman techniques. Using samples from 59 patients after 
clinical postoperative, we employed the Micro-Raman 
technique on pathological tissue sections following the 
established protocols of the Department of Pathology. 
This procedure is devised to gather Raman spectral data 
for diagnostic purposes through the utilization of Micro-
Raman techniques. Subsequently, artificial intelligence 
algorithmic models will be developed based on distinct 
categories of spectra. These models will undergo training 
and testing to discern variations between LADC and 
normal tissue. Additionally, our endeavor includes the 
differentiation of various degrees of LADC infiltration, 
with the aim of surpassing the diagnostic accuracy attained 

by intraoperative rapid pathology methods. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-24-168/rc).

Methods

Study design

In this investigation, we collected patients with LADC to 
explore the potential of Micro-Raman technology, coupled 
with artificial intelligence classification models, in aiding 
diagnostic strategies for intraoperative identification of 
the extent of LADC infiltrative properties. Microscopic 
Raman technology entails obtaining fingerprinted spectra 
from lesion site to discern lesion trends within the organism 
by identifying variations between spectra. Furthermore, 
classification algorithms were employed to predict tissue 
type and the degree of infiltrative nature of LADC. The 
specific clinical inquiry addressed herein was whether 
Raman spectroscopy could be employed to rectify diagnostic 
errors during intraoperative pathological assessments, 
thereby aiding surgeons in formulating a judicious surgical 
plan. The acquired Raman spectra served as inputs to 
classification model [support vector machine (SVM), 
convolutional neural network (CNN)], and subsequent 
classification was performed.

Study population

We employed a stepwise sample accumulation approach, 
recruiting and enrolling patients who met the inclusion 
criteria throughout the study period. The study cohort 
included 59 patients diagnosed with LADC who received 
surgical interventions at Nanjing Drum Tower Hospital, 
The Affiliated Hospital of Nanjing University Medical 
School, from March 2023 to October 2023. Information 
about all patients is in Table S1. All these individuals 
underwent both rapid intraoperative pathological diagnosis 
and postoperative gold-standard pathological diagnosis, 
with pathologists providing the diagnostic outcomes. 

A more nuanced tumor classification was conducted 
in accordance with the 2015 World Health Organization 
(WHO) criteria for lung tumor classification. Herein, tissues 
unequivocally identified as MIA and IAC consistently fell 
under the broader classification of LADC within the lung 
cancer classification framework. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-168/rc
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Operative procedures for LADC surgery

Pre-operative diagnosis

LADC patient

Confirmation of diagnosis:
medical imaging or tumor
screening, etc.

Remove samples and obtain 
pathology results.

Antibodies, antigens, 
staining, etc.

Doctors get the gold standard results for 
pathology in about 24 hours or longer.

Different levels of infiltration lead to 
different surgical interventions.

MIA: Tumor cells infiltrate the surrounding
tissue (≤5 mm); IAC: Tumor cells have spread 
significantly and infiltrate (>5 mm).

Tumor

Sampling

Surrounding tissues
Tumor cells

Local resection of lung segments
Lymph node sampling

Lung segmentectomy
Systematic lymph node dissection

Raman microchipPathological sections

Intraoperative biopsy Determining infiltration properties

Post-operative pathology gold standard Decision-making surgical approach

Step

For step      , surgery requires more accurate and rapid diagnostic options

Traditional option: Rapid pathology diagnosis

MIA

MIA

IAC

IAC

10–20 min <20 min

New-style option: Micro-Raman technique diagnosis

Figure 1 Micro-Raman technique integrated into the LADC tumor surgical workflow. Patients who have been diagnosed with LADC 
are usually treated by surgical removal of the tumor (whole specimen extraction). During surgery, LADC tumor tissue is sent to the 
pathology department for routine analysis workflow: visual inspection, rapid freezing, frozen microtome sectioning, and H&E staining. The 
pathologist examines the H&E slides using a bright-field light microscope (for histopathologic analysis) and reports the type of pathology 
so that the surgeon can develop the next surgical step. Rapid pathology is performed in 10–20 min to help identify the site and extent of 
tumor cell invasion in LADC, and postoperative all-aspect pathology gives the diagnosis of the pathological gold standard. Micro-Raman 
technique combined with deep learning classification model can function as tumor marker by providing molecular information about the 
tissue, allowing detection and diagnosis of the extent of LADC invasion in less than 20 min. Scale bar in pathology or section drawings 
are 100 μm. Schematics created with BioRender.com. LADC, lung adenocarcinoma; MIA, microinvasive adenocarcinomas; IAC, invasive 
adenocarcinoma; H&E, hematoxylin and eosin.
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in 2013). Our study received approval from the Medical 
Ethics Committee of Nanjing Drum Tower Hospital, The 
Affiliated Hospital of Nanjing University Medical School 
(Approval Number: 2020-134-01). Informed consent 
was provided by all the patients. The clinical data were 
anonymized before the computational analysis.

Tissue section preparation

Tissue specimens obtained after surgery were carefully fixed 
to preserve their intrinsic morphological characteristics, 
then processed into FFPE sections and serially sliced. The 
first slice, which had a pathology thickness of 4 μm, was 
delicately affixed to a slide and subjected to hematoxylin and 
eosin (H&E) staining, adhering to meticulously standardized 
protocols within the pathology department. The second 
slice, specifically designated for Raman spectroscopy in the 
realm of pathology, had a thickness of 6 μm. Following the 
deparaffinization process, it underwent natural desiccation 
and was carefully placed on a sleek aluminum slide, 
denoted as Raman microchip. Concurrently, the third 
slice underwent immunohistochemical staining, primarily 
leveraging the thyroid transcription factor-1 (TTF-1) tumor 
marker, possessing a thickness of 4 μm. More operational 
details and a schematic diagram of serial slicing can be 
found in the Appendix 1 and Figure S1. TTF-1, a thyroid-
specific enhancer-binding protein and nuclear transcription 
factor, plays a crucial role in identifying primary tumor 
metastasis and cancer differentiation, exhibiting positive 
expression in 60–80% of LADC cases (25). This strategic 
approach aims to augment the interpretative depth and 
diagnostic acumen for pathologists. The integration 
of serial slices from the same specimen ensures that 
spectroscopic diagnostic outcomes are scrutinized in parallel 
with histological evaluations, meticulously aligned with the 
pertinent pathology coordinates.

Raman measurements and data preprocessing

The Micro-Raman system (InVia; Renishaw, Wotton-
under-Edge, UK) with a 785 nm excitation laser is based 
on an optical microscope used to focus the excitation 
light and collect it in a backscattering configuration, 
a monochromator, notch filters system, and a charge 
coupled detector. The system was calibrated against the 
520.5  cm−1 line of an internal silicon wafer before testing. 
The spectra were registered in the 765–1,721 cm−1 range, 
particularly sensitive the bioinformatics-intensive area. The 

measurements were conducted at room temperature on a 
metal slide using the 50× short working distance objective 
[numerical aperture (NA) =0.75, working distance (WD) 
=0.35 mm], with the sample mounted on a translation 
stage of a Leica microscope (Leica, Wetzlar, Germany). 
Subsequently, we selected three 200×200 μm² rectangular 
regions within the cell-rich tissue of interest, with 100–200 
collection sites designated for each rectangular region. 
A double-blind method was employed during collection, 
where the operator selecting the regions was not aware 
of the pathological diagnosis of the samples, ensuring 
objectivity and fairness in the analysis. Each spectrum was 
generated by integrating at 50% laser power (~150 mW) for 
duration of 3 seconds, and the final data were averaged over 
3 accumulations in order to maximize the signal to noise 
ratio (SNR). Additional operational details can be found in 
the Appendix 1.

Before conducting statistical analyses, WIRE 5.4 
software (Renishaw, UK) was employed to eliminate 
anomalous spectra and cosmic rays. The preprocessing of 
all data commenced with background subtraction from 
the substrate, followed by noise reduction employing 
principal component analysis, retaining at least 2 principal 
components. Subsequently, baseline corrections and 
Savitzky-Golay smoothing were applied, with smooth 
window and polynomial order set at 5 and 3, respectively. 
Finally, a maxima normalization process was implemented 
to confine the Y-axis of the data within the range of 0 
to 1 (18). A double-blind approach was used in data 
preprocessing, with personnel unaware of sample details 
and diagnoses to reduce bias.

Classification algorithms

The SVM serves as a supervised learning algorithm catering 
to classification and regression tasks. Its functionality 
lies in discerning the optimal hyperplane within a high-
dimensional space, effectively segregating distinct classes of 
data points (26). The model adopts a linear kernel function, 
configuring the regularization parameter (C) to 1 and 
the kernel coefficient (gamma) to 0.01. Throughout the 
classification process, the SVM model prioritizes balancing 
category weights to ensure sensitivity across all categories. 
The dataset is partitioned into 5 folds, and each iteration 
entails training on a subset of the data and validating on the 
remainder. For the validation set comprising 20% randomly 
retained patients, a logistic regression function is employed 
by the model to predict category probabilities. The 
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serialized SVM model is archived for subsequent testing on 
the remaining patient dataset.

The CNN architecture features three 1-dimensional (1D) 
convolutional layers tailored for binary classification tasks 
with labels 0 and 1. Inputting as 1D data with dimensions 
(888, 1), Batch Normalization and MaxPooling1D 
layers follow each convolutional layer, culminating in 
a fully connected layer and an output layer. The initial 
convolutional layer is equipped with 32 filters and a kernel 
size of 3. Subsequent convolutional layers incorporate 
64 filters, maintaining the kernel size of 3, whereas the 
third convolutional layer integrates 128 filters with the 
same kernel size of 3. Nonlinear properties are introduced 
through the application of the rectified linear unit (ReLU) 
activation function. The model’s output represents the 
prediction probability, spanning from 0 to 1. In the training 
phase, an Adam optimizer and a binary cross-entropy 
loss function are employed. Besides, we adopt balanced 
weight strategy due to the imbalanced datasets. The model 
undergoes training and evaluation utilizing a 5-fold cross-
validation method, with evaluation metrics such as the 
confusion matrix and receiver operating characteristic 
(ROC) curves employed for a comprehensive performance 
assessment. ModelCheckpoint callbacks are implemented 
to retain the model weights with the highest validation 
accuracy in each iteration.

Notably, each patient is treated as a distinct dataset 
in both models, distinguishing this study from others 
that amalgamate all patient data before categorization. 
This approach upholds the model’s capacity to generalize 
across populations or individuals, as differences between 
individuals are smaller than those between organizations, 
preventing the same patient’s data from appearing in both 
the training and test sets.

Statistical analysis

Statistical evaluation involved the use of analysis of 
variance (ANOVA) complemented by Fisher’s post hoc 
least significant difference (LSD) test to discern spectral 
variations among distinct tissues, with statistical significance 
defined as a P value ≤0.05. For meaningful clinical 
interpretation, the anomalous spectral data were screened 
and removed using WIRE 5.4 software and subsequently 
the SVM model was employed to extract relevant Raman 
spectral eigenvalues. Tissue diagnosis and classification were 
accomplished through the implementation of SVM and 
CNN models in this investigation. Given the acquisition of 

multiple Raman spectra from each lesion, a per-lesion-based 
analysis was conducted utilizing majority voting. Confusion 
matrices were generated to delineate the interplay between 
diagnostic sensitivity, specificity, accuracy, and F1-score 
(see Appendix 1 and Table S2). Additionally, the area under 
the curve (AUC) for ROC analysis was calculated to assess 
the robustness of Micro-Raman in vitro, specifically in 
diagnosing the extent of LADC infiltration. 

Statistical computations were performed using Microsoft 
Excel (Microsoft Corp., Redmond, WA, USA) within the 
Microsoft system, whereas the classification models for lung 
cancer detection based on Raman spectra were implemented 
in Python 3.9 environment using the Scikit-learn and 
TensorFlow libraries. This comprehensive approach allowed 
for meticulous statistical analyses and the development of 
sophisticated machine learning models, ensuring a rigorous 
investigation into the intricacies of lung cancer diagnostics 
through Raman spectroscopy.

Results

Patient characteristics

Among the cohort of 59 eligible patients included in our 
study, adjacent non-cancerous samples from 12 individuals 
were meticulously examined, yielding 12 isolated specimens 
of normal lung tissue. These specimens, alongside the  
41 patients diagnosed with LADC, were incorporated 
into both the cross-validation of the tissue type dichotomy 
model and the subsequent test set. Notably, this inclusive 
approach aimed to holistically assess the robustness of the 
model across a diverse patient population. 

To further validate the efficacy of the Raman technique 
in error correction for rapid pathological diagnosis, the 
LADC patients underwent meticulous classification into  
5 cases of MIA and 35 cases of IAC (randomly selected from 
36 patients), conforming to the gold standard pathological 
diagnosis. Subsequently, this classification was rigorously 
cross-validated. The test set for evaluating the degree 
of infiltration comprised 6 carefully selected patients, 
including 3 cases initially diagnosed intraoperatively as 
MIA by rapid pathological diagnosis. These cases were later 
validated as IAC based on the meticulous diagnosis of the 
pathological gold standard adenocarcinoma. Additionally, 
3 cases were unequivocally identified as IAC in both rapid 
pathology and the gold standard pathology diagnosis. All 
classification models were executed for 2 distinct tissue 
types. Firstly, normal tissue versus LADC, with the primary 

https://cdn.amegroups.cn/static/public/TLCR-24-168-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-168-Supplementary.pdf


Translational Lung Cancer Research, Vol 13, No 4 April 2024 891

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(4):885-900 | https://dx.doi.org/10.21037/tlcr-24-168

objective of swiftly identifying LADC intraoperatively, 
and subsequently, the degree of infiltration of the LADC 
intraoperatively. This sequential approach was designed to 
ensure that the outcomes of this diagnostic step significantly 
influenced subsequent surgical protocols. Table 1 provides 
comprehensive details on the clinical information of the 
patients and specifics of the Raman acquisition model. 

Raman spectra analysis

Digitally captured using a digital pathology slide scanner 
(Konfoong Bioinformation Tech Co., Ltd., KF-PRO-005, 
China), slides initially stained with immunohistochemistry 
(IHC) and H&E underwent thorough examination by the 
pathologist. The presence of LADC cells, MIA regions, 
IAC sites, and normal tissue on the pathology slides was 
meticulously identified and confirmed. Raman spectroscopy 
was then conducted on pathological tissues obtained 
from 59 participants. Given the inherent heterogeneity 
and intricacy of cancerous tissues, it became imperative 
to ascertain that the adjacent Raman microchip within 
the target acquisition area conformed to morphologically 
characterized pathology criteria, serving as a crucial 
reference (Figure 2A). The Raman spectra from all 
tissue sections underwent a rigorous and standardized 
preprocessing procedure. T-distributed stochastic neighbor 
embedding (T-SNE) plots vividly illustrated the clustering 
patterns among the preprocessed data of various tissues as 
shown in Figure 2B,2C. Notably, the data from LADC with 
distinct infiltration degrees exhibited a more pronounced 
separation compared to normal and cancerous tissues. This 

observation implies a higher feasibility in distinguishing 
between normal and cancerous tissues. Subsequently, the 
mean (M) and standard deviation (SD) of the Raman spectra 
across different tissues were computed and visualized  
(Figure 2D,2E). The broader ± SD shading captured 
individual variations and deviations from tissue homeostasis 
attributed to lesions. 

In the feature selection phase of the SVM model, we 
filtered the features by feature relevance information and 
retained the top ten features that have significant impact on 
the model prediction. Following this, the normalized Raman 
spectra of the 2 classified tissues underwent subtraction 
to generate a Raman difference map (Figure 3A,3B).  
This meticulous approach facil itated the detailed 
delineation of spectral variations attributed to alterations 
in biological composition, leveraging disparities in the 
feature peaks of each tissue. Referring to Table S3, 
detailing the vibrational modes of major Raman peaks 
and their corresponding representative bioinformation, 
it is evident that the intensities of the 10 characteristic 
Raman peaks were notably higher in normal tissues 
compared to LADC tissues. Conversely, in most cases, the 
intensities of individual peaks in MIA were significantly 
higher than those in IAC (P<0.001). The majority of these 
peaks are associated with aromatic amino acids, proteins, 
and lipids. To elaborate, peaks near 852, 937, 1,032, and 
1,209 cm−1 align with proline, tryptophan, tyrosine, or 
phenylalanine, respectively. At 1,004 cm−1, the Raman 
spectral line represents the C-C aromatic ring stretching of 
carotenoids. Additional features at 1,308 and 1,451 cm−1 are 
predominantly associated with lipids or fatty acids, and the 

Table 1 Clinical diagnostic information of participating researchers

Sample type Patients Age (years), range Specimens Raman points Rapid pathology Gold standard

Normal tissue & LADC

Normal tissue 12 51–75 12 2,699 Normal Normal

LADC 41 26–74 61 16,210 LADC LADC

MIA & IAC (train)

MIA 5 26–55 7 2,654 MIA MIA

IAC 36 41–74 54 13,556 IAC IAC

MIA & IAC (test)

MIA 3 55–62 3 1,681 MIA IAC

IAC 3 54–74 3 1,693 IAC IAC

LADC, lung adenocarcinoma; MIA, microinvasive adenocarcinomas; IAC, invasive adenocarcinoma.

https://cdn.amegroups.cn/static/public/TLCR-24-168-Supplementary.pdf
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Figure 2 Diagnosis of LADC using Raman spectral analysis. (A) Standard histological immunostaining for LADC nuclear protein (brown 
basal cell marker) by TTF-1 followed by H&E restaining to identify areas of LADC. Raman spectra were acquired using precise tissue 
spots on serially sectioned 6 μm thick tissue sections of unstained LADC, scale bar =100 μm. (B) t-SNE plots of normal tissue and LADC 
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± shadow). (E) Raman spectra between MIA and IAC, mean ± SD (solid line ± shadow). MIA, microinvasive adenocarcinomas; IAC, invasive 
adenocarcinoma; H&E, hematoxylin and eosin; TTF-1, thyroid transcription factor-1; LADC, lung adenocarcinoma; t-SNE, t-distributed 
stochastic neighbor embedding; SD, standard deviation.
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Figure 3 Raman spectral analysis and pathological diagnosis of LADC based on artificial intelligence classification model. (A) Raman 
spectra difference between LADC and normal tissue, mean ± SD (solid line ± shadow). (B) Raman spectra difference between IAC and 
MIA, mean ± SD (solid line ± shadow), the gray dashed line represents the vertical axis at 0. (C) The peak comparison plot of LADC and 
normal tissue. (D) The peak comparison plot of IAC and MIA (one-way ANOVA method ***, P<0.001). (E) Application of CNN in the 
entire Raman spectral diagnostic process, the model includes convolutional layers, batch normalization layers, max-pooling layers, dropout 
layers, flattening layers, and fully connected layers. (F) ROC curve plot of the 5-fold cross-validation results of the SVM model for the 
classification of LADC and normal tissue. (G) ROC curve plot of the 5-fold cross-validation results of the CNN model for the classification 
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band at 1,341 cm−1 can be attributed to nucleic acids. The 
peak at 1,238 cm−1 corresponds to the C-N and N-H bends 
of amide III, whereas the band at 1,671 cm−1 corresponds to 
the C=O stretching and N-H bending of the amide I band. 
The distinctions in Raman spectra between normal tissues 
and LADC with varying degrees of infiltration underscored 
the alterations in the biochemical composition of lung 
tissues during carcinogenesis, forming a foundational basis 
for distinguishing cancerous tissues from normal tissues.

In the subsequent refined peak comparison analysis 
depicted in Figure 3C, the primary disparity in Raman 
signal intensity between the normal and LADC groups was 
observed in protein-related Raman peaks (852, 937, 1,032, 
1,209, and 1,238 cm−1), exhibiting a significant elevation in 
the normal group. In contrast, most lipid- and nucleic acid-
related peaks, such as 1,341, 1,308, 1,451, and 1,671 cm−1,  
displayed higher intensit ies  in the LADC group. 
Furthermore, precise determination of LADC infiltrability 
holds implications for selecting surgical strategies and 
prognostic assessments. As depicted in Figure 3D, the 
principal spectral distinctions between MIA and IAC were 
identified in phenylalanine at 1,004, 1,032 cm−1, tryptophan 
within protein at 1,209 and 1,238 cm−1, and nucleic acids 
at 1,341 cm−1, with higher intensities observed in the MIA 
group. The peak comparison plot underscores that the 
overall spectral differences between LADC and the normal 
group are more prominent than the disparities between 
LADCs with varying degrees of infiltration. 

We subsequently devised 2 classification models: an SVM 
model grounded in machine learning and another CNN 
model rooted in deep learning (workflow in Figure 3E).  
These models were specifically designed to accurately 
differentiate between tissue types. The stability of each 
model was assessed by computing diagnostic metrics. A 
notable observation from Table 1 is the substantial variance 
in data volume across different groups in the dichotomous 
classification model. Consequently, it is imperative 
not only to carefully control the weighting of specific 
categories during model construction but also to uphold the 
generalization capability of the model. 

Evaluation and validation of classification models

Given the straightforward differentiation between normal 
tissue and LADC in histopathology, our initial step involved 
testing the development of a classification model to validate 
the system’s capabilities. In the classification model for 
normal tissue and LADC, normal tissue from 10 patients 

and tumor tissue from 35 patients constituted the 5-fold 
cross-validation dataset, whereas the remaining dataset from 
8 patients served as the test set. The ROC curves displayed 
in Figure 3F,3G were employed for quantitative validation 
of classifier performance. Among the 5 models trained in 
the 5-fold cross-validation, the AUC values for the SVM 
model ranged between 0.91 and 1.0, whereas those for the 
CNN model ranged between 0.97 and 1.0. The test set 
confusion matrix displayed in Figure 3H,3I, when combined 
with these results, illustrates the SVM model’s limited 
predictive ability, suggesting that individual differences and 
tumor heterogeneity pose challenges to the classification 
of tumor tissues and the discernment of infiltration degree. 
Conversely, the CNN model demonstrates superior 
computational performance and higher accuracy in 
identifying tissues of different pathology types, particularly 
in handling unbalanced data volumes.

It was interpreted that both models effectively differentiate 
normal tissue from LADC, as evidenced by cross-validation 
sensitivity, specificity, accuracy, F1-score, and AUC values of 
99.3%±0.7%, 69.5%±22.6%, 94.7%±4.4%, 96.9%±2.6%, 
and 97.6%±3.5%, respectively, for the SVM model (Table 2).  
When the model underwent testing on an independent 
cohort of 8 patients, its classification performance remained 
consistent, yielding sensitivity, specificity, accuracy, F1-
score, and AUC values of 96.6%, 63.5%, 93.2%, 96.2%, and 
96.2%, respectively. However, the suboptimal specificity of 
the SVM model suggests challenges in accurately identifying 
negative category samples, potentially resulting in false 
positives by misclassifying some negative category samples as 
positive. In contrast, CNNs excel in extracting features from 
data through layers and adapting to the complex structure of 
the data during the learning process. Consequently, CNNs 
exhibit greater sensitivity in distinguishing subtle differences 
between categories. The results demonstrate that CNNs, 
tested via cross-validation on the same dataset, achieved 
sensitivity, specificity, accuracy, F1-score, and AUC values of 
93.3%, 91.2%, 93.1%, 96.0%, and 96.1%, respectively. This 
underscores the suitability of CNNs for handling complex 
and high-dimensional data, enabling effective learning and 
generalization across the dataset’s significant variability. 
In certain scenarios, CNNs prove more advantageous 
compared to traditional models such as SVM.

Building upon these findings, we proceeded to construct 
a classification model designed to differentiate between 
MIA and IAC tissues. In this study, we acquired a total of 
2,654 Raman spectra from 7 Raman microchips obtained 
from 5 MIA patients. For classification purposes, these 
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spectra were compared against 13,556 Raman spectra from 
54 Raman microchips gathered from 36 IAC patients. The 
classification model underwent cross-validation using the 
entire available dataset. We trained SVM and CNN models 
with 5-fold cross-validation on a dataset including 5 MIA 
patients and 35 randomly selected IAC patients. The SVM 
models exhibited sensitivity, specificity, accuracy, F1-score, 
and AUC of 99.5%±0.4%, 45%±28.8%, 89.2%±6.5%, 
93.7%±4.0%, and 94.1%±9.8%, respectively. Meanwhile, 
the corresponding metrics for CNN models were 
98.5%±1.9%, 95.8%±4.5%, 98.2%±2.0%, 98.9%±1.1%, 
and 99.4%±0.9%, respectively. As shown in Figure 4A,4B, 
the AUC values of the SVM models ranged between 0.74 
and 1, whereas that of the CNN models ranged between 
0.98 and 1. In the assessment of LADC infiltration, the 
conventional SVM model displayed lower specificity 
attributed to variations in data quantity among different 
categories. In contrast, the CNN model showcased superior 
diagnostic capabilities.

Correction for rapid intraoperative pathologic diagnosis

Trained SVM and CNN models were tested on a dataset 
containing six patients in total. Among them, three patients 
were initially diagnosed with MIA at rapid intraoperative 
diagnosis but later diagnosed with IAC by postoperative 
pathologic gold standard, while the other three patients 
were diagnosed with IAC by either rapid pathology or gold 
standard. The AUC results are 77% and 99% for SVM and 
CNN separately (Figure 4C,4D). In Table 3, we provide a 
comprehensive illustration of the significant role played by 

Raman technique in facilitating the pathologic diagnosis 
process across distinct patient cases. Specifically, the CNN 
model evaluates the volume of data erroneously diagnosed as 
MIA within the entire Raman dataset for a patient initially 
misdiagnosed through rapid intraoperative pathology. The 
CNN-assisted Raman technique effectively rectified the 
diagnoses for the three IAC patients misclassified as MIA 
by rapid pathology, achieving correction rates of 99.85%, 
100%, and 96.86%, respectively, when compared against 
the pathology gold standard. Remarkably, for the three 
patients with IAC who were not misdiagnosed by rapid 
pathology, the Raman technique demonstrated a flawless 
100% correct diagnosis rate.

Discussion

LADC is the most important histologic subtype of lung 
cancer, and early diagnosis and clinical intervention are 
particularly important for patient prognosis (27). Given 
the distinct surgical prognostic measures triggered by 
diagnostic results of MIA and IAC, accurate intraoperative 
diagnosis provides an objective foundation for surgeons 
in determining the next surgical plan during LADC 
procedures, holding significant clinical and practical 
implications. This study underscores the clinical significance 
of intelligent and digital intraoperative pathology diagnosis 
while shedding light on the potential advancement offered 
by deep learning-assisted Micro-Raman technique as 
a versatile tool for intraoperative diagnosis of LADC 
infiltrative pathology. The accelerated detection speed and 
heightened diagnostic accuracy of the Raman diagnostic 

Table 2 Classification performance of the two classification algorithms used to differentiate between normal tissue, LADC, MIA and IAC in the 
model training and testing set. The training set is derived from the results (mean ± SD) after 5-fold cross-validation of the models

Arithmetic Classified tissues Sensitivity, % Specificity, % Accuracy, % F1-score, % AUC, %

Normal tissue & LADC

SVM Training 99.3±0.7 69.5±22.6 94.7±4.4 96.9±2.6 97.6±3.5

Testing 96.6 63.5 93.2 96.2 96.2

CNN Training 98.0±1.8 92.1±6.4 97.1±1.7 98.3±1.0 99.2±0.9

Testing 93.3 91.2 93.1 96 96.1

MIA & IAC

SVM Training 99.5±0.4 45±28.8 89.2±6.5 93.7±4.0 94.1±9.8

CNN Training 98.5±1.9 95.8±4.5 98.2±2.0 98.9±1.1 99.4±0.9

LADC, lung adenocarcinoma; MIA, microinvasive adenocarcinomas; IAC, invasive adenocarcinoma; SD, standard deviation; AUC, area 
under the curve; SVM, support vector machine; CNN, convolutional neural network.
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Figure 4 Classification algorithm to diagnose Raman spectra of LADCs with different degrees of infiltration. (A) ROC curve plot of the 
5-fold cross-validation results of the SVM model for the classification of MIA and IAC. (B) ROC curve plot of the 5-fold cross-validation 
results of the CNN model for the classification of MIA and IAC. (C) ROC curve plot of the SVM model on the test set. (D) ROC curve plot 
of the CNN model on the test set. AUC, area under the curve; LADC, lung adenocarcinoma; ROC, receiver operating characteristic; SVM, 
support vector machine; MIA, microinvasive adenocarcinomas; IAC, invasive adenocarcinoma; CNN, convolutional neural network.

Table 3 CNN modeling to diagnose and correct the Raman dataset of IAC patients misdiagnosed as MIA by intraoperative rapid pathology

Patients
Rapid pathology  

diagnosis
Raman dataset

Number of MIA  
diagnoses

Number of IAC  
diagnoses

Pathological gold  
standard

1 MIA 677 1 676 IAC

2 MIA 398 0 398 IAC

3 MIA 606 19 587 IAC

4 IAC 777 0 777 IAC

5 IAC 544 0 544 IAC

6 IAC 372 0 372 IAC

CNN, convolutional neural network; IAC, invasive adenocarcinoma; MIA, microinvasive adenocarcinomas.

method employed in this investigation enable the swift 
identification of biomolecular vibrational signals with 
fingerprint specificity, obviating the need for dependence 
on tumor markers. 

Leveraging imaging data and insights from prior studies, 

clinicians can generally discern the benign or malignant 
nature of a nodule. However, achieving a consensus on the 
reliable identification of the extent of LADC infiltration 
remains an ongoing challenge. In their investigation, He  
et al. (28) utilized preoperative predictive CT images to 
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delve into the lymph node region for a more in-depth 
assessment of infiltration extent. Their findings revealed 
a differential diagnostic AUC value of 0.677 for MIA 
in the lymph node area, whereas the AUC value for the 
differential diagnosis of IAC reached 0.819. Zhou et al. (29) 
assessed the expression of programmed cell death ligand 1 
(PD-L1) from pre-IAC to IAC stage, and the study findings 
revealed a positive correlation between PD-L1 expression 
and the aggressiveness, distinct pathological subtypes, or 
unfavorable biological behaviors of early-stage LADC. 
Given the well-established correlation between various 
levels of LADC infiltration through multiple techniques, 
their findings lend support to the significance of Micro-
Raman diagnosis facilitated by deep learning classification 
models.

To ensure maximum clinical validity, the stability of the 
classification model was rigorously trained and tested on an 
individual patient population following a comprehensive 
diagnostic procedure for lesions in accordance with the 
Department of Pathology’s morphological and IHC 
classification. Validation of the utility of Raman datasets 
from patients with misdiagnoses in rapid pathology was 
conducted, affirming the potential of Raman spectroscopy 
as a biomarker for identifying the extent of LADC 
infiltration. Analysis of spectral distinctions among 
different tissues distinctly reveals diverse Raman patterns 
in pathological tissues with varying degrees of LADC 
infiltration, illuminating the intricate biochemical and 
metabolic changes during the transition from normal tissues 
to LADC. In recent years, deep learning has emerged as a 
pivotal tool in medical research. For instance, Shah et al. (30)  
utilized a Deep Ensemble 2D CNN model on lung cancer 
CT images to achieve a diagnostic accuracy of 95%. 
Meanwhile, Park et al. (31) developed a deep learning model 
for automated segmentation of lung cancer on [18F]FDG 
PET/CT, achieving a Dice similarity coefficient of 0.78 in 
the test set. In this work, Raman spectroscopy combined 
with deep learning CNN models can continuously capture 
and recognize spectral patterns of different pathological 
samples, correcting the errors of existing clinical 
intraoperative pathology diagnostic results. 

In addition to showcasing its ability to identify the 
diagnostic features of LADC infiltration, this study 
emphasizes the seamless compatibility of the Micro-
Raman technique with standard intraoperative diagnostic 
procedures in clinical settings. Unlike rapid freezing, which 
may result in section fragmentation and freezing artifacts, 
rendering significant portions of the tumor unsuitable for 

routine H&E evaluation and potentially underestimating 
disease severity (32), the Micro-Raman technique requires 
no sample processing. This allows for the direct diagnosis 
of suspicious areas, relying on the previously established 
pathology Raman database to achieve the initial diagnosis 
through classification models. Additionally, the cost of 
conventional Micro-Raman systems is comparable to 
that of pathology slide scanners. The dimensions of the 
commonly employed Raman metal-aluminum sheet are 
identical to those of pathology slides, making it a cost-
effective and well-suited option for clinical use scenarios. 
The intraoperative collection of Raman spectra differs from 
laboratory settings, potentially leading to a reduced number 
of data points and a shorter diagnostic time. It is essential 
to highlight, from a technical standpoint, the significance of 
characterizing the “Raman-consistent” region around the 
tumor, as its localization may impact diagnostic accuracy 
when assessing the extent of the lesion (26).

Overall, Micro-Raman technique holds significant 
promise as a valuable complement to histopathologic 
research. However, its widespread clinical implementation 
necessitates the collection of a substantial number of 
clinical samples and the conduct of multi-geographic, 
multi-institutional studies. This study highlights the 
integration of Raman diagnostic methods with pathology 
assessments, noting limitations. Future research could 
enhance diagnostic accuracy by expanding Raman collecting 
coverage and refining algorithms. Additionally, exploring 
alternative Raman diagnostic modalities, such as SERS 
or the utilization of hand-held Raman probes for direct 
lesion diagnosis, can enhance the efficiency of acquiring 
large specimens or replace the SERS base to amplify 
spectral intensity (33-37). The integration of Micro-
Raman technique into clinical diagnosis is a systematic and 
meticulous process, requiring the establishment of extensive 
Raman databases encompassing various tumor types and 
lesion extents (38). Furthermore, it involves developing a 
standardized acquisition process suitable for clinical settings 
and providing specialized training for physicians in rapid 
intraoperative Raman diagnosis to ensure the provision of 
reliable diagnostic services.

Conclusions

We present a comprehensive protocol for utilizing 
microscopic Raman techniques in conjunction with deep 
learning models for the diagnosis of LADCs, specifically 
targeting various degrees of infiltration. The study 
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outcomes not only facilitate the classification of tissues with 
distinct levels of infiltration but also allow for the correction 
of tissues that have been inaccurately diagnosed during 
intraoperative rapid pathology. These findings establish 
a robust foundation for the clinical implementation of 
microscopic Raman technology as an intraoperative tool 
for diagnosing LADCs with diverse degrees of infiltrative 
characteristics.
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Supplementary

Appendix 1 Supplementary information

Flow of Raman microchip preparation 

Dewaxing protocol
Lung cancer samples were processed using Formalin-Fixed Paraffin-Embedded (FFPE), the sections were required to have 
a Raman microchip with a thickness of 6 μm. After lifting the sections out of the water, the Raman microchip was agitated 
for 1 min in each of the baths: 2 xylene substitutes baths, 3 100% ethanol baths and 3 distilled water baths. Prior to Raman 
measurements, the slides were dried naturally at room temperature for 20 min to avoid water residue on the slides, and this 
step was performed without any additional chemical treatment.

Preparation of polished aluminum slides
A 304 aluminum plate was precision-cut into aluminum substrates measuring 75 mm × 25 mm × 1 mm. These substrates 
underwent the removal of a thin protective film prior to usage, followed by a thorough rinse with distilled water and 
subsequent rinses with 100% ethanol. After a final rinse with distilled water, the slides were left to air-dry naturally. The 
polished aluminum slides were then carefully stored in a clean and dry slide box for future use.

Flow of collecting data using Micro-Raman spectrometer

The Raman microchip was initially positioned on the Raman microscope stage, and the Leica microscope’s white light was 
activated, utilizing a 5× objective lens. Adjust the sample surface to the system’s focal plane, a setting achievable through the 
system joystick, ensuring alignment with identifiable tissue features visible on all tissue sections, referencing both H&E and 
IHC images. Capture a 5× image snapshot, saving it as a JPEG via the “Live Video” and “Save Image” tab. Subsequently, 
switch to a 20× objective lens, adjusting the WiRE software accordingly. Set the appropriate focal plane, capture the image, 
and repeat these steps with the 50× short working distance objective. Save each image individually, then arrange and 
photograph them to create a composite image covering a 200 μm × 200 μm area. Randomly select 100 to 200 data points 
within this composite image for data collection on the pathology. In the WiRE 5.4 software, configure the acquisition center 
to 1200 cm-1 (fingerprint area), set cumulative acquisition to 3 times, with an acquisition time of 3 s, and a laser power of 
50%. Close the measurement window and select “Run” to initiate the acquisition process. Throughout this process, caution 
should be exercised to avoid any impact on the table supporting the Raman microscope. 

Classification model evaluation indicators

In binary classification problems, model performance evaluation is crucial to ensure the reliability of the model in practical 
applications. In order to have a comprehensive understanding of the model’s prediction effect, we need a series of scientifically 
rigorous evaluation indicators. These indicators are set up to comprehensively assess the performance of the model from 
different perspectives, to help researchers better understand the model behavior, and to guide the improvement and selection 
of the model.

Meaning and purpose of evaluation indicators
Sensitivity: The proportion of samples that are truly positive that are correctly predicted to be positive. Measures the model’s 
ability to capture positive examples.

Specificity: The proportion of true negative cases that are correctly predicted to be negative. Measures the model’s ability 
to exclude negative cases.

Accuracy: The proportion of correctly predicted samples out of the total number of samples. To improve the overall 
predictive accuracy of the model.

F1-score: The reconciled average of Precision and Recall, combining the effects of both. To balance the model’s 
performance on positive and negative cases.

Precision: The proportion of samples predicted to be positive cases that are actually positive cases. To improve the accuracy 
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of positive case prediction and reduce the risk of misclassification.
Recall: The proportion of true positive cases that are correctly predicted. To improve the identification of positive cases 

and reduce the number of true positive cases that are not captured.

Calculation formula for evaluation indicators
Accuracy = (TP + TN)/(TP + FP + TN + FN)
Sensitivity = TP/(TP + FN)
Specificity = TN/(TN + FP)
F1-score = 2 * (Precision * Recall)/(Precision + Recall)
Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

Annotation
True positive (TP): true class. The true class of the sample is positive and the result recognized by the model is also positive.

False negative (FN): false negative class. The true class of the sample is a positive class, but the model recognizes it as a 
negative class.

False positive (FP): false positive category. The true category of the sample is negative, but the model recognizes it as 
positive.

True negative (TN): The true category of the sample is negative and the model recognizes it as negative.
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Figure S1 In this work, the serial section method was used for H&E staining, immunohistochemistry, and unstained sections were reserved 
for Raman spectroscopy acquisition to ensure consistency of information between adjacent sections and to minimize the impact of sample 
selection bias on the results. H&E, hematoxylin and eosin; IHC, immunohistochemistry.
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Table S1 Information on all patients/subjects

Patient number Gender Age, years Rapid pathology Pathology gold standard Sampling Training or testing

1 Male 62 MIA MIA Tumor Randomly

2 Male 55 MIA MIA Tumor Randomly

3 Female 57 IAC IAC Tumor Randomly

4 Male 62 IAC IAC Tumor Randomly

5 Female 71 IAC IAC Tumor Randomly

6 Female 62 IAC IAC Tumor Randomly

7 Female 60 IAC IAC Tumor Randomly

8 Male 60 IAC IAC Tumor Randomly

9 Female 69 IAC IAC Tumor Randomly

10 Female 55 MIA MIA Tumor Randomly

11 Female 51 IAC IAC Tumor Randomly

12 Female 67 IAC IAC Tumor Randomly

13 Male 67 IAC IAC Tumor Randomly

14 Female 59 IAC IAC Tumor Randomly

15 Male 60 IAC IAC Tumor Randomly

16 Male 62 IAC IAC Tumor Randomly

17 Female 54 IAC IAC Tumor Randomly

18 Male 58 IAC IAC Tumor Randomly

19 Male 72 IAC IAC Tumor Randomly

20 Male 57 IAC IAC Tumor Randomly

21 Female 54 IAC IAC Tumor Randomly

22 Male 65 IAC IAC Tumor Randomly

23 Male 56 IAC IAC Tumor Randomly

24 Female 52 IAC IAC Tumor Randomly

25 Female 57 IAC IAC Tumor Randomly

26 Male 65 IAC IAC Tumor Randomly

27 Male 62 IAC IAC Tumor Randomly

28 Male 53 MIA MIA Tumor Randomly

29 Female 26 MIA MIA Tumor Randomly

30 Female 74 IAC IAC Tumor Randomly

31 Male 56 IAC IAC Tumor Randomly

32 Female 50 IAC IAC Tumor Randomly

33 Female 57 IAC IAC Tumor Randomly

34 Female 51 IAC IAC Tumor Randomly

35 Male 69 IAC IAC Tumor Randomly

36 Female 51 IAC IAC Tumor Randomly

37 Male 69 IAC IAC Tumor Randomly

38 Female 65 IAC IAC Tumor Randomly

39 Male 58 IAC IAC Tumor Randomly

40 Male 60 IAC IAC Tumor Randomly

41 Female 50 IAC IAC Tumor Randomly

42 Male 57 IAC IAC Normal tissue Randomly

43 Male 71 IAC IAC Normal tissue Randomly

44 Male 61 IAC IAC Normal tissue Randomly

45 Male 60 IAC IAC Normal tissue Randomly

46 Male 62 IAC IAC Normal tissue Randomly

47 Female 59 IAC IAC Normal tissue Randomly

48 Male 75 IAC IAC Normal tissue Randomly

49 Female 67 IAC IAC Normal tissue Randomly

50 Female 62 IAC IAC Normal tissue Randomly

51 Female 71 IAC IAC Normal tissue Randomly

52 Male 60 IAC IAC Normal tissue Randomly

53 Male 51 IAC IAC Normal tissue Randomly

54 Male 55 MIA IAC Tumor Testing

55 Female 62 MIA IAC Tumor Testing

56 Female 59 MIA IAC Tumor Testing

57 Male 55 MIA IAC Tumor Testing

58 Female 74 MIA IAC Tumor Testing

59 Female 65 MIA IAC Tumor Testing

MIA, microinvasive adenocarcinomas; IAC, invasive adenocarcinoma.
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Table S2 The classification results are assessed by comparing the 
predicted labels generated by the model with the true labels

Confusion matrix
True label

Positive Negative

Predicted label Positive TP FP

Negative FN TN

TP, true positive; FP, false positive; FN, false negative; TN, true 
negative.

Table S3 Essential features and peak attributions employed for tissue type classification and corresponding Raman peaks (1,2)

Feature 
(cm−1)

Raman peak assignment Biological information
Increase/decrease peaks

Normal tissue LADC MIA IAC

852 Ring C-C bend Protein (proline, tyrosine) ↑ ↓ ↑ ↓

937 C-C stretch mode Protein (proline, valine, a-helix) ↑ ↓ ↓ ↑

1004 C-C aromatic ring stretch Protein (phenylalanine) ↓ ↑ ↑ ↓

1032 C-H bend mode Protein (phenylalanine) ↑ ↓ ↑ ↓

1209 C-C6H5 stretch mode Protein (phenylalanine, tryptophan, tyrosine) ↑ ↓ ↑ ↓

1238 Amide III (C-N, N-H bend) Protein ↑ ↓ ↑ ↓

1308 CH3/CH₂ twist mode Collagen and lipid __ __ __ __

1341 Guanine; C-H DNA/RNA; proteins and carbohydrates ↓ ↑ ↑ ↓

1451 CH (CH2) bend mode Protein and lipid ↑ ↓ __ __

1671 Amide I (C=O, C-N and N-H bend) Protein ↓ ↑ ↓ ↑

LADC, lung adenocarcinoma; MIA, microinvasive adenocarcinomas; IAC, invasive adenocarcinoma.
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