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Background: Notwithstanding the rapid developments in precision medicine in recent years, lung cancer
still has a low survival rate, especially lung squamous cell cancer (LUSC). The tumor microenvironment
(TME) plays an important role in the progression of lung cancer, in which high neutrophil levels are
correlated with poor prognosis, potentially due to their interactions with tumor cells via pro-inflammatory
cytokines and chemokines. However, the precise mechanisms of how neutrophils influence lung cancer
remain unclear. This study aims to explore these mechanisms and develop a prognosis predictive model in
LUSC, addressing the knowledge gap in neutrophil-related cancer pathogenesis.

Methods: LUSC datasets from the Xena Hub and Gene Expression Omnibus (GEO) databases were used,
comprising 473 tumor samples and 195 tumor samples, respectively. Neutrophil contents in these samples
were estimated using CIBERSORT, xCell, and microenvironment cell populations (MCP) counter tools.
Differentially expressed genes (DEGs) were identified using DEseq2, and a weighted gene co-expression
network analysis (WGCNA) was performed to identify neutrophil-related genes. A least absolute shrinkage
and selection operator (LASSO) Cox regression model was constructed for prognosis prediction, and the
model’s accuracy was validated using Kaplan-Meier survival curves and time-dependent receiver operating
characteristic (ROC) curves. Additionally, genomic changes, immune correlations, drug sensitivity, and
immunotherapy response were analyzed to further validate the model’s predictive power.

Results: Neutrophil content was significantly higher in adjacent normal tissue compared to LUSC tissue
(P<0.001). High neutrophil content was associated with worse overall survival (OS) (P=0.02), disease-free
survival (DFS) (P=0.02), and progression-free survival (PFS) (P=0.03) using different software estimates.
Nine gene modules were identified, with blue and yellow modules showing strong correlations with
neutrophil prognosis (P<0.001). Eight genes were selected for the prognostic model, which accurately
predicted 1-, 3-, and 5-year survival in both the training set [area under the curve (AUC) value =0.60, 0.63,
0.66, respectively] and validation set (AUC value =0.58, 0.58, 0.59, respectively), with significant prognosis
differences between high- and low-risk groups (P<0.001). The model’s independent prognostic factors
included risk group, pathologic M stage, and tumor stage (P<0.05). A further molecular mechanism analysis
revealed differences between risk groups were revealed in immune checkpoint and human leukocyte antigen

(HLA) gene expression, hallmark pathways, drug sensitivity, and immunotherapy responses.
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Conclusions: This study established a risk-score model that effectively predicts the prognosis of LUSC

patients and sheds light on the molecular mechanisms involved. The findings enhance the understanding

of neutrophil-tumor interactions, offering potential targets for personalized treatments. However, further

experimental validation and clinical studies are required to confirm these findings and address study

limitations, including reliance on public databases and focus on a specific lung cancer subtype.
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Introduction

With an incidence of 11.4%, lung cancer is the second most
commonly diagnosed cancer after female breast cancer
and is the leading cause of cancer-related death worldwide
(1,2). Even with significant advancements in diagnosis and
treatment, the overall survival (OS) rate of lung cancer
patients remains poor, especially lung squamous cell cancer
(LUSC). Several prognostic biomarkers and prediction

Highlight box

Key findings

* This study investigated the prognostic implications of neutrophil
content in lung squamous cell carcinoma (LUSC). We developed
and validated a reliable prognostic model consisting of eight
neutrophil-associated genes through a dataset. This model provides
a comprehensive approach for predicting the outcomes of LUSC
patients.

What is known, and what is new?

e Similar to previous studies, this research highlighted the
association between neutrophil content and clinical outcomes in
lung cancer. The identification of a prognostic signature involving
multiple genes is consistent with the approach used in some
previous studies to identify the molecular markers associated with
patient prognosis.

® This study used a combination of software tools to estimate
neutrophil content and undertook a comprehensive analysis of the
molecular mechanisms of LUSC, including gene mutation and
immune checkpoint gene expression.

What is the implication, and what should change now?

e This study contributes to the existing literature on the prognostic
role of neutrophils in lung cancer by providing valuable insights
into the potential prognostic signatures and molecular mechanisms
of LUSC. The findings expand understandings of the complex
interactions between neutrophils and tumor biology, offering
potential targets for personalized treatments.
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models for LUSC have been identified, including genetic
mutations, expression levels of specific proteins, and
various gene signatures (3-5). These models have been
used to predict patient outcomes and guide treatment
decisions. Researchers have even begun to explore the
cell-free DNA methylation profile of LUSC in order
to evaluate its potential in the diagnosis of LUSC (6).
However, many of these biomarkers and models have
limitations, such as variability in predictive power across
different populations, high cost, and the need for complex
technological platforms. A recent study has shown that the
tumor microenvironment (TME) plays a crucial role in the
development and progression of lung cancer (7). Among the
various components of the TME, neutrophils have emerged
as important players in the pathogenesis of lung cancer.
Neutrophils are the most abundant type of white blood cell
and are believed to have a critical role in innate immune
response. However, their role in cancer is complex and
multifaceted (8,9). Therefore, it is necessary to explore the
molecular mechanisms of neutrophils in lung cancer and
develop a predictive model that can effectively predict the
prognosis of individual patients.

Several hypotheses have been proposed based on current
knowledge of neutrophil biology and tumor immunology.
For instance, it has been suggested that neutrophils may
interact with tumor cells through the release of pro-
inflammatory cytokines and chemokines, which can
promote tumor cell proliferation, angiogenesis, and immune
evasion (10). However, the precise mechanism underlying
the association between neutrophils and lung cancer has yet
to be fully elucidated.

In recent years, high-throughput sequencing technologies
and bioinformatics tools have revolutionized the field of
cancer research. These technologies enable the analysis of
large-scale genomic and transcriptomic data, which can
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provide insights into the molecular mechanisms underlying
cancer development and progression. In the context of
lung cancer and neutrophils, several bioinformatics studies
have been conducted to identify the differentially expressed
genes (DEGs) and pathways associated with neutrophil
infiltration in lung tumors (11-13), and they have reported
a correlation between high levels of neutrophils and a poor
prognosis in lung cancer patients (11-13). However, there
is still a need for further research to fully understand the
role of neutrophils in lung cancer and to identify potential
therapeutic targets.

Given the potential strengths of neutrophils as prognostic
markers, including their abundance and involvement in key
cancer-related processes, there is a critical need to identify
new biomarkers and develop prognostic models based on
neutrophils. In this study, we compared the neutrophil
content of tumor and normal tissue samples. We then
conducted a gene expression analysis and weighted gene
co-expression network analysis (WGCNA) to establish
and verify a multivariable prediction model of lung cancer
prognosis. These findings suggest potential targets for
therapeutic interventions and provide insights into the
role of neutrophils in lung cancer progression and drug
resistance. We present this article in accordance with the
TRIPOD reporting checklist (available at https://tler.
amegroups.com/article/view/10.21037/tlcr-24-411/rc).

Methods
Acquisition and screening of data

The LUSC data set and corresponding clinical information
[including age, gender, tumor-node-metastasis (TINNM)
staging, tumor stage, family history, examined lymph
node count, neoplasm histologic grade, primary diagnosis,
site of resection or biopsy, and disease type] and survival
information for each sample were downloaded from
the Xena Hub database (https://xenabrowser.net/
datapages/?hub=https://gdc.xenahubs.net:443) (14). A total
of 550 samples, comprising 501 cancer tissue samples and
49 adjacent tissue samples, were included in the study. Of
these samples, 473 cancer tissue samples with prognostic
information were used as training sets for subsequent model
construction analysis.

The GSE37745 data set, which included 195 tumor
samples, was downloaded from the National Center for
Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
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geo/) as a validation set for the subsequent model validation
analysis (15). We used the pre-processed and normalized
probe expression matrix and downloaded the corresponding
platform annotation file to convert probes to gene symbols,
averaging the values to obtain gene expression values for the
subsequent analysis.

The lung cancer gene mutation data from the National
Institutes of Health (NIH) squamous carcinoma database
(https://gdc.cancer.gov/about-data/publications/PanCan-
Squamous-2018) were downloaded to analyze genomic
changes between the different prognostic risk groups. The
study was conducted in accordance with the Declaration of
Helsinki (as revised in 2013).

Neutrophil estimation and prognosis analysis

Based on the gene expression levels of the LUSC samples
in The Cancer Genome Atlas (TCGA) data set, relative
mode and absolute mode were each selected to calculate
the proportions of 22 immune cells using CIBERSORT
(https://cibersort.stanford.edu/index.php) (16). xCell
(hteps://xcell.ucsf.edu/) was used to estimate the relative
abundance of immune cells and stromal cells for each sample
by inputting all the messenger RNA (mRNA) expression
matrices (17). Microenvironment cell populations (MCP)
counter (https://github.com/ebecht/MCPcounter) was
used to estimate the relative infiltration abundance of nine
immune cells in each sample based on the expression matrix
of all the mRNA (18). The content of neutrophils in each
tumor sample was obtained using the CIBERSORT, xCell,
and MCP software, and the Kaplan-Meier (product-limit)
survival curves, which included OS, disease-free survival
(DFS) and progression-free survival (PFS), was plotted
using the R package (version 3.5-5) (https://cran.r-project.
org/web/packages/survival/) (19). The logarithmic-rank test
was used to compute P values.

Differential expression gene screening

Based on TCGA gene expression data, the DEseq2 package
(version 1.36.0) (https://bioconductor.org/packages/release/
bioc/html/DESeq2.html), which provides linear regression
and empirical Bayes methods, was used to compare the
DEGs between the lung cancer and adjacent normal tissue
samples (20). The Benjamini-Hochberg step-up method
was used for multiple testing correction, and the adjusted
(adj.) P value. The differential expression threshold was
set as an adj. P value <0.05 and a Ilog fold changel >2,
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and DEGs were evaluated based on the fold change and
significance level.

Screening of neutrophil-related drug rvesistance genes based
on a co-expression network

Using the WGCNA (version 1.71) (https://cran.r-project.
org/web/packages/ WGCNA/index.html) (21), we
performed a WGCNA of the top 5,000 genes, selected the
scale-free network fit index and average connectivity, and
computed and selected P=8 as the soft-threshold for this
data set. We also established a model of lung cancer samples
versus normal samples, analyzed the expression levels of the
hub genes between the two groups, and used the Pearson
correlation test to compute the correlations between the
module genes and neutrophil compositional phenotypes,
screen out the immune defense co-expressed module related
to neutrophils, as well as the hub genes in the module,
with a screening threshold of abs[datKME(, ¢)] >0.8 and
| gene significance (GS)| >0.1. We performed a Gene
Ontology (GO) functional enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGGQG) pathway
analysis of the module genes for the functional annotation,
and set the correlation coefficient threshold to 0.85, with
a parameter of =8, to construct the immune defense gene
co-expression network.

Functional enrichment analysis of the GO and KEGG
pathways

The clusterProfiler (version 4.4.4) (https://bioconductor.
org/packages/release/bioc/html/clusterProfiler.html) (22)
was used to perform the GO biological process (BP) analysis
of the neutrophil-related genes from the obtained module,
and the enrichR tool (https://mirrors.sjtug.sjtu.edu.cn/cran/
web/packages/enrichR/index.html) (23) was used for the
KEGG pathway analysis. A P value <0.05 and a minimum
gene number of two were set as the criteria for filtering the
significantly enriched pathways.

Identification of neutrophil genes associated with prognosis

Based on the DEGs in the neutrophil-related module
obtained from the WGCNA, a single-factor Cox regression
analysis using the R package (19) was performed on the
clinical prognostic information of TCGA-LUSC samples to
identify the neutrophil-related genes significantly associated
with OS prognosis. A P value <0.05 was set as the threshold
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for significant correlation filtering.

Construction and validation of a neutrophil-related
prognostic model

Based on the neutrophil-related genes significantly
associated with the survival prognosis obtained in the
previous step, we used the least absolute shrinkage and
selection operator (LASSO), Cox regression (penalized
maximum likelihood) model in the glmnet package
(version 4.1.7) of R language (https://cran.r-project.org/
web/packages/glmnet/index.html) (24) to further screen
the prognosis-related neutrophil-gene combinations. We
used the survival prognosis information of the training set
samples and the expression values of the genes in different
samples to perform a five-fold cross-validation analysis.

Based on the regression coefficients of the genes in the
neutrophil-gene combinations related to prognosis and the
expression levels of these genes in TCGA-LUSC samples,
we constructed a risk-score model. The following formula
was used to compute the risk score:

Risk score = Z P genex Expgene [1]

where Pgene represents the LASSO regression coefficient
of the gene, and Expgene represents the expression level of
the gene in the TCGA data set.

To validate the accuracy of the model, the risk-score
calculation formula was used with the same regression
coefficients to estimate the risk-score value of each sample
in the GEO data set. Based on the median risk-score
value, all the GEO samples were divided into a high-risk
(a risk score > median value) group and a low-risk (a risk
score < median value) group. The Kaplan-Meier curve
plotting method in the R survival package was used to
evaluate the difference in the survival prognosis between
the high- and low-risk groups. Furthermore, high-risk or
low-risk score distribution curves, survival distribution
graphs, and gene expression heatmap models were plotted
based on the above grouping. Similarly, the Kaplan-Meier
survival curve was plotted using the “survminer” package
in R software to compare the OS of the two groups. The
“timeROC” package was used to draw time-dependent
receiver operating characteristic (ROC) curves and compute
the areas under the curves (AUCs) of the sample OS at 1-,
3-, and 5-year to evaluate the ability of the model to predict
patient prognosis. The higher the AUC value, the better
the model’s performance. Generally, if the AUC value of the
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ROC curve is above 0.6, the model is considered to meet
the requirements.

Independent prognostic factor screening

According to the grouping method mentioned above,
TCGA samples were divided into two groups; that is,
the high- and low-risk groups. The chi-square test in R
language was used to statistically compare and analyze
the following factor variables: age, risk group, gender,
pathologic M, pathologic N, pathologic T, and tumor
stage. For the continuous variable age, the samples were
grouped based on age >60 years, and the intergroup 7-test
was used to compare the significant differences between
the two groups of samples. Single-factor and multivariable
Cox analyses were performed based on the risk group and
clinical information to select the independent factors.

Nomogram construction

To determine whether the risk-score model mentioned
above could be used as an independent prognostic factor, a
single-factor Cox regression analysis was performed on age,
risk group, gender, pathologic M, pathologic N, pathologic
T, and tumor stage separately. Variables with a P value <0.05
were included in the multivariable Cox regression analysis.
A further screening was conducted to select variables
with a P value <0.05 and draw a nomogram. In addition, a
calibration curve was plotted to assess the accuracy of the
model.

Analysis of the genomic changes between the different risk
groups

Based on the lung cancer gene mutation data in the NIH
database, the maftools package (version 2.12.0) (https://
bioconductor.org/packages/release/bioc/html/maftools.
html) (25) in R language was used to identify the top 20
mutated genes by mutation frequency and compute the
tumor mutation burden (TMB) of the tumor samples.
The TMB difference between the different risk groups
was compared. Based on the median TMB value, TCGA
samples were divided into a TMB-high group (a TMB
> median value) group and a TMB-low group (a TMB <
median value), and the Kaplan-Meier curve plotting method
in the R survival package was used to evaluate the survival
prognosis difference between the TMB-high and TMB-low
groups.

© Translational Lung Cancer Research. All rights reserved.
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Prognostic model gene and immune correlation analysis

The expression data of immune checkpoint genes, such as
PD1 (PDCD1), PD-LI (CD274), CTLA-4 (CTLA4), CD278
(ICOS), TIM3 (HAVCR2), LAG3, CD47, BTLA, TIGIT,
MYD1 (SIRPA), OX40 (ITNFRSF4), 4-1BB (TNFRSFY9),
and B7-H4 (VTCNTI), and human leukocyte antigen (HLA)
family genes were obtained from TCGA expression. The
non-parametric Deuchler-Wilcoxon test was used to
compare the expression differences of immune checkpoint
genes and HLA family genes between the high- and low-
risk groups mentioned above.

Molecular mechanism analysis

A molecular mechanism analysis was conducted using the R
package gene set variation analysis (GSVA) (version 1.46.0)
(https://www.bioconductor.org/packages/release/bioc/html/
GSVA.html) (26) for the pathway enrichment analysis.
The hallmark gene set from the Molecular Signatures
Database (MSigDB) database (version 1.46.0) (http://
software.broadinstitute.org/gsea/msigdb/index.jsp) (27) was
used as the enrichment background, and the single-sample
gene set enrichment analysis method was used for the
pathway enrichment analysis between the high- and low-
risk groups, with a significant enrichment threshold set at a
false discovery rate (FDR) <0.05. R package clusterProfiler
(version 4.4.4) (clusterProfiler) was used for the pathway
enrichment analysis between the high- and low-risk
groups, with MSigDB database c2.cp.kegg pathway as the
enrichment background, and the significant enrichment
threshold set at a FDR <0.05.

Prediction of chemotherapy sensitivity and immunotherapy
responses

The sensitivity of patients to chemotherapy drugs was
evaluated using the Cancer Drug Sensitivity Genomics
(https://www.cancerrxgene.org/) database. The half-
maximal inhibitory concentration (ICs;) was quantified
using the pRRophetic package (version 0.5) in R package
(https://ost.io/5xvsg/) (28). The Deuchler-Wilcoxon test
was used to compare differences in drug sensitivity between
the high- and low-risk groups.

The immunotherapy response was determined by
analyzing tumor immune dysfunction and Tumor Immune
Dysfunction and Exclusion (TIDE) (https://github.com/
jingxinfu/TIDEp) (29). TIDE (http://tide.dfci.harvard.
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edu/) is an analytical technique that uses tumor immune
evasion mechanisms to predict immunotherapy response.
Specifically, this analysis technique combines differences
and correlations of immune therapy predictive markers,
such as CD8A/PD-L1 expression levels, cytolytic activity
(CYT) score, microsatellite instability (MSI), immune cell
proportion score (IPS), and tertiary lymphoid structure.
The flowchart of the method is shown in Figure SI.

Statistical analysis

R software is used for statistical analysis of the data. The
non-parametric Deuchler-Wilcoxon test was used to
compare two groups of samples. P<0.05 is considered
statistically significant.

Results
Neutrophil estimation and prognosis analysis

The differences in the neutrophil content between the lung
cancer tissue samples and adjacent normal tissue samples
were compared, and the results showed that the neutrophil
content in the normal samples estimated by CIBERSORT,
xCell, or MCP software was significantly higher than that
in the tumor tissue samples (P<0.001) (Figure 14).

Using the neutrophil content obtained from
CIBERSORT, xCell, or MCP software for each tumor
sample, combined with clinical information on OS, DFES,
and PFS, Kaplan-Meier (product-limit) curves were plotted
with a truncation value of Kaplan-Meier and compared
using the Mantel logarithmic-rank test. The results
showed that in patients with LUSC, compared with a low
neutrophil content, a high neutrophil content estimated
by MCP software was significantly associated with worse
OS (P=0.02), while a high neutrophil content estimated by
CIBERSORT software was significantly associated with
worse DFS (P=0.02) and PFS (P=0.03) (Figure 1B).

Neutrophil-related drug resistance gene screening,
functional enrichment, and identification of neutrophil
prognostic signatures

Based on TCGA data set gene expression profiles, we
obtained 9,603 DEGs by comparing the gene expression
levels between the lung cancer and adjacent normal tissue
samples (Figure S2). According to the WGCNA of the
top 5,000 genes, we identified nine modules related to the
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subtyping by constructing an immune defense gene co-
expression network (Figure 2A4). We analyzed the correlation
between these modules and the neutrophil content obtained
from MCP, CIBERSORT, and xCell software. As Figure 2B
shows, the blue and yellow modules were significantly
associated with neutrophil prognosis, and the correlation
was most significant in the MCP predicted scores (blue
module: r=0.71, P<0.001; yellow module: r=0.77, P<0.001).
Moreover, the blue and yellow modules showed a significant
positive correlation with the neutrophil subgroup in the
immune cells (Figure 2C). 'To investigate the co-expression
regulatory network of the neutrophil defense in tumor
development, we analyzed the blue and yellow modules
with positive correlations and performed an enrichment
analysis based on the genes included in each module while
annotating the related pathways (GO BPs) of each module
(Figure S3).

Construction and validation of neutrophil-related
prognostic signature

According to the genes identified from the blue and
yellow modules related to neutrophils by the WGCNA,
we performed a single-factor Cox regression analysis and
selected 157 genes. These genes were sorted based on their
significance P value; Figure 34 shows the top 10 ranked
genes (i.e., CCDC68, TGM2, RETN, CSF2, FGG, APOH,
FGA, SLC22A3, CHIA, and TERM?).

Based on the 157 neutrophil-related genes that were
significantly related to survival and prognosis obtained
above, combined with their expression values in TCGA
samples and the survival time and survival state of the
samples, the optimal eight characteristic gene combinations
and the prognostic regression coefficients were screened
by a LASSO Cox regression algorithm. These eight genes
were CSF2, EPDR1, AOC1, CCDC68, FGA, TGM2, RETN,
and FGG (Figure 3B).

Using the LASSO regression coefficients of the eight
optimal feature genes and their expression levels in TCGA
GSE37745 data set and the GEO data set, a risk-score
model was constructed. Risk-score values were obtained
for TCGA data set and the GEO validation set samples,
respectively (Figure 3C, left). Using the median value of the
risk score as the threshold, the samples in TCGA training
set and the GEO validation set were divided into high- and
low-risk groups, and the prognostic differences between
these groups were evaluated (Figure 3C, middle). Based
on the survival time and status of the samples in TCGA
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Figure 1 Correlation analysis between neutrophils and lung cancer. (A) Comparison of neutrophil content between normal and lung cancer

tissue samples. (B) Analysis of association between neutrophil content and lung cancer prognosis using CIBERSORT, xCell, or MCP

software. MCP, microenvironment cell populations.
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Figure 2 Construction of immune defense gene co-expression network. (A) Cluster dendrogram. (B) Correlation between neutrophil score

and prognosis predicted by MCP software. The adjacent color bar of the heat map indicates the degree of correlation between modules and

the infiltration level of neutrophils or other immune cells, with red shades representing positive correlation and blue shades representing

negative correlation. (C) Correlation of blue and yellow modules with neutrophil subsets in immune cells. ME, module eigengenes; MCP,

microenvironment cell populations.

training set and the GEO validation set, combined with the
risk-score value of each sample, ROC curves were drawn
to predict 1-, 3-, and 5-year survival (Figure 3C, right).
The results revealed a significant correlation between the
different risk groups obtained by the risk-score model and
the actual prognosis.

Independent prognostic factor selection

A single-factor Cox analysis was performed on the risk
group and clinical information (age, gender, risk group,
pathologic M stage, pathologic N stage, pathologic T stage,
and tumor stage), and the results showed that the risk group,
pathologic M stage, and tumor stage were all significantly
correlated with prognosis (P<0.05) (Figure 44). The

© Translational Lung Cancer Research. All rights reserved.

multivariable Cox regression analysis also confirmed that
risk group, pathologic M stage, and tumor stage could serve
as independent prognostic factors (P<0.05) (Figure 4B).
A column chart (nomogram) and calibration curve were
further drawn to demonstrate the accuracy of the model

(Figure 4C,4D).

Molecular mechanism analysis

Based on the lung cancer gene mutation data from the
NIH database, we counted the top 20 genes in terms of
the mutation frequency and computed the TMB for each
sample (Figure S4A). We compared the TMB between the
different risk groups and found no significant difference
between the two groups (Figure S4B). Using the median
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Figure 3 Construction of a risk-score model. (A) Univariate Cox regression analysis. (B) Screening of the optimal eight characteristic

gene combinations and prognostic regression coefficients. (C) Construction and performance verification of the risk-score model (left: the

distribution of risk score and survival status in TCGA data set and GEO validation set; middle: prognostic difference between the high- and

low-risk groups; right: ROC curves for predicting 1-, 3-, and 5-year survival). CI, confidence interval; AUC, area under the curve; TCGA,

The Cancer Genome Atlas; GEO, Gene Expression Omnibus; ROC, receiver operating characteristic.
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of the efficacy of the model in predicting 5-year survival. CI, confidence interval; OS, overall survival.

value of the TMB as the cut-off value, all TCGA samples
were divided into the TMB-high (a TMB > median value)
and TMB-low (a TMB < median value) groups. We further
evaluated the survival prognosis difference between the
TMB-high and TMB-low groups and found that patients
in the TMB-high group had significantly better PFS than
those in the TMB-low group (P=0.006) (Figure S4C,S4D).

From TCGA-LUSC sample expression data, we
extracted the expression data of the immune checkpoint
genes. The Deuchler-Wilcoxon test was used to compare
the expression differences of the immune checkpoint genes
and HLA family genes among the subtypes. As Figure 54
shows, the B2M and HLA-E genes were positively
correlated with neutrophils, while the PDCDI and CTLA4
genes were negatively correlated with neutrophils.

A GSVA enrichment analysis was performed on the
hallmark pathway of the high- and low-risk groups, and a
KEGG analysis was performed on each group separately.
Based on the FDR <0.05 threshold, 33 KEGG pathways
[normalized enrichment score (NES) >0] were significantly
enriched in the high-risk group and 57 KEGG pathways
(NES <0) were significantly enriched in the low-risk group.
After sorting based on the absolute value of NES, only the
top eight pathways with the largest absolute value of NES
in the high- and low-risk groups were displayed (Figure 5B).

© Translational Lung Cancer Research. All rights reserved.

The enrichment plot data has been normalized, so all values
displayed in the figures are positive.

Drug sensitivity prediction

The sample expression levels in TCGA-LUSC were
quantified for IC;, using the pRRophetic package in R.
The Deuchler-Wilcoxon test was used to compare the
differences in drug sensitivity between the high- and low-
risk groups. The results showed that there were significant
differences in drug sensitivity between the different risk
groups for some drugs, including axitinib, sunitinib,
cisplatin, vinorelbine, and vinblastine (Figure S5).

Prediction of immunotherapy responses

To determine the immune therapy responses in TCGA-
LUSC samples, we conducted a TIDE analysis to analyze
the escape process of lung cancer samples through the non-
small cell lung cancer (NSCLC) immune escape pathway.
The results showed that the TIDE in the high-risk group
was significantly higher than that in the low-risk group
(P<0.05), and the most significant differences were observed
in the cancer-associated fibroblasts (CAF), CD8, CD274,
and MSI immune escape values (Figure S6).
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Discussion

In recent years, emerging evidence has indicated that the
host immune response plays a critical role in lung cancer
development and progression, and modulating the immune
microenvironment may represent a promising strategy for
improving therapeutic outcomes (30,31). One of the key
cellular components in the TME are neutrophils, a type of
white blood cell primarily responsible for immune defense
against bacterial and fungal infections (9). In addition to
their antimicrobial functions, neutrophils also possess
the ability to interact with tumor cells and modulate the
cancer immune response, leading to varying effects on
cancer progression (8,9). Recent studies have suggested
that the presence and abundance of neutrophils in the
TME could be an important predictor of prognosis in lung
cancer patients (10,11). In order to investigate the role of
neutrophils in the prognosis of LUSC patients, a risk score
model that can effectively identify the prognosis of LUSC
patients was conducted, based on the expression level and
correlation coefficient of neutrophil-related genes, and the
related molecular mechanism of this model was explored.
Our findings provide valuable insights into the prognostic
significance of neutrophils in lung cancer and offer potential
targets for personalized treatments.

Previous studies have explored the relationship between
the ratio of neutrophils to lymphocytes or the genetic
characteristics of circulating platelet-bound neutrophils
and the prognosis of lung cancer (10,11,32-34). In this
study, the analysis revealed that the neutrophil content was
significantly higher in the normal samples than the tumor
samples, which indicated that the reduction of neutrophils
might affect the occurrence and development of LUSC, also
reflected the key role of neutrophils. However, subsequent
analyses using three different neutrophils level analysis
software revealed that higher levels of neutrophils were
associated with poorer prognosis in patients with LUSC,
which appears to be a contradictory result compared to
the previous one. Specifically, a high neutrophil content,
as estimated by MCP software, was significantly associated
with worse OS, while a high neutrophil content, as
estimated by CIBERSORT software, was significantly
associated with worse DFS and PFS. Obviously, inconsistent
results were obtained when using different analysis software,
suggesting the correlation between the level of neutrophils
and prognosis is not absolute. The neutrophil level alone
cannot be used as a prognostic factor of LUSC. In addition
to the neutrophil level, it is necessary to explore multiple

© Translational Lung Cancer Research. All rights reserved.
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dimensions as prognostic factors of LUSC.

Therefore, the establishment of a prediction model
comprising eight genes (i.e., CSF2, EPDRI, AOCI,
CCDC68, FGA, TGM2, RETN, and FGQ) through a
WGCNA represents a notable contribution of this study.
These genes have been implicated in various biological
function, such as inflammatory responses, extracellular
matrix remodeling, and immune regulation (35-42). The
LASSO Cox regression algorithm effectively screened these
genes and a risk score model was built that demonstrated
good predictive performance for patient prognosis.
Moreover, the validation of the model using external data
sets increased its reliability and generalizability.

This study also investigated the molecular mechanisms
of this risk-score model in lung cancer. By analyzing the
gene mutation data, the top frequently mutated genes were
identified, showcasing the genetic landscape of lung cancer
and providing potential targets for future research. The
TMB analysis revealed that patients with a higher TMB
had better PFS. This finding is consistent with the findings
of previous studies that a higher TMB is associated with an
increased likelihood of a response to immune checkpoint
inhibitors (43,44). The differential expression of immune
checkpoint-related genes between different risk groups
is an interesting observation. The negative correlation
between neutrophils and genes such as PDCD1 (PD-1)
and CTLA4, which are important immune checkpoint
regulators (45), suggests that neutrophils have a potential
immunosuppressive role in the TME. Conversely, the
positive correlation between neutrophils and the B2M and
HLA-E genes, which are crucial for antigen presentation
(46,47), suggests a possible interaction between neutrophils
and the adaptive immune response. These findings
contribute to understandings of the complex interactions
between neutrophils and the immune system in the TME.

The precise mechanism underlying the association
between neutrophils and lung cancer remains to be fully
elucidated; however, several hypotheses have been proposed
based on current knowledge of neutrophil biology and
tumor immunology. For instance, it has been suggested
that neutrophils may interact with tumor cells through the
release of pro-inflammatory cytokines and chemokines,
which promotes tumor cell proliferation, angiogenesis,
and immune evasion (13,48). Alternatively, neutrophils
may act as a double-edged sword in the TME, exhibiting
tumor-suppressive effects under certain circumstances (13).
Comparing this study with previous literature, several
similarities and differences should be noted. Similar to
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previous studies (10,11,49), this research highlighted
the association between neutrophil content and clinical
outcomes in lung cancer. The establishment of a prognostic
signature involving multiple genes is consistent with the
approach used in some previous studies (50-53) to identify
the molecular markers associated with patient prognosis.
However, this study added value by using a combination
of software tools to estimate the neutrophil content and by
performing comprehensive molecular mechanism analyses,
including gene mutation and immune checkpoint gene
expression analyses. These approaches provide a more
comprehensive understanding of the role of neutrophils in
lung cancer.

This study provided valuable insights; however, there
are several limitations to consider. First, the data used for
the analysis were obtained primarily from public databases,
which may have introduced biases and limitations in terms
of the sample size, diversity, and data quality. Second, this
study focused on a specific subtype of lung cancer; thus, the
findings may not be directly applicable to other subtypes or
cancers. Future studies should aim to include a more diverse
set of lung cancer patients to ensure broader applicability.
Additionally, the identified prognostic signature and
molecular mechanisms require further experimental
validation to confirm their clinical utility and functional
relevance.

Conclusions

In conclusion, this study contributed to establish a risk score
model that can effectively identify the prognosis of LUSC
patients and explore the related molecular mechanism of this
model. The findings expand understandings of the complex
interactions between neutrophils and tumor biology,
providing potential targets for personalized treatments.
However, further experimental validation and clinical studies
are necessary to confirm and implement these findings in
clinical practice. The limitations of the study, such as the
reliance on public databases and the focus on a specific lung
cancer subtype, should be considered when interpreting
the results. Future research should explore these aspects to
establish a broader and more robust understanding of the
prognostic role of neutrophils in LUSC.
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Figure S1 The workflow of this study. TCGA, The Cancer Genome Atlas; LUSC, lung squamous cell carcinoma; MCP, microenvironment
cell populations; DEGs, differentially expressed genes; KM, Kaplan-Meier; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; WGCNA, weighted gene co-expression network analysis; LASSO, least absolute shrinkage and selection operator; GSEA, gene
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