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non-small cell lung cancer through mendelian randomization of 
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Background: Lung cancer is responsible for most cancer-related deaths, and non-small cell lung cancer 
(NSCLC) accounts for the majority of cases. Targeted therapy has made promising advancements in systemic 
treatment for NSCLC over the last two decades, but inadequate drug targets with clinically proven survival 
benefits limit its universal application in clinical practice compared to chemotherapy and immunotherapy. 
There is an urgent need to explore new drug targets to expand the beneficiary group. This study aims to 
identify druggable genes and to predict the efficacy and prognostic value of the corresponding targeted drugs 
in NSCLC. 
Methods: Two-sample mendelian randomization (MR) of druggable genes was performed to predict the 
efficacy of their corresponding targeted therapy for NSCLC. Subsequent sensitivity analyses were performed 
to assess potential confounders. Accessible RNA sequencing data were incorporated for subsequent 
verifications, and Kaplan-Meier survival curves of different gene expressions were used to explore the 
prognostic value of candidate druggable genes.
Results: MR screening encompassing 4,863 expression quantitative trait loci (eQTL) and 1,072 protein 
quantitative trait loci (pQTL, with 453 proteins overlapping) were performed. Seven candidate druggable 
genes were identified, including CD33, ENG, ICOSLG and IL18R1 for lung adenocarcinoma, and VSIR, 
FSTL1 and TIMP2 for lung squamous cell carcinoma. The results were validated by further transcriptomic 
investigations. 
Conclusions: Drugs targeting genetically supported genomes are considerably more likely to yield 
promising efficacy and succeed in clinical trials. We provide compelling genetic evidence to prioritize drug 
development for NSCLC.
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Introduction

Lung cancer is the second most common cancer and the 
leading cause of cancer-related death worldwide (1). Despite 
the declining morbidity and mortality rates attributable to 
tobacco control measures, the incidence and prevalence of 
lung cancer remain high (2).

In recent years, the clinical application of targeted 
therapy has significantly extended the survival time of 
lung cancer patients, particularly those with non-small 
cell lung cancer (NSCLC) (3). NSCLC is characterized 
by possessing various genetic drivers that tyrosine kinase 
inhibitors can specifically target. Established actionable 
drivers include the epidermal growth factor receptor 
(EGFR), Kirsten rat sarcoma viral oncogene (KRAS), 
anaplastic lymphoma kinase (ALK), c-Ros oncogene 1 

(ROS1), v-Raf murine sarcoma viral oncogene homolog B 
(BRAF), mesenchymal-to-epithelial transition (MET), and 
rearranged during transfection (RET) (4-9). Each of these 
gene alterations plays a crucial role in driving tumor growth 
and progression at the genetic level, and tyrosine kinase 
inhibitors tailored toward these genes have significantly 
improved patient outcomes by cutting off the driving 
power behind tumorigenesis. However, most targeted drugs 
under development have failed in preclinical trials, leading 
to a significant waste of resources. It is estimated that the 
average cost of successfully developing a new drug is up 
to $1.3 billion (10). Therefore, there is an urgent need to 
develop cost-effective methods to identify gene targets 
with greater potential for clinical success before devoting 
resources to clinical trials of their targeted drugs. 

With the advancement of genomics, the concept of the 
“druggable genome” has been proposed. This concept 
encompasses human genes that encode drug targets, including 
proteins targeted by approved or drugs in clinical-trial phase, 
proteins similar to approved drug targets, and proteins 
accessible to monoclonal antibodies or drug-like small 
molecules in vivo (11). Drugs supported by genetic evidence 
are more likely to succeed in clinical treatment (12). Genome-
wide association studies (GWAS) have been applied in drug 
development, increasing the proportion of preclinical stage 
drugs from 2.0% to 8.2% (13). However, GWAS could 
not directly illustrate the causal effects of genes or reliably 
pinpoint novel drug targets.

Two-sample mendelian randomization (MR) study 
is a novel approach that can evaluate causality between 
two traits by using genetic variants [single nucleotide 
polymorphisms (SNPs)] as instrumental variables (IVs). 
These SNPs are randomly allocated at conception 
and are largely independent of confounders, including 
environmental and other genetic variants. Therefore, the 
MR study may have a similar impact on evaluating causality 
as randomized controlled trials (14,15). A trait determined 
by multiple genes, each having a minor effect on the trait, 
is known as a quantitative trait loci (QTL). SNPs related to 
the expression level of druggable genes or the circulating 
level of encoded proteins are named expression quantitative 
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trait locus (eQTL) and protein quantitative trait locus 
(pQTL), respectively. The protein encoded by eQTL or 
pQTL might be analogous to a lifelong exposure that can 
be targeted by medication (16).

This study aimed to identify the expression levels of 
druggable genes and the circulating level of encoded 
proteins to predict the efficacy and prognostic value 
of the corresponding targeted drugs in NSCLC. Our 
research seeks to enhance the understanding of genetically 
repurposed drug targets for NSCLC and explore candidate 
druggable genes with causal association to NSCLC. We 
present this article in accordance with the STROBE-MR 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-24-65/rc) (17).

Methods 

Ethical approval

As this study used publicly available data, requirement for 
separate ethical approval was waived, and the study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Study design

Figure 1 illustrates the entire research design scheme. We 
employed a two-sample MR design to identify eQTL 
and pQTL and predict the efficacy of the corresponding 
targeted drugs on NSCLC. To investigate the potential 
effects of druggable genes on different histological types 
of NSCLC, analyses were performed separately for lung 
adenocarcinoma (LUAD) and lung squamous cell carcinoma 
(LUSC).

Data sources

SNPs located within 1 Mb upstream and downstream of 
druggable genes (cis-SNPs) provide more credible genetic 
evidence for these genes (18). GWAS summary data of 
cis-eQTL were obtained from the eQTLGen consortium 
(https://eqtlgen.org/) (18). We obtained data on 4,863 
druggable genes from the original publication (19) and 
selected independent cis-eQTL (r2≤0.001) related SNPs 
that are significantly associated with each druggable gene 
(P<5×10−8). 

SNPs associated with circulating protein levels could 
model drug target effects (20). We identified three studies 

that met the following criteria: (I) reported significant 
pQTLs in individuals of European descent; (II) provided all 
the SNP information required for MR; and (III) included 
SNPs relevant to NSCLC outcomes. We obtained three 
independent pQTL GWAS summary datasets from 
INTERVAL, AGES Reykjavik, and KORA F4 studies, 
respectively (21-23). These large-scale pQTL studies (21-23) 
found that the genetic determinants of circulating proteins 
are located in cis to the encoding genes. This is because cis-
acting SNPs strongly associated with the encoding gene 
tend to influence the gene’s transcription and circulating 
protein level. The location proximity from each gene 
boundary to determine the cis-pQTL-related SNPs among 
the three studies were 10, 1 and 0.3 Mb in Suhre et al. (23), 
Sun et al. (21) and Emilsson et al. (22) respectively. The 
GWAS summary data for NSCLC were obtained from the 
Transdisciplinary Research In Cancer of the Lung and the 
International Lung Cancer Consortium (TRICL-ILCCO) 
and the Lung Cancer Cohort Consortium (LC3) (24). 
These data represent the meta-analysis results aimed at 
identifying new lung cancer susceptibility loci.

Statistical analysis

MR study is based on three main assumptions: (I) the 
genetic variant(s) must be reliably associated with the 
exposure; (II) the genetic variant(s) must influence the 
outcome only through the exposure of interest; and (III) the 
genetic variant(s) must be independent of any measured or 
unmeasured confounders.

The same SNPs associated with the exposure can be 
extracted from NSCLC GWAS data to evaluate the causal 
effect. MR analyses were performed using the R package 
(Version 4.2.0) “TwoSampleMR” (Version 0.5.6) (25). 
Clumping was performed under linkage disequilibrium 
(LD) conditions with r2<0.001 and 10,000 kb using 
European samples from the 1000 Genomes Project panel 
3 of European-ancestry (26). The exposure and outcome 
data were harmonized using in-built functions. The Wald 
estimator (βoutcome/βexposure) was used for single cis-SNPs, 
while multiple random-effect inverse variance weighted 
(IVW) analysis was used for multiple cis-SNPs (27). 
Bonferroni correction was applied to adjust for multiple 
eQTL SNPs (adjusted P≤0.05/4,863).

Candidate NSCLC-influencing druggable genes 
supported by MR were evaluated via colocalization analyses 
using the coloc R package (28). Colocalization analysis 
assesses the probability that two traits share the same causal 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-65/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-65/rc
https://eqtlgen.org/
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Figure 1 Overall study design. Full details of the analyses are provided in the main text and supplementary material. IVW, inverse variance 
weighted; MR, Mendelian  randomization; GWAS, genome-wide association study; eQTL, expression quantitative trait locus; pQTL, 
protein quantitative trait locus; SNP, single nucleotide polymorphism; NSCLC, non-small cell lung cancer; UMAP, Uniform Manifold 
Approximation and Projection.
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variant, rather than the variant being coincidentally shared 
due to correlation through LD (28). Default prior was used, 
including p1=10−4, p2=10−4, and p12=10−5, where p1, p2 
and p12 represent the prior probabilities that a SNP in the 
tested region is significantly associated with the exposure, 
the outcome, or both, respectively. The colocalization 
analysis yields posterior probabilities corresponding to one 
of the five hypotheses: PPH0, no association with either 
trait; PPH1, association with the exposure but not the 
outcome; PPH2, association with the outcome, but not the 
exposure; PPH3, association with both traits with distinct 
causal variants; and PPH4, association with both traits with 
a shared causal variant (29). The formula PPH4/(PPH3 + 
PPH4) is often used to represent the probability of PPH4 
when only a few SNPs are included in the colocalization 
analysis (30). For colocalization, regions within 1 Mb of the 
SNPs were selected.

Sensitivity analysis

Sensitivity analyses were performed for multiple cis-SNPs 
following the MR analyses. Cochran’s Q and I2 methods 
were used to assess the overall heterogeneity among Wald 
ratios (31). The MR-Egger regression method relaxes the 
assumption by not restricting the y-intercept. Directional 
pleiotropy is indicated if the MR-Egger y-intercept 
significantly deviates from zero. If more than two SNPs 
were available, pleiotropic effects were evaluated using 
the MR-Egger regression method (32). To further detect 
the presence of horizontal pleiotropy, each cis-SNP of the 
druggable genes was examined using PhenoScanner (33) and 
Open Targets (34). The parameters set in the PhenoScanner 
database were “P value <5E−8, Proxies = EUR, r2≥0.8 and 
Build 37” for gene expression, proteins, traits, and diseases. 
MR analyses were then performed between these traits 
and NSCLC to explore potential confounders. Further 
assessment for potential horizontal pleiotropy and external 
validation of druggable genes was conducted by searching 
Open Targets (34). In the search result for Open Targets 
datasets, none of the traits related to these SNPs were 
associated with NSCLC. To verify whether the causal 
direction from the exposure to the outcome in MR results, 
the “mr_steiger” function in the “TwoSampleMR” package 
was used. The SNPs were removed if the direction was 
“FALSE”. Bidirectional MR was performed to assess the 
orientation of causality.

Transcriptomic RNA sequencing (RNA-seq) data from 
lung tissue

The bulk RNA-seq analysis of The Cancer Genome Atlas 
(TCGA) pre-processed counts and fragments per kilobase 
million (FPKM) RNA-seq datasets for LUAD and LUSC, 
as well as the clinical information of each sample, were 
obtained from UCSC Xena platform (https://xenabrowser.
net/datapages/) (35). The FPKM values were converted 
to the transcripts per kilobase million (TPM) value for 
further visualization and survival analysis. Differentially 
expressed genes (DEGs) were determined using R package  
“DESeq2” (36), all DEG analyses were conducted by 
comparing tumor tissue to normal tissue. Genes with 
|log2FoldChange| >1 and adjusted P value <0.05 were 
considered as DEGs. The high- and low-expression  
groups were divided by the median of the TPM value of 
specific genes for subsequent survival analysis. Overall 
survival curves were constructed using the Kaplan-Meier 
methodology, and log-rank tests were performed to identify 
survival-related genes, with P value <0.05 was considered as 
statistically significant.

We further analyzed single-cell RNA sequencing 
(scRNA-seq) data. The Lambrechts et al. dataset (37) was 
downloaded from BioStudies website (https://www.ebi.
ac.uk/biostudies/arrayexpress/studies/E-MTAB-6149). 
Raw scRNA-seq data were processed using CellRanger 
(v7.0.1, 10xGenomics). Reads were aligned to the human 
genome to produce gene counts across barcodes, with 
all CellRanger parameters set to default. Quality control 
(QC) and clustering were performed using Scanpy  
(v1.9) (38) in Python 3.8. The QC procedure was based on 
gene numbers, the percentage of mitochondrial genes, and 
ribosomal genes to remove cells with low-quality RNA-seq 
data. Basic filtering included genes expressed in ≥20 cells 
and cells with at least 200 detected genes. Doublets were 
removed using Scrublet (39) software. The origin counts 
were converted to counts per million (CPM) values and 
normalized for further analysis. The “pp.highly_variable_
genes” function in Scanpy was used to screen the highly 
variable genes for Uniform Manifold Approximation and 
Projection (UMAP) dimension reduction. The Leiden 
method was adopted for clustering. Malignant cancer 
cells were identified using infercnvpy (https://github.com/
broadinstitute/inferCNV). The marker genes of each cell 
population were determined using the “tl.rank_genes_groups” 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6149
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6149
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
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function in Scanpy. Differential expression of the druggable 
genes was evaluated by Kruskal-Wallis’ test with Dunn post 
hoc tests. P value was adjusted using Bonferroni method.

Results

Cohort data source

The GWAS summary data for eQTL were obtained from 
the eQTLGen study (18), which incorporated 37 datasets 
comprising a total of 31,684 individuals and 11 million 
SNPs. SNPs related to 4,863 druggable genes were used 
to model the exposure to medicines targeting the encoded 
proteins (19). The GWAS summary data for circulating 
proteins from the INTERVAL study by Sun et al. (21), 
included 3,301 participants of European descent from 
England. The GWAS summary data for circulating protein 
from the AGES Reykjavik study by Emilsson et al. (22), 
consisted of 3,200 Icelanders. The GWAS summary data for 
circulating protein from the KORA F4 study (23) included 
1,000 Germans (Table S1).

The GWAS summary data for NSCLC were obtained 
from the TRICL-CCO and LC3 consortia (24). In total, 
29,266 cases and 56,450 controls were included in the 
analyses. These data were genotyped using the OncoArray, 
followed by imputation and meta-analysis, with detailed 
procedures described previously (24). In this study, LUAD 
and LUSC were the two major histological subgroups in 
NSCLC, comprising 11,273 cases versus 55,483 controls, 
and 7,426 cases versus 55,627 controls, respectively. 
Demographic characteristics can be found in Table S2.

Statistical analysis 

After anchoring 4,863 druggable genes using cis-SNPs from 
eQTLGen (18), the cis-SNPs of eQTL were used for MR 
scanning analyses in LUAD and LUSC respectively. In total, 
2,491 druggable genes with available SNPs were included 
in the MR analyses. Of these, 106 and 136 druggable genes 
were causally related to LUAD and LUSC respectively 
(Bonferroni adjusted P value ≤1.03×10−5). All analysis results 
are presented in the online tables (available at https://cdn.
amegroups.cn/static/public/tlcr-24-65-1.xlsx, and https://
cdn.amegroups.cn/static/public/tlcr-24-65-2.xlsx). All the 
cis-eQTL SNPs included in this study can be found in the 
online tables (available at https://cdn.amegroups.cn/static/
public/tlcr-24-65-3.xlsx, and https://cdn.amegroups.cn/
static/public/tlcr-24-65-4.xlsx). A total of 1,072 proteins, 

453 of which were overlapping, were used for MR scanning 
analyses. According to MR estimates (Wald ratio or IVW) 
with a nominal P value <0.05, a total of 139 and 146 
proteins were causally associated with LUAD and LUSC, 
respectively. The results can be found in the online tables 
(available at https://cdn.amegroups.cn/static/public/tlcr-
24-65-5.xlsx, and https://cdn.amegroups.cn/static/public/
tlcr-24-65-6.xlsx), while the cis-pQTL SNPs included in 
this study were available at https://cdn.amegroups.cn/static/
public/tlcr-24-65-7.xlsx. By intersecting the data to establish 
a strict causal association at both the eQTL and pQTL 
levels, seven candidate druggable genes were confirmed, 
including CD33, ENG, ICOSLG, IL18R1 in LUAD and 
VSIR (also named C10orf54 in the original study), FSTL1, 
TIMP2 in LUSC. All these confirmed genes exhibited the 
same directional effect at both eQTL and pQTL level, 
except for ICOSLG and TIMP2 (Figure 2 and Table S3). 
For instance, a 1 − standard-deviation (1 − SD) genetically 
determined increase in CD33 expression and circulating 
protein levels was associated with an average 12% and 2% 
lower risk of developing LUAD, respectively (OR =0.88; 
95% CI: 0.84–0.92; P=2×10−8; and OR =0.98; 95% CI: 
0.97–0.99; P=0.02) (Figure 2). MR evidence for ICOSLG in 
LUAD was inconsistent between gene expression level (OR 
=1.05; 95% CI: 1.04–1.06; P=1.39×10−30) and circulating 
protein level (OR =0.992; 95% CI: 0.987–0.999; P=0.02). 
The causal effect of TIMP2 in LUSC was also divided 
(OR =1.27; 95% CI: 1.14–1.41; P=7.27×10−6 at the gene 
expression level; OR =0.83; 95% CI: 0.72–0.95; P=0.007 
at the protein level). Detailed results can be found in the 
online tables (available at https://cdn.amegroups.cn/static/
public/tlcr-24-65-1.xlsx, and https://cdn.amegroups.cn/
static/public/tlcr-24-65-6.xlsx). It is worth mentioning that 
CD33 and VSIR were causally related to both LUAD and 
LUSC at the gene expression level while ENG was causally 
associated with both LUAD and LUSC at the protein level 
(Figure 2 and Table S3).

We performed colocalization analyses based on the 
GWAS summary data of the eQTL and pQTL for CD33, 
ENG, ICOSLG, IL18R1 VSIR, FSTL1 and TIMP2 to assess 
potential confounding due to LD. All these candidate genes 
were well colocalized with LUAD and LUSC using the coloc 
package (28) and the formula PPH4/(PPH3 + PPH4) with 
the lowest posterior probability being 98.98% (Tables 1,2).

Sensitivity analyses

After validating the druggable genes, we conducted 

https://cdn.amegroups.cn/static/public/TLCR-24-65-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-65-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tlcr-24-65-1.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-1.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-2.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-2.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-4.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-4.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-5.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-5.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-6.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-6.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-7.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-7.xlsx
https://cdn.amegroups.cn/static/public/TLCR-24-65-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tlcr-24-65-6.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-6.xlsx
https://cdn.amegroups.cn/static/public/TLCR-24-65-Supplementary.pdf
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Figure 2 Genetically-supported druggable genes causally associated with LUAD and LUSC. pQTL, protein quantitative trait loci; eQTL, 
expression quantitative trait loci; IVW, inverse variance weighted; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OR, 
odds ratio; CI, confidence interval.

sensitivity analyses to assess potential heterogeneity and 
pleiotropy caused by confounders. All sensitivity analyses of 
druggable genes are shown in Table 2, with detailed results 
can be found in Table S4. All the genes passed Cochran’s 
Q test (P>0.05). The MR-Egger intercept estimates for 
CD33 and IL18R1 were close to the null, suggesting no 
evidence of directional pleiotropy (P>0.05). However, 
CD33, IL18R1 and FSTL1 showed bias with I2>0.50. 
Bidirectional MR, used as a sensitivity analysis to assess the 
correct orientation of MR estimates, provided no evidence 
that NSCLC influences these gene expression levels or 

protein levels in this study. The PhenoScanner dataset (33) 
identified some traits associated with druggable genes such 
as CD33, ENG, IL18R1 and VSIR. For example, cis-SNP 
rs10421385 of CD33 was closely related to the expression 
level of SIGLEC20P, along with rs12459419 associated 
with SIGLEC22P and SIGLECL1. The cis-SNP rs651007 
of ENG was associated with multiple traits, including 
angiopoietin-1 receptor, beta-1,4-galactosyltransferase 
1, and lithostathine-1-alpha. Detailed SNP-related traits 
can be found in the online table (available at https://cdn.
amegroups.cn/static/public/tlcr-24-65-8.xlsx). Since we 

0.5 0.75 1 1.25 1.5
Odd ratio

Gene
Emilsson et al. (pQTL)
ICOSLG
ENG
IL18R1
VSIR
TIMP2
FSTL1
TIMP2
CD33
ENG
ICOSLG
IL18R1
VSIR
Suhre et al. (pQTL)
CD33
ENG
IL18R1
FSTL1
CD33
ENG
IL18R1
Sun et al. (pQTL)
CD33
ICOSLG
IL18R1
VSIR
FSTL1
VSIR
FSTL1
CD33
ICOSLG
Võsa et al. (eQTL)
CD33
ENG
ICOSLG
IL18R1
VSIR
FSTL1
TIMP2
VSIR
FSTL1
TIMP2
CD33
ENG
ICOSLG
IL18R1

Outcome

LUAD
LUAD
LUAD
LUAD
LUAD
LUSC
LUSC
LUSC
LUSC
LUSC
LUSC
LUSC

LUAD
LUAD
LUAD
LUAD
LUSC
LUSC
LUSC

LUAD
LUAD
LUAD
LUAD
LUAD
LUSC
LUSC
LUSC
LUSC

LUAD
LUAD
LUAD
LUAD
LUAD
LUAD
LUAD
LUSC
LUSC
LUSC
LUSC
LUSC
LUSC
LUSC

Method

IVW
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio

IVW
Wald ratio
Wald ratio

IVW
IVW
IVW

Wald ratio
IVW
IVW
IVW

Wald ratio
Wald ratio

IVW
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio
Wald ratio

IVW
IVW
IVW
IVW
IVW

Wald ratio
IVW
IVW
IVW
IVW
IVW
IVW
IVW
IVW

nsnp

2
1
1
1
1
1
1
1
1
2
1
1

3
2
4
1
3
2
4

1
1
2
1
1
1
1
1
1

3
2
2
2
2
1
3
2
2
2
3
2
2
2

OR (95%CI)

0.992(0.987−0.999)
1.11 (0.90−1.37)
1.03 (0.98−1.09)
0.93 (0.78−1.11)
1.00 (0.89−1.13)
0.79 (0.68−0.92)
0.83 (0.72−0.95)
1.00 (0.96−1.04)
0.99 (0.78−1.25)
1.03 (0.94−1.13)
1.04 (0.98−1.10)
0.83 (0.68−1.02)

0.98 (0.97−0.99)
0.91 (0.91−0.92)
1.03 (1.01−1.05)
1.01 (0.89−1.15)
0.99 (0.98−1.00)
0.93 (0.90−0.96)
1.02 (0.99−1.04)

1.01 (0.98−1.05)
0.99 (0.93−1.05)
0.97 (0.94−1.01)
0.93 (0.79−1.10)
1.02 (0.86−1.20)
0.82 (0.68−0.99)
0.73 (0.60−0.89)
1.02 (0.98−1.06)
1.03 (0.96−1.11)

0.88 (0.84−0.92)
0.87 (0.83−0.92)
1.05 (1.04−1.06)
1.08 (1.07−1.09)
1.10 (1.08−1.12)
1.01 (0.89−1.15)
0.95 (0.88−1.03)
0.88 (0.86−0.90)
0.79 (0.78−0.81)
1.27 (1.14−1.41)
0.91 (0.86−0.98)
0.99 (0.87−1.12)
0.94 (0.86−1.02)
1.01 (0.93−1.10)

pval

0.02
0.32
0.21
0.41
0.99

0.002
0.007
0.93
0.92
0.54
0.24
0.07

0.02
<0.001
0.008
0.86
0.18

<0.001
0.18

0.43
0.76
0.11
0.38
0.86

0.049
0.002

0.4
0.42

<1.03E−05
<1.03E−05
<1.03E−05
<1.03E−05
<1.03E−05

0.86
0.23

<1.03E−05
<1.03E−05
<1.03E−05

0.007
0.86
0.12
0.74

0.5 0.75 1 1.25 1.5
Odd Ratio

https://cdn.amegroups.cn/static/public/TLCR-24-65-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tlcr-24-65-8.xlsx
https://cdn.amegroups.cn/static/public/tlcr-24-65-8.xlsx


Translational Lung Cancer Research, Vol 13, No 8 August 2024 1787

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(8):1780-1793 | https://dx.doi.org/10.21037/tlcr-24-65

used cis-SNPs for these candidate genes, these pleiotropic 
effects on other molecules were more likely to represent 
vertical pleiotropy, where SNPs affect levels of other 
molecules. However, vertical pleiotropy does not violate 
the assumptions of MR. Hence, we conducted MR 
analyses between these traits (as exposure) and NSCLC (as 
outcome) to reduce the possibility of MR estimates bias 
caused by horizontal pleiotropy. When the MR estimated 
the expression levels of SIGLEC20P, SIGLEC22P and 
SIGLECL1 on LUAD, none of these traits showed evidence 
of a causal effect on LUAD (P value for Wald ratio were: 
0.14, 0.58 and 0.43, respectively). We did find some 
traits causally associated with LUAD, including: ABO, 
angiopoietin-1 receptor, and beta-1,4-galactosyltransferase 
1, rs651007 and rs8176749 were identified for these traits. 
Detailed results can be found in the online table (available 
at https://cdn.amegroups.cn/static/public/tlcr-24-65-9.xlsx).

Transcriptomic RNA sequencing analyses in lung tissue

In the bulk-RNA-seq based transcriptomic data from the 
TCGA dataset, the majority of candidate druggable genes 
were found to be differentially expressed between tumor 
and normal tissue, except for ICOSLG in LUAD and 
FSTL1 in LUSC. In the LUAD dataset, CD33, ENG and 
IL18R1 were significantly down-regulated in tumor tissue. 
In the LUSC dataset, VSIR and TIMP2 were significantly 

down-regulated in tumor tissue (Figure S1A,S1B and  
Table S5). Kaplan-Meier survival analysis revealed that in 
LUAD, lower expression levels of CD33 and ENG were 
associated with poor prognosis (log-rank test P=0.006 for 
CD33 and 0.021 for ENG) (Figure 3), other genes-related 
survival analysis results can be found in Figure S2. In 
LUSC, higher expression levels of TIMP2 indicated poor 
prognosis (log-rank test P=0.02) (Figure 3). Therefore, 
CD33, ENG, and TIMP2 could serve as prognostic factors. 
ScRNA-seq analysis revealed that in certain cell clusters of 
the tumor microenvironment, candidate druggable genes 
showed significantly differential expression between tumor 
and normal tissue. This evidence further confirmed the 
drug-targeting potential of genes screened by MR methods. 

Single-cell RNA sequencing data of lung tissue

Because of the lack of cellular-resolution in bulk RNA-seq 
analysis, we further evaluate the expression of the DEGs 
in scRNA-seq dataset (Figures S3-S5 and table available at 
https://cdn.amegroups.cn/static/public/tlcr-24-65-10.xlsx). 
The dataset from Lambrechts et al. (37) included 6 LUAD 
samples, 6 LUSC samples, and 4 normal tissue samples. 
ScRNA-seq analysis revealed that in LUAD, candidate 
druggable genes were mainly expressed in alveolar 
macrophages [with high expression of MACRO, FABP4 and 
MCEMP1 (40)], endothelial cells, fibroblasts, mast cells, 

Table 1 MR evidence supporting druggable genes for existing drugs

Gene
Outcome 

(type)

eQTL GWAS pQTL GWAS

Sign with Wald 
or IVW

Cochran’s 
Q test

I2 test
pQTL 

evidence
MR-Egger_

intercept
Sign with Wald 

or IVW
Cochran’s  

Q test
I2 test

MR-Egger_
intercept

Coloc

CD33 LUAD √ √ × √ √ √ √ √ √ √

ENG LUAD √ √ √ √ NA √ √ × NA √

ICOSLG LUAD √ √ √ √ NA √ √ √ NA √

IL18R1 LUAD √ √ × √ NA √ √ √ √ √

VSIR LUSC √ √ √ √ NA √ √ NA NA √

FSTL1 LUSC √ √ × √ NA √ √ NA NA √

TIMP2 LUSC √ √ √ √ NA √ √ NA NA √

The Wald ratio method was used when SNP =1, IVW method for SNP ≥2. These drugs are either approved or in clinical trial phase, the 
drug-gene interactions based on https://dgidb.org, Indications and Clinical phase based on https://clinicaltrials.gov/, the mechanisms and 
direction of effect were confirmed in https://go.drugbank.com/. √, pass; ×, fail to test. Coloc, colocalization; LUAD, lung adenocarcinoma; 
LUSC, lung squamous cell carcinoma; IVW, inverse variance weighted; MR, Mendelian randomization; eQTL, expression quantitative 
trait locus; GWAS, genome-wide association study; pQTL, protein quantitative trait locus; Sign, significant; SNP, single nucleotide 
polymorphism; NA, not applicable.
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Table 2 Validation of druggable genes and repurposing opportunities for existing drugs using multi-dataset

Gene PhenoScanner Drug name
Query 
score

Interaction 
score

Indications/
usages

Clinical 
phase

ClinicalTrials.gov 
identifier/PMID

Supplement

CD33 √ Lintuzumab 
(SGN-33)

8.61 20.61 Acute myeloid 
leukemia

Phase 2 NCT00528333

Myelodysplastic 
syndrome

Phase 1 NCT00502112

M195 4.3 10.3 Relapsed and 
refractory 
myeloid 
leukemia

Phase 1B 8142644

AMV-564 
(CNTO-3953)

4.3 10.3 Acute myeloid 
leukemia

Phase 1 NCT03144245

Locally 
advanced or 
metastatic solid 
tumors

Phase 1 NCT04128423

Myelodysplastic 
syndrome

Phase 1 NCT03516591

Oncolysin M 4.3 10.3 NA NA NA

Vadastuximab 
talirine (SGN-
CD33A; 33A)

4.3 10.3 Acute myeloid 
leukemia

Phase 3 NCT02785900 Terminated (due to safety; specifically, 
a higher rate of deaths, including fatal 
infections, in the SGN33A arm versus 

the control arm)

Myelodysplastic 
syndrome

Phase 2 NCT02706899 Terminated (sponsor decision based 
on portfolio prioritization)

Gemtuzumab 
ozogamicin

2.15 5.15 Acute 
myeloblastic 
leukemia

Phase 4 NCT01041040

ENG × Carotuximab 
(TRC105)

4.3 61.83 Non-small cell 
lung cancer

Phase 1 NCT05401110

Castration-
resistant 
prostate cancer

Phase 2 NCT05534646

Advanced soft 
tissue sarcoma

Phase 2 NCT01975519

ICOSLG √ NA NA NA NA NA NA

IL18R1 √ NA NA NA NA NA NA

VSIR √ Onvatilimab 
(JNJ-61610588)

4.3 61.83 Advanced 
cancer

Phase 1 NCT02671955 Terminated (Janssen business 
decision)

FSTL1 √ NA NA NA NA NA NA

TIMP2 √ NA NA NA NA NA NA

√, pass; ×, fail to test. NA, not applicable.
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and monocyte-derived macrophages (40) (Figures S5A,S6). 
In some of these cells, druggable genes showed significantly 
differential expression. For instance, the expression level 
of IL18R1 was lower in tumor tissue compared to normal 
tissue in both mast cells and endothelial cells (adjusted P 
value =6.79×10−14 for mast cell and 1.22×10−8 for endothelial 
cells). CD33 was lower expressed in monocyte-derived 
macrophages in tumor tissue (adjusted P value =6.16×10−12). 
However, ENG was highly expressed in endothelial cells 
in tumor tissue (adjusted P value =1.51×10−24) (available at 
https://cdn.amegroups.cn/static/public/tlcr-24-65-10.xlsx). 
This challenged the previous conclusion obtained from bulk 
RNA-seq analysis; one possible explanation is the much 
lower abundance of alveolar macrophage in tumor tissue, 
leading to the overall low expression levels of ENG and 
CD33. In LUSC, candidate druggable genes were mainly 
expressed in non-tumor epithelial cells, monocyte-derived 
macrophage clusters [where APOE and C1QB were highly 
expressed, C1Q+ macrophages (41)], monocyte-derived 
macrophage cluster (where CD163 was lowly expressed), 
alveolar macrophages, dendritic cells (DCs), and fibroblasts 
(Figures S5B,S7). Intriguingly, TIMP2 was significantly 
lower expressed in cancer cells compared to non-tumor 
epithelial cells (adjusted P value =8.91×10−6), suggesting that 

TIMP2 may play a role in tumorigenesis and tumor cells 
growth. TIMP2 was also expressed at lower levels in the 
macrophage cluster (adjusted P value =1.54×10−30), alveolar 
macrophages (adjusted P value =2.01×10−13) and DCs 
(adjusted P value =0.13). VSIR was down-regulated in the 
macrophage cluster as well (adjusted P value =8.10×10−7). 
Overall, targeting TIMP2 may directly affect the tumor 
cell in LUSC. Other druggable genes may play their 
roles by intervening with other tumor microenvironment 
components in both LUAD and LUSC.

Discussion

We conducted a two-sample MR analysis to simulate the 
causal effect of druggable genes on LUAD and LUSC 
using accessible GWAS summary data from multiple 
consortia. Our findings provide strong MR evidence for the 
repurposing value of candidate druggable genes in NSCLC, 
including CD33, ENG, IL18R1 in LUAD and VSIR, FSTL1 
in LUSC (Table 1 and Figure 2).

We identified two genes encoding the targets with 
existing drugs that warrant further discussion by searching 
DGIdb (42), Clinicaltrials, DrugBank (43) and PubMed. All 
results are summarized in Table 1. Gemtuzumab ozogamicin 

Figure 3 Overall survival curves comparing groups with high or low expression of druggable genes. (A) CD33; (B) ENG; (C) TIMP2. 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.
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is a recombinant humanized IgG4 kappa antibody against 
CD33 conjugated with a calicheamicin derivative, a cytotoxic 
antitumor antibiotic isolated from the fermentation of 
Micromonospora echinospora ssp. (44). The Food and Drug 
Administration (FDA) approved this drug on May 17, 2000, 
as a first-line treatment for patients aged 60 years or older 
with CD33-positive acute myeloid leukemia (AML) (45).  
Subsequent studies have made significant progress in 
treating AML by targeting CD33 in combination with 
other targets, such as CD123 (46) and CAR-T cells (47). 
Our MR results showed that increased expression of 
CD33 at the gene level can reduce the risk of NSCLC, 
a finding confirmed by transcriptome analysis. ScRNA-
seq revealed that CD33 is lowerly expressed in monocyte-
derived macrophages of LUAD tumor tissue. However, 
the efficacy of the drugs targeting CD33 in NSCLC 
and the specific mechanisms involved remain inexplicit. 
Carotuximab (TRC105) is a drug targeting the protein 
encoded by ENG, which is currently in phase I clinical trials 
and is also being investigated in NSCLC (NCT05401110). 
Other drugs or targets are either in the clinical trial stage 
or awaiting investigation (Table 1). Despite advancements in 
targeted therapy, discovering new genetic targets remains 
challenging. Many barriers to the clinical success of targeted 
drugs include tumor heterogeneity, genetic complexity, and 
technological limitations.

Since most clinically successful drugs target proteins 
rather than gene expression, genetic variants associated with 
protein levels may more accurately resemble drug target 
effects than eQTLs. Therefore, MR results for protein 
levels were prioritized for evaluation (20). Consequently, 
the MR evidence for ICOSLG in LUAD at the protein level 
is considered more significant.

When conducting a PhenoScanner search to assess 
potential confounders, we found that CD33, IL18R1 and 
VSIR showed no evidence of horizontal pleiotropy. However, 
ENG influenced LUAD through diverse pathways (also 
known as confounders), such as ABO (48), angiopoietin-1 
receptor (49), and beta-1,4-galactosyltransferase 1 (21). 
These analyses allowed us to explore pleiotropy due to 
confounders (28,32,50).

The two-sample MR design allows us to explore the 
expression levels and circulating proteins levels of candidate 
genes in LUAD (18,21-23) and LUSC (24). Each type of 
NSCLC has its own biological characteristics, suggesting 
that different druggable genes may have different causal 
effects. Notably, some candidate druggable genes were also 
supported by transcriptomic data. Moreover, CD33, ENG 

and TIMP2 showed differences in the survival curves, and 
the direction of the effect was consistent with MR results. 
Therefore, the prognostic value of these genes in targeted 
therapy for NSCLC is worth further investigation.

Our study has several valuable advantages compared 
to previous MR studies. Firstly, the SNPs of eQTLs were 
sufficiently large to conduct robust MR analyses (18). 
Multiple sources of pQTL (21-23) could be mutually 
verified, and sufficient GWAS data were available when 
conducting external verification using PhenoScanner (33). 
Additionally, we further explored the role of druggable 
genes in different subtypes of the NSCLC, including 
LUAD and LUSC, since the current practices in LUAD 
and LUSC are significantly different. Secondly, this study 
employed a novel MR approach, using QTL-related SNPs 
as IVs and anchoring of the druggable gene sites to translate 
drug effects into gene-level effects (51). By utilizing genetic 
variants as IVs, MR can address confounding and reverse 
causation and provide more reliable insights into genetic 
associations. Lastly, the rapid development of genomics and 
the growth in publicly available druggable gene resources 
provide valuable genetic data for discovering novel drug 
targets (19,52,53). If genetic evidence from MR can shed 
more light on the clinical successful rate of potential 
targeted drugs and simplify the screening steps for the 
clinical trials, it could significantly lower the cost of drug 
development (16,54). 

However, there are some limitations in this study. A key 
limitation is that MR cannot fully replicate the conditions 
of a randomized controlled trial (RCT). MR mimics 
lifelong low-dose exposure to a drug and assumes a linear 
relationship between exposure and outcome, whereas, 
RCTs typically investigate higher doses of a drug over a 
much shorter timeframe (55). The MR result may not 
directly correspond to the effect size in practice and does 
not perfectly predict the effect of a drug. Independent 
cohorts are required to validate scientific findings from 
the MR approach and eliminate false positives. Secondly, 
a preventative agent would need to have high tolerability 
and a reasonable safety profile. However, our approach 
is not well-suited for systematically evaluating the safety 
aspects of the proposed candidate genes in this study. 
Thirdly, the eQTL cohorts included some non-European  
individuals (18), and the sample size of the pQTL study is 
far smaller than that of the eQTL study (21-23). Larger 
sample sizes are needed to generate a better ability to detect 
QTLs. Lastly, the accuracy of the results is limited by the 
original data and the methodology since the causal link 
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in this study is based on the secondary analysis of mixed 
models. Despite of the limitations, two-sample MR analysis 
is a time- and cost-effective adjuvant to RCTs, considering 
the current success rate for drugs proceeding from phase I 
trials to approval is 13.8% approximately (56). 

Conclusions

Our research provides genetic evidence of druggable genes 
in NSCLC, and we hope that these data will serve as a 
valuable resource for prioritizing drug development efforts.

Acknowledgments

Funding: This study was supported by the China National 
Science Foundation (82022048 & 81871893), the Key 
Project of Guangzhou Scientific Research Project 
(201804020030), National Key Research and Development 
Program (2022YFC2505100, 2022YFC2505105), and 
Guangdong Basic and Applied Basic Research Foundation 
(2023B1515120076).

Footnote

Reporting Checklist: The authors have completed the 
STROBE-MR reporting checklist. Available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-24-65/rc

Peer Review File: Available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-24-65/prf

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://tlcr.amegroups.
com/article/view/10.21037/tlcr-24-65/coif). W.L. serves as 
the unpaid Associate Editor-in-Chief of Translational Lung 
Cancer Research from May 2024 to April 2025. The other 
authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 

License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. 
CA Cancer J Clin 2024;74:12-49.

2.	 Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 
2022. CA Cancer J Clin 2022;72:7-33.

3.	 Goldstraw P, Chansky K, Crowley J, et al. The IASLC 
Lung Cancer Staging Project: Proposals for Revision of 
the TNM Stage Groupings in the Forthcoming (Eighth) 
Edition of the TNM Classification for Lung Cancer. J 
Thorac Oncol 2016;11:39-51.

4.	 Planchard D, Jänne PA, Cheng Y, et al. Osimertinib with 
or without Chemotherapy in EGFR-Mutated Advanced 
NSCLC. N Engl J Med 2023;389:1935-48.

5.	 Wu YL, Dziadziuszko R, Ahn JS, et al. Alectinib in 
Resected ALK-Positive Non-Small-Cell Lung Cancer. N 
Engl J Med 2024;390:1265-76.

6.	 Drilon A, Camidge DR, Lin JJ, et al. Repotrectinib in 
ROS1 Fusion-Positive Non-Small-Cell Lung Cancer. N 
Engl J Med 2024;390:118-31.

7.	 Riely GJ, Smit EF, Ahn MJ, et al. Phase II, Open-Label 
Study of Encorafenib Plus Binimetinib in Patients With 
BRAF(V600)-Mutant Metastatic Non-Small-Cell Lung 
Cancer. J Clin Oncol 2023;41:3700-11.

8.	 Riedel R, Fassunke J, Scheel AH, et al. MET Fusions in 
NSCLC: Clinicopathologic Features and Response to 
MET Inhibition. J Thorac Oncol 2024;19:160-5.

9.	 Zhou C, Solomon B, Loong HH, et al. First-Line 
Selpercatinib or Chemotherapy and Pembrolizumab 
in RET Fusion-Positive NSCLC. N Engl J Med 
2023;389:1839-50.

10.	 Galkina Cleary E, Jackson MJ, Zhou EW, et al. 
Comparison of Research Spending on New Drug 
Approvals by the National Institutes of Health vs the 
Pharmaceutical Industry, 2010-2019. JAMA Health Forum 
2023;4:e230511.

11.	 Minikel EV, Painter JL, Dong CC, et al. Refining the 
impact of genetic evidence on clinical success. Nature 
2024;629:624-9.

12.	 Su WM, Gu XJ, Dou M, et al. Systematic druggable 
genome-wide Mendelian randomisation identifies 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-65/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-65/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-65/prf
https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-65/prf
https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-65/coif
https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-65/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Feng et al. Identify targets for NSCLC through MR1792

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(8):1780-1793 | https://dx.doi.org/10.21037/tlcr-24-65

therapeutic targets for Alzheimer's disease. J Neurol 
Neurosurg Psychiatry 2023;94:954-61.

13.	 Rasooly D, Peloso GM, Pereira AC, et al. Genome-
wide association analysis and Mendelian randomization 
proteomics identify drug targets for heart failure. Nat 
Commun 2023;14:3826.

14.	 Zheng G, Chattopadhyay S, Sundquist J, et al. 
Antihypertensive drug targets and breast cancer risk: 
a two-sample Mendelian randomization study. Eur J 
Epidemiol 2024;39:535-48.

15.	 Bourgault J, Abner E, Manikpurage HD, et al. Proteome-
Wide Mendelian Randomization Identifies Causal 
Links Between Blood Proteins and Acute Pancreatitis. 
Gastroenterology 2023;164:953-965.e3.

16.	 Ochoa D, Karim M, Ghoussaini M, et al. Human genetics 
evidence supports two-thirds of the 2021 FDA-approved 
drugs. Nat Rev Drug Discov 2022;21:551.

17.	 Skrivankova VW, Richmond RC, Woolf BAR, et al. 
Strengthening the Reporting of Observational Studies 
in Epidemiology Using Mendelian Randomization: The 
STROBE-MR Statement. JAMA 2021;326:1614-21.

18.	 Võsa U, Claringbould A, Westra HJ, et al. Large-scale cis- 
and trans-eQTL analyses identify thousands of genetic loci 
and polygenic scores that regulate blood gene expression. 
Nat Genet 2021;53:1300-10.

19.	 Finan C, Gaulton A, Kruger FA, et al. The druggable 
genome and support for target identification and validation 
in drug development. Sci Transl Med 2017;9:eaag1166.

20.	 Folkersen L, Gustafsson S, Wang Q, et al. Genomic and 
drug target evaluation of 90 cardiovascular proteins in 
30,931 individuals. Nat Metab 2020;2:1135-48.

21.	 Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of 
the human plasma proteome. Nature 2018;558:73-9.

22.	 Emilsson V, Ilkov M, Lamb JR, et al. Co-regulatory 
networks of human serum proteins link genetics to disease. 
Science 2018;361:769-73.

23.	 Suhre K, Arnold M, Bhagwat AM, et al. Connecting 
genetic risk to disease end points through the human 
blood plasma proteome. Nat Commun 2017;8:14357.

24.	 McKay JD, Hung RJ, Han Y, et al. Large-scale association 
analysis identifies new lung cancer susceptibility loci and 
heterogeneity in genetic susceptibility across histological 
subtypes. Nat Genet 2017;49:1126-32.

25.	 Hemani G, Zheng J, Elsworth B, et al. The MR-Base 
platform supports systematic causal inference across the 
human phenome. Elife 2018;7:e34408.

26.	 1000 Genomes Project Consortium; Abecasis GR, Auton 
A, et al. An integrated map of genetic variation from 1,092 

human genomes. Nature 2012;491:56-65.
27.	 Burgess S, Davey Smith G, Davies NM, et al. Guidelines 

for performing Mendelian randomization investigations: 
update for summer 2023. Wellcome Open Res 2023;4:186.

28.	 Giambartolomei C, Vukcevic D, Schadt EE, et al. 
Bayesian test for colocalisation between pairs of genetic 
association studies using summary statistics. PLoS Genet 
2014;10:e1004383.

29.	 Wang G, Sarkar A, Carbonetto P, et al. A simple new 
approach to variable selection in regression, with 
application to genetic fine mapping. J R Stat Soc Series B 
Stat Methodol 2020;82:1273-300.

30.	 Zuber V, Grinberg NF, Gill D, et al. Combining evidence 
from Mendelian randomization and colocalization: 
Review and comparison of approaches. Am J Hum Genet 
2022;109:767-82.

31.	 Sanderson E, Glymour MM, Holmes MV, et al. Mendelian 
randomization. Nat Rev Methods Primers 2022;2:6.

32.	 Burgess S, Thompson SG. Interpreting findings from 
Mendelian randomization using the MR-Egger method. 
Eur J Epidemiol 2017;32:377-89.

33.	 Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner 
V2: an expanded tool for searching human genotype-
phenotype associations. Bioinformatics 2019;35:4851-3.

34.	 Mountjoy E, Schmidt EM, Carmona M, et al. An open 
approach to systematically prioritize causal variants and 
genes at all published human GWAS trait-associated loci. 
Nat Genet 2021;53:1527-33.

35.	 Goldman MJ, Craft B, Hastie M, et al. Visualizing and 
interpreting cancer genomics data via the Xena platform. 
Nat Biotechnol 2020;38:675-8.

36.	 Love MI, Huber W, Anders S. Moderated estimation 
of fold change and dispersion for RNA-seq data with 
DESeq2. Genome Biol 2014;15:550.

37.	 Lambrechts D, Wauters E, Boeckx B, et al. 
Phenotype molding of stromal cells in the lung tumor 
microenvironment. Nat Med 2018;24:1277-89.

38.	 Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale 
single-cell gene expression data analysis. Genome Biol 
2018;19:15.

39.	 Wolock SL, Lopez R, Klein AM. Scrublet: Computational 
Identification of Cell Doublets in Single-Cell 
Transcriptomic Data. Cell Syst 2019;8:281-291.e9.

40.	 Kim N, Kim HK, Lee K, et al. Single-cell RNA 
sequencing demonstrates the molecular and cellular 
reprogramming of metastatic lung adenocarcinoma. Nat 
Commun 2020;11:2285.

41.	 Revel M, Sautès-Fridman C, Fridman WH, et al. C1q+ 



Translational Lung Cancer Research, Vol 13, No 8 August 2024 1793

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(8):1780-1793 | https://dx.doi.org/10.21037/tlcr-24-65

Cite this article as: Feng Y, Li C, Cheng B, Chen Y, Chen P, 
Wang Z, Zheng X, He J, Zhu F, Wang W, Liang W. Identifying 
genetically-supported drug repurposing targets for non-small 
cell lung cancer through mendelian randomization of the 
druggable genome. Transl Lung Cancer Res 2024;13(8):1780-
1793. doi: 10.21037/tlcr-24-65

macrophages: passengers or drivers of cancer progression. 
Trends Cancer 2022;8:517-26.

42.	 Freshour SL, Kiwala S, Cotto KC, et al. Integration 
of the Drug-Gene Interaction Database (DGIdb 4.0) 
with open crowdsource efforts. Nucleic Acids Res 
2021;49:D1144-51.

43.	 Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a 
major update to the DrugBank database for 2018. Nucleic 
Acids Res 2018;46:D1074-82.

44.	 Ali S, Dunmore HM, Karres D, et al. The EMA Review of 
Mylotarg (Gemtuzumab Ozogamicin) for the Treatment 
of Acute Myeloid Leukemia. Oncologist 2019;24:e171-9.

45.	 Bross PF, Beitz J, Chen G, et al. Approval summary: 
gemtuzumab ozogamicin in relapsed acute myeloid 
leukemia. Clin Cancer Res 2001;7:1490-6.

46.	 Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, et al. 
Chimeric antigen receptors against CD33/CD123 antigens 
efficiently target primary acute myeloid leukemia cells in 
vivo. Leukemia 2014;28:1596-605.

47.	 Kim MY, Yu KR, Kenderian SS, et al. Genetic Inactivation 
of CD33 in Hematopoietic Stem Cells to Enable CAR T 
Cell Immunotherapy for Acute Myeloid Leukemia. Cell 
2018;173:1439-1453.e19.

48.	 Joehanes R, Zhang X, Huan T, et al. Integrated genome-
wide analysis of expression quantitative trait loci aids 
interpretation of genomic association studies. Genome 
Biol 2017;18:16.

49.	 Folkersen L, Fauman E, Sabater-Lleal M, et al. 

Mapping of 79 loci for 83 plasma protein biomarkers in 
cardiovascular disease. PLoS Genet 2017;13:e1006706.

50.	 Hemani G, Bowden J, Davey Smith G. Evaluating the 
potential role of pleiotropy in Mendelian randomization 
studies. Hum Mol Genet 2018;27:R195-208.

51.	 Schmidt AF, Finan C, Gordillo-Marañón M, et al. Genetic 
drug target validation using Mendelian randomisation. Nat 
Commun 2020;11:3255.

52.	 Gaziano L, Giambartolomei C, Pereira AC, et al. 
Actionable druggable genome-wide Mendelian 
randomization identifies repurposing opportunities for 
COVID-19. Nat Med 2021;27:668-76.

53.	 Jacobs BM, Taylor T, Awad A, et al. Summary-data-
based Mendelian randomization prioritizes potential 
druggable targets for multiple sclerosis. Brain Commun 
2020;2:fcaa119.

54.	 King EA, Davis JW, Degner JF. Are drug targets with 
genetic support twice as likely to be approved? Revised 
estimates of the impact of genetic support for drug 
mechanisms on the probability of drug approval. PLoS 
Genet 2019;15:e1008489.

55.	 Gill D, Cameron AC, Burgess S, et al. Urate, Blood 
Pressure, and Cardiovascular Disease: Evidence From 
Mendelian Randomization and Meta-Analysis of Clinical 
Trials. Hypertension 2021;77:383-92.

56.	 Wouters OJ, McKee M, Luyten J. Estimated Research 
and Development Investment Needed to Bring a New 
Medicine to Market, 2009-2018. JAMA 2020;323:844-53.



© Translational Lung Cancer Research. All rights reserved.  https://dx.doi.org/10.21037/tlcr-24-65

Supplementary

Table S1 Demographic characteristics of the cohorts for exposure

GWAS 
Sample 
size (n)

Ethnicity
Somkers 

(%)
Male 
(%)

Assay Sample PubMed ID

Gene expression GWAS

eQTLGen study 31,684 Mixed NA NA Illumina (55%), Illumina TruSeq 
(20.3%), Affymetrix U219 (8.7%), 
Affymetrix Hu-Ex v1.0ST (16%)

Whole blood, 
peripheral blood 
mononuclear cell

34475573

Proteome GWAS

INTERVAL study 3,301 British 8.6+ 51.1 SOMAscan Plasma 29875488

AGES Reykjavik study 3,200 Icelandic 12# 42.7 SOMAscan Serum 30072576

KORA F4 study 1,000 Germany 36.3+ 49.8$ SOMAscan Blood 28240269
+, percentage of current smoker. #, percentage were calculated using total participants in the AGES Reykjavik study (n=5,457). $, 
percentage of total participants. GWAS, genome-wide association study.

Table S2 Characteristics of the study populations in the TRICL-ILLCO and OncoArray studies for the outcome

study
Overall

Histological types Smoking status

LUAD LUSC Never smoking Ever smoking

Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls

OnciArray 14,803 12,262 6,411 12,262 3,529 12,262 1,624 4,274 12,803 7,647

TRICL-ILCCO 14,463 44,188 4,862 43,221 3,897 43,365 731 3,230 10,420 9,317

deCODE 1,319 26,380 547 26,380 259 26,380

GLC 481 478 186 478 97 478 35 220 433 258

Harvard 984 970 597 970 216 970 92 161 892 809

IARC 2,533 3,791 517 2,824 911 2,968 159 1,253 2,367 2,508

ICR 1,952 5,200 465 5,200 611 5,200

MDACC 1,150 1,134 619 1,134 306 1,134 1,150 1,134

NCI 5,713 5,736 1,841 5,736 1,447 5,736 350 1,379 5,342 4,336

Toronto 331 499 90 499 50 499 95 217 236 272

Total 29,266 56,450 11,273 55,483 7,426 55,627 2,355 7,504 23,223 16,964

OnciArray, the detailed characteristics of included in OncoArray stuides can be found in original atricle’s Table S1; deCODE, Icelandic Lung 
Cancer Study, Iceland; GLC, German Lung Cancer Study, US; Harvard, Harvard Lung Cancer Study, US; IRAC, the International Agency 
for Research on Cancer Genome-wide Association Study, France; ICR, the institute of Cancer Research Genome-wide Association Study, 
UK; MDACC, the MD Anderson Cancer Center Genome-wide Association Study, US; NCI, the National Cancer Institute Genome-wide 
Association Study, US; Toronto, the Lundenfeld-Tanenbaum Research Institute Genome-wide Association Study, Toronto, Canada. LUAD, 
lung adenocarcinoma; LUSC, lung squamous cell carcinoma. 



Table S3 Significant mendelian randomization analyses result of the druggable genes overlapping between eQTL (P≤1.03E−05) and pQTL (nominal P<0.05)

Exposure Outcome Gene Method nsnp b se b_lci b_uci pval OR OR_lci OR_uci

Suhre et al. LUAD CD33 Inverse variance weighted 
(multiplicative random effects)

3 −0.0165 0.0069 −0.0300 −0.0030 1.65E−02 0.9837 0.9705 0.9970 

Sun et al. LUAD CD33 Wald ratio 1 0.0148 0.0186 −0.0217 0.0512 4.27E−01 1.0149 0.9786 1.0526 

Võsa et al. LUAD CD33 Inverse variance weighted 
(multiplicative random effects)

3 −0.1304 0.0232 −0.1759 −0.0849 2.00E−08 0.8777 0.8387 0.9186 

Emilsson et al. LUSC CD33 Wald ratio 1 −0.0019 0.0222 −0.0453 0.0415 9.31E−01 0.9981 0.9557 1.0424 

Suhre et al. LUSC CD33 Inverse variance weighted 
(multiplicative random effects)

3 −0.0099 0.0074 −0.0244 0.0046 1.80E−01 0.9901 0.9758 1.0046 

Sun et al. LUSC CD33 Wald ratio 1 0.0182 0.0216 −0.0241 0.0604 3.99E−01 1.0183 0.9762 1.0623 

Võsa et al. LUSC CD33 Inverse variance weighted 
(multiplicative random effects)

3 −0.0893 0.0333 −0.1545 −0.0241 7.27E−03 0.9146 0.8568 0.9762 

Emilsson et al. LUAD ENG Wald ratio 1 0.1065 0.1062 −0.1016 0.3147 3.16E−01 1.1124 0.9034 1.3698 

Suhre et al. LUAD ENG Inverse variance weighted 
(multiplicative random effects)

2 −0.0895 0.0047 −0.0986 −0.0804 1.79E−82 0.9144 0.9061 0.9228 

Võsa et al. LUAD ENG Inverse variance weighted 
(multiplicative random effects)

2 −0.1349 0.0259 −0.1858 −0.0841 1.97E−07 0.8738 0.8304 0.9193 

Emilsson et al. LUSC ENG Wald ratio 1 −0.0115 0.1200 −0.2468 0.2238 9.24E−01 0.9885 0.7813 1.2508 

Suhre et al. LUSC ENG Inverse variance weighted 
(multiplicative random effects)

2 −0.0717 0.0144 −0.0999 −0.0435 6.05E−07 0.9308 0.9049 0.9574 

Võsa et al. LUSC ENG Inverse variance weighted 
(multiplicative random effects)

2 −0.0114 0.0637 −0.1363 0.1134 8.57E−01 0.9886 0.8726 1.1201 

Suhre et al. LUAD FSTL1 Wald ratio 1 0.0119 0.0662 −0.1178 0.1415 8.58E−01 1.0119 0.8889 1.1520 

Sun et al. LUAD FSTL1 Wald ratio 1 0.0156 0.0867 −0.1544 0.1856 8.58E−01 1.0157 0.8569 1.2039 

Võsa et al. LUAD FSTL1 Wald ratio 1 0.0115 0.0641 −0.1142 0.1372 8.58E−01 1.0116 0.8921 1.1470 

Emilsson et al. LUSC FSTL1 Wald ratio 1 −0.2379 0.0774 −0.3895 −0.0862 2.11E−03 0.7883 0.6774 0.9174 

Sun et al. LUSC FSTL1 Wald ratio 1 −0.3118 0.1014 −0.5106 −0.1130 2.11E−03 0.7321 0.6001 0.8931 

Võsa et al. LUSC FSTL1 Inverse variance weighted 
(multiplicative random effects)

2 −0.2323 0.0080 −0.2480 −0.2167 2.09E−186 0.7927 0.7804 0.8052 

Emilsson et al. LUAD ICOSLG Inverse variance weighted 
(multiplicative random effects)

2 −0.0075 0.0031 −0.0135 −0.0014 1.53E−02 0.9926 0.9866 0.9986 

Sun et al. LUAD ICOSLG Wald ratio 1 −0.0095 0.0313 −0.0708 0.0518 7.61E−01 0.9905 0.9316 1.0532 

Võsa et al. LUAD ICOSLG Inverse variance weighted 
(multiplicative random effects)

2 0.0484 0.0042 0.0401 0.0567 1.39E−30 1.0496 1.0410 1.0583 

Emilsson et al. LUSC ICOSLG Inverse variance weighted 
(multiplicative random effects)

2 0.0293 0.0480 −0.0646 0.1233 5.40E−01 1.0298 0.9374 1.1313 

Sun et al. LUSC ICOSLG Wald ratio 1 0.0293 0.0364 −0.0421 0.1007 4.21E−01 1.0297 0.9588 1.1059 

Võsa et al. LUSC ICOSLG Inverse variance weighted 
(multiplicative random effects)

2 −0.0662 0.0428 −0.1502 0.0177 1.22E−01 0.9359 0.8606 1.0179 

Emilsson et al. LUAD IL18R1 Wald ratio 1 0.0332 0.0262 −0.0182 0.0846 2.06E−01 1.0338 0.9820 1.0883 

Suhre et al. LUAD IL18R1 Inverse variance weighted 
(multiplicative random effects)

4 0.0272 0.0103 0.0071 0.0474 8.13E−03 1.0276 1.0071 1.0485 

Sun et al. LUAD IL18R1 Inverse variance weighted 
(multiplicative random effects)

2 −0.0269 0.0169 −0.0601 0.0063 1.13E−01 0.9735 0.9417 1.0064 

Võsa et al. LUAD IL18R1 Inverse variaSuhre et al.e weighted 
(multiplicative random effects)

2 0.0776 0.0032 0.0713 0.0839 1.90E−128 1.0807 1.0739 1.0875 

Emilsson et al. LUSC IL18R1 Wald ratio 1 0.0358 0.0304 −0.0237 0.0954 2.38E−01 1.0365 0.9766 1.1000 

Suhre et al. LUSC IL18R1 Inverse variance weighted 
(multiplicative random effects)

4 0.0174 0.0130 −0.0081 0.0429 1.81E−01 1.0176 0.9919 1.0439 

Võsa et al. LUSC IL18R1 Inverse variance weighted 
(multiplicative random effects)

2 0.0141 0.0416 −0.0676 0.0957 7.36E−01 1.0142 0.9347 1.1004 

Emilsson et al. LUAD TIMP2 Wald ratio 1 −0.0011 0.0607 −0.1200 0.1178 9.86E−01 0.9989 0.8870 1.1250 

Võsa et al. LUAD TIMP2 Inverse variance weighted 
(multiplicative random effects)

3 −0.0504 0.0423 −0.1333 0.0324 2.33E−01 0.9508 0.8752 1.0330 

Emilsson et al. LUSC TIMP2 Wald ratio 1 −0.1895 0.0701 −0.3269 −0.0520 6.89E−03 0.8274 0.7212 0.9493 

Võsa et al. LUSC TIMP2 Inverse variance weighted 
(multiplicative random effects)

2 0.2370 0.0528 0.1335 0.3406 7.27E−06 1.2675 1.1428 1.4058 

Emilsson et al. LUAD VSIR Wald ratio 1 −0.0741 0.0892 −0.2489 0.1007 4.06E−01 0.9286 0.7797 1.1059 

Sun et al. LUAD VSIR Wald ratio 1 −0.0752 0.0848 −0.2413 0.0910 3.75E−01 0.9276 0.7856 1.0952 

Võsa et al. LUAD VSIR Inverse variance weighted 
(multiplicative random effects)

2 0.0955 0.0093 0.0773 0.1137 8.45E−25 1.1002 1.0803 1.1204 

Emilsson et al. LUSC VSIR Wald ratio 1 −0.1851 0.1031 −0.3873 0.0170 7.26E−02 0.8310 0.6789 1.0171 

Sun et al. LUSC VSIR Wald ratio 1 −0.1932 0.0984 −0.3860 −0.0004 4.95E−02 0.8243 0.6798 0.9996 

Võsa et al. LUSC VSIR Inverse variance weighted 
(multiplicative random effects)

2 −0.1279 0.0121 −0.1515 −0.1042 3.35E−26 0.8800 0.8594 0.9010 

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; eQTL, expression quantitative trait locus; pQTL, protein quantitative trait locus; OR, odds ratio.
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Table S4 Sensitivity analyses of the genes in MR estimates

Exposure 
category

Outcome Gene Q Q_pval Isq
MR-Egger_

intercept_beta
MR-Egger_
intercept_se

pval

eQTL LUAD CD33 0.4340 0.8049 0.6112 0.0064 0.0381 0.8933 

ENG 0.2678 0.6048 0.4862 

ICOSLG 0.0039 0.9502 0.0000 

IL18R1 0.0047 0.9455 0.5243 

LUSC VSIR 0.0062 0.9370 0.0000 

FSTL1 0.0119 0.9131 0.8162 

TIMP2 0.0673 0.7953 0.2907 

pQTL LUAD CD33 0.4938 0.7812 0.0000 −0.0123 0.0212 0.6661 

ENG 0.0262 0.8713 0.8836 

ICOSLG 0.0187 0.8913 0.0000 

IL18R1 1.2326 0.7452 0.2550 −0.0034 0.0221 0.8920 

eQTL, expression quantitative trait locus; pQTL, protein quantitative trait locus; LUAD, lung adenocarcinoma; LUSC, lung squamous cell 
carcinoma; MR, Mendelian randomization.

Figure S1 Volcano plot presenting the −log10(P) and log2(FC) of differentially expressed genes identified in LUAD and LUSC. Comparison 
was made between tumor tissue and normal tissue. ENG1, CD33 and IL18R1 were significantly down-regulated in tumor tissue. LUAD, 
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; FC, fold change; NS, not significant.
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Figure S2 Overall survival curves comparing groups with high and low expression of druggable genes. (A) ICOSLG; (B) IL18R1; (C) VSIR; 
(D) FSTL1. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.

Table S5 DESeq2 differential expressed genes analysis result between LUAD and LUSC tumor tissue and normal tissue

Category EnsemblID Symbol BaseMean Log2FoldChange LfcSE Stat p.value p.adj

LUAD ENSG00000105383 CD33 321.9144 −1.4210 0.1408 −10.0910 6.05E−24 7.38E−23

ENSG00000106991 ENG 8396.8961 −1.5823 0.1102 −14.3548 9.95E−47 4.36E−45

ENSG00000115604 IL18R1 282.2041 −1.5773 0.1460 −10.8042 3.29E−27 4.90E−26

ENSG00000160223 ICOSLG 41.6021 −0.1383 0.1940 −0.7129 4.76E−01 5.58E−01

LUSC ENSG00000035862 TIMP2 14860.8450 −1.2214 0.1517 −8.0525 8.11E−16 4.13E−15

ENSG00000107738 VSIR 3306.6772 −1.7052 0.1275 −13.3699 9.07E−41 1.55E−39

ENSG00000163430 FSTL1 14987.9301 −0.2431 0.1464 −1.6608 9.68E−02 1.35E−01

Only screened druggable genes were shown. |log2FoldChange|>1 and adjusted P value <0.05 were considered as statistically significant. 
Genes with log2FoldChange >0 were considered as highly expressed in tumor tissue while log2FoldChange <0 were considered as lowly 
expressed in tumor tissue. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.
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Figure S3 UMAP representations of single-cell transcriptome in LUAD. (A) Cell clusters; (B) sample came from tumor or non-tumor 
tissue; (C) CNV scores generated by inferCNV analysis, with high CNV scores indicating malignant cells; (D) expression levels of screened 
druggable genes. UMAP, Uniform Manifold Approximation and Projection; LUAD, lung adenocarcinoma; NK, natural killer cells; DCs, 
dendritic cells; pDCs, plasmacytoid dendritic cells; CNV, copy number variations.
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Figure S4 UMAP representations of single-cell transcriptome in LUSC. (A) Cell clusters; (B) sample came from tumor or non-tumor 
tissue; (C) CNV scores generated by inferCNV analysis, with high CNV scores indicating malignant cells; (D) expression levels of screened 
druggable genes. UMAP, Uniform Manifold Approximation and Projection; LUSC, lung squamous cell carcinoma; CNV, copy number 
variations.
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Figure S5 Dot plots showing the expression levels of selected marker genes and druggable genes in various cell subpopulations in LUAD 
(A) and LUSC (B). The left column presents the cell subtypes identified based on Leiden clustering method. LUAD, lung adenocarcinoma; 
LUSC, lung squamous cell carcinoma.
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Figure S6 Heatmap showing the expression levels of marker genes and druggable genes in specific cell cluster of tumor or normal tissue in 
LUAD. Only cell clusters with high expression levels of druggable genes are displayed. LUAD, lung adenocarcinoma.

Figure S7 Heatmap showing the expression levels of marker genes and the druggable genes in specific cell cluster of tumor or normal tissue 
in LUSC. Only cell clusters with high expression levels of druggable genes are displayed. LUSC, lung squamous cell carcinoma.
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