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Background: Tumor mutation burden (TMB) has emerged as a promising biomarker for immune 
checkpoint inhibitors (ICI) response, but its detection through whole exome sequencing (WES) is costly and 
invasive. This study aims to establish a predictive model for TMB using baseline metabolic parameters (MPs) 
of 18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography (PET/
CT) and clinical features in non-small cell lung cancer (NSCLC) patients, potentially offering a non-invasive 
and cost-effective method to predict TMB status.
Methods: A total of 223 NSCLC patients with baseline 18F-FDG PET/CT scans and TMB detection 
results were retrospectively enrolled from January 2019 to September 2023, and were divided into  
two groups: TMB-high (≥4 mutations/Mb, 96 patients) and TMB-low (<4 mutations/Mb, 127 patients). 
Twelve clinical features and five PET parameters were assessed. Univariate analysis was conducted in all 
patients to reveal the preliminary associations between variables and TMB status. All patients were randomly 
divided into a training set (n=135) and a validation set (n=88). Feature selection was performed using lasso 
regression and logistic regression analyses. A predictive model and nomogram were established with the 
features selected above. Decision curve analysis (DCA) was performed to assess the clinical utility of the 
developed model.
Results: Two clinical features and two PET parameters were identified through lasso regression and 
logistic regression analysis including pathology type, cancer antigen 125 (CA125) level, maximum 
standardized uptake value (SUVmax), and metabolic tumor volume (MTV). The predictive model exhibited 
an area under the curve (AUC) of 0.822 [95% confidence interval (CI), 0.751–0.894], and internal validation 
yielded an AUC of 0.822 (95% CI, 0.731–0.912). The model was well-calibrated. The developed nomogram, 
incorporating the four selected variables, showed promising potential in evaluating TMB status in NSCLC 
patients.
Conclusions: In this study, a predictive model combining 18F-FDG PET/CT and clinical features of 
NSCLC patients effectively distinguished between TMB-high and TMB-low status. The nomogram 
generated from this model holds significant promise for predicting TMB status, offering valuable insights for 
clinical decision-making.
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Introduction

Lung cancer is the primary cause of cancer-related deaths 
worldwide. Non-small cell lung cancer (NSCLC) is 
the main type of lung cancer, accounting for 80–85% 
of lung cancer patients (1,2). Therapeutic options for 
NSCLC treatment, including surgery, radiation therapy, 
chemotherapy, and targeted drug therapy, have greatly 
improved the survival of some advanced NSCLC patients. 
In recent years, immune checkpoint inhibitor (ICI) therapy 
has become one of the standard therapeutic options for 
metastatic NSCLC patients, either as monotherapy or 
combined with other standard therapies (3,4). However, 
some patients with NSCLC fail to respond to ICI 
monotherapy. Finding reliable biomarkers to predict the 
response to ICI therapy has become a huge challenge for 
clinical application (5). 

Tumor mutation burden (TMB), defined as the total 

number of somatic/acquired mutations per coding area 
of a tumor genome (mutations/Mb), has emerged as a 
promising predictive biomarker of response to ICIs. It has 
been acknowledged that a higher TMB status is associated 
with higher response rates and longer progression-free 
survival (6-9). The detection of TMB requires whole exome 
sequencing (WES), a high-cost method with invasive 
procedures that is unaffordable and unacceptable for most 
patients. Therefore, it is of great clinical significance 
to explore non-invasive and cost-effective biomarkers  
for TMB. 

18F-fluorodeoxyglucose (FDG) positron emission 
tomography/computed tomography (PET/CT),  a 
noninvasive imaging modality, is widely used in the 
diagnosis, staging, and therapeutic efficacy evaluation 
of patients with NSCLC. A few studies have shown that 
baseline metabolic parameters (MPs) of NSCLC may 
be predictive factors for TMB (6,10,11). However, these 
studies still have certain limitations: (I) the cutoff for TMB-
high was different; (II) they failed to establish a predictive 
model for TMB based on MPs of NSCLC patients; (III) 
these studies had a relatively small sample size. In this 
study, we established a predictive model for TMB based on 
MPs and clinical features of NSCLC patients with a larger 
sample size, aiming to provide a potential non-invasive 
detection method for TMB, making it a better predictive 
biomarker of response to ICIs. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tlcr.amegroups.com/article/view/10.21037/tlcr-
24-416/rc).

Methods

Study patients

We retrospectively included 223 patients diagnosed with 
NSCLC at the First Affiliated Hospital of Chongqing 
Medical University from January 2019 to September 
2023. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of The First Affiliated 
Hospital of Chongqing Medical University (No. K2023-
644) and individual consent for this analysis was waived 
due to the retrospective nature of the study. The inclusion 
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criteria are as follows: (I) complete clinical data available; 
(II) pathologically confirmed NSCLC; (III) baseline 
18F-FDG PET/CT scans performed before treatment; (IV) 
baseline TMB data of the primary tumor tissue on biopsy/
surgery samples obtained before therapy, excluding TMB 
data of metastases and lymph nodes; (V) time interval 
between biopsy/surgery and 18F-FDG PET/CT scan was 
within 3 months according to previous studies (12,13). We 
retrospectively collected the clinical features and serological 
targets from the medical record.

18F-FDG PET/CT acquisition 

All patients underwent whole-body PET/CT scans 
according to the standard protocol of our hospital. All 
patients fasted for at least 6 hours before the scan with 
fasting blood glucose levels ≤8.1 mmol/L. Intravenous 
injection of 18F-FDG imaging agent was administered 
at a calculated dose of 3.70–5.55 MBq/kg. Each patient 
was requested to rest quietly for 60 minutes before PET/
CT imaging, with a scanning range from the skull base to 
the middle thigh. 18F-FDG is produced by the cyclotron 
accelerator of the First Affiliated Hospital of Chongqing 
Medical University. The patients were scanned with the 
Philips Gemini 64 PET-CT scanner (Philips Medical 
Systems, Netherlands). The CT scanning parameters were 
as follows: voltage, 120 kV; current, 100 mA; layer thickness, 
4.0 mm. The PET scanning parameters were as follows: 
layer thickness, 4.0 mm, 1 minute per bed. The scanned 
data was attenuated by a computer and reconstructed 
through iterative methods to obtain maximum intensity 
projection and fused images.

Image analysis 

As shown in Figure 1, 18F-FDG PET/CT imaging data, 
including PET and CT images, were imported into the 
open-source software LIFEx (version 5.2.0) (14) in Digital 
Imaging and Communications in Medicine (DICOM) 
format. For patients with multiple lesions, only the single 
primary lesion used for TMB detection was included in 
the image analysis, excluding other primary and metastatic 
lesions. The region of interest (ROI) of the primary tumor 
on 18F-FDG PET/CT fused images was semi-automatically 
recognized and segmented using a threshold method set at 
40% of the maximum standardized uptake value (SUVmax) 
(14,15). The maximum diameter of the primary tumor was 
measured on a lung window with CT images data. The above 

operations were jointly decided by two senior radiologists. 
Disagreements were resolved by negotiation. The following 
parameters of the primary tumor were obtained through the 
above methods: SUVmax, SUVmean, metabolic tumor volume 
(MTV), and total lesion glycolysis (TLG).

TMB detection

The formalin-fixed paraffin-embedded (FFPE) tumor 
samples were obtained from primary tumor tissue of  
223 patients. Capture-based targeted sequencing was 
performed at the Clinical Molecular Medicine Testing 
Center, the First Affiliated Hospital of Chongqing Medical 
University using a panel consisting of 520 cancer-related 
genes spanning 1.64 megabases (Mb) of the human 
genome. The indexed samples were sequenced on an 
Illumina NextSeq 500 paired-end system (Illumina, Inc., 
USA) with an average sequencing depth of 1,698× (16,17). 
TMB per patient was computed as a ratio between the total 
number of nonsynonymous mutations detected and the 
coding region size of the panel. TMB-high is defined as 
TMB >4 mutations/Mb and TMB-low is defined as TMB  
≤4 mutations/Mb according to a previous study (18,19).

Statistical analysis 

Patient clinical characteristics and imaging parameters were 
evaluated to determine their association with TMB status. 
Categorical variables were assessed using the chi-square 
test or Fisher’s exact test, while continuous variables were 
described using either mean (± standard deviation) and 
compared using the t-test for normally distributed data, 
or median (interquartile range) and compared using the 
Wilcoxon rank sum test for non-normally distributed data.

Univariate analysis was performed in all patients to 
reveal the preliminary associations between variables and 
TMB status. Based on the ratio of 6:4, 60% of patients were 
randomly selected as the training set, and the remaining 
patients were used as the validation set. One hundred 
and thirty-five patients in the training set were included 
for variable selection with lasso regression and stepwise 
regression methods. Following variable selection, the 
patient cohort in the training set was used for developing 
the diagnostic prediction model, and 88 patients in the 
validation set for internal model validation. The diagnostic 
performance of the model was evaluated using receiver 
operating characteristic (ROC) curves and area under the 
curve (AUC). Model calibration was assessed using the 
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Hosmer-Lemeshow test, while clinical utility was evaluated 
using decision curve analysis (DCA).

All statistical analyses and graphical preparations were 
conducted using R software (version 4.3.0) and packages, 
including “CBCgrps”, “cowplot”, “rms”, “pROC”, “rmda”, 
and “tidyverse”. A P value less than 0.05 was considered 
statistically significant.

Results

Baseline characteristics of patients 

The clinical information and PET parameters of all 223 
enrolled patients are shown in Tables 1,2. Patients were 
grouped according to their TMB status, with 127 cases in 
the TMB-low group and 96 cases in the TMB-high group. 

Figure 1 Flow chart of the study. In the “ROI segmentation” section, the picture (A) shows 18F-FDG PET/CT fusion images, and the 
purple area in picture (B) shows ROI of the primary tumor segmented by threshold method. NSCLC, non-small cell lung cancer; TMB, 
tumor mutation burden; 18F-FDG PET/CT, 18F-fluorodeoxyglucose uptake on positron emission tomography/computed tomography; ROI, 
region of interest.
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Table 1 Clinical features of NSCLC

Clinical features All patients TMB-low TMB-high P value

Sex 0.003

Male 122 [55] 58 [46] 64 [67]

Female 101 [45] 69 [54] 32 [33]

Age, years 63±8.94 61.59±9.84 64.86±7.23 0.005

Pathology type 0.005

SCC 38 [17] 30 [24] 8 [8]

ADC 185 [83] 97 [76] 88 [92]

Clinical stage 0.76

I 63 [28] 39 [31] 24 [25]

II 19 [9] 11 [9] 8 [8]

III 35 [16] 18 [14] 17 [18]

IV 106 [48] 59 [46] 47 [49]

Smoking history <0.001

Nonsmoker 72 [32] 54 [43] 18 [19]

Smoker 151 [68] 73 [57] 78 [81]

Family malignant tumor history 0.17

Yes 53 [24] 35 [28] 18 [19]

No 170 [76] 92 [72] 78 [81]

Multiple primary lung cancer 0.16

Yes 43 [19] 29 [23] 14 [15]

No 180 [81] 98 [77] 82 [85]

BMI, kg/m2 21.5 (20.2–23.15) 21.5 (20.05–23.25) 21.6 (20.3–22.92) 0.79

CEA 0.08

Normal 118 [53] 74 [58] 44 [46]

High 105 [47] 53 [42] 52 [54]

CA125 <0.001

Normal 168 [75] 109 [86] 59 [61]

High 55 [25] 18 [14] 37 [39]

Cyfra21-1 0.01

Normal 90 [40] 61 [48] 29 [30]

High 133 [60] 66 [52] 67 [70]

Lymphatic metastasis 0.009

Yes 93 [42] 43 [34] 50 [52]

No 130 [58] 84 [66] 46 [48]

Data are expressed as n [%], mean ± standard deviation or median (interquartile range). Upper limits of normal were 5.0 ng/mL for CEA, 
35.0 U/mL for CA125, 3.3 ng/mL for Cyfra21-1. SCC, squamous cell carcinoma; ADC, adenocarcinoma; BMI, body mass index; CEA, 
carcinoembryonic antigen; CA125, carbohydrate antigen 125; Cyfra21-1, cytokeratin 19 fragment; NSCLC, non-small cell lung cancer; 
TMB, tumor mutation burden.
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Statistical analysis indicated significant differences (P<0.05) 
in sex, age, pathology type, smoking history, CA125 level, 
Cyfra21-1 level, lymphatic metastasis, SUVmax, SUVmean, and 
TLG. Compared to the TMB-low group, the proportion 
of males, smokers, and patients with pathological type 
adenocarcinoma was higher in the TMB-high group. 
Regarding tumor marker levels, patients with high CA125 
and Cyfra21-1 accounted for a larger proportion in the 
TMB-high group. For PET parameters, Table 2 showed 
that most baseline MPs, including SUVmax, SUVmean, and 
TLG, were higher in the TMB-high group compared with 
the TMB-low group. In Table S1, we provide a detailed 
description of the distribution of various metrics in the 
training and validation set. The results indicate that there 
are no statistically significant differences between the two 
groups for these metrics. Therefore, the data from both 
cohorts are free from systematic bias and are suitable for 
model development and validation.

The performance of individual factors for discriminating 
between TMB-high and TMB-low

We plotted ROC curves to evaluate the ability of individual 
factors to distinguish between TMB-high and TMB-
low (Figure 2A). It was observed that SUVmax was the 
most accurate biomarker in distinguishing TMB-high 
from TMB-low, with an AUC >0.75 (Figure 2A,2B). The 
remaining factors had AUCs below 0.75 in differentiating 
between the groups (Figure 2B). Therefore, we hope to 
combine multiple indicators to establish a predictive model 
to improve the prediction performance of TMB status.

Collinearity among variables and variable selection

Based on a ratio of 6:4, 135 patients were randomly selected 

as the training set, and the remaining 88 patients were 
used as the validation set. Recognizing the significant 
collinearity among the PET parameters, which indicated 
varying degrees of correlation among multiple variables 
(Figure 3), we adopted a two-stage method to address 
this issue. Initially, we applied lasso regression directly to 
all variables instead of performing traditional univariate 
analysis. lasso regression reduces complexity and mitigates 
multicollinearity by penalizing the absolute size of the 
regression coefficients, compressing some coefficients 
and setting others to zero, effectively selecting more 
relevant variables (Figure 4). Subsequently, the variables 
that remained significant were further analyzed through 
stepwise regression, specifically a bidirectional approach 
that iteratively added and removed predictors to find the 
optimal model. This combination of lasso followed by 
stepwise regression allows for more robust feature selection 
in the presence of multicollinearity. After the variable 
selection process, four variables were used to construct the 
predictive model: SUVmax (OR =1.265, 95% CI: 1.144–
1.420, P<0.001), MTV (OR =0.976, 95% CI: 0.953–0.996, 
P=0.02), PT (OR =7.301, 95% CI: 1.876–38.682, P=0.008), 
and CA125 level (OR =6.736, 95% CI: 2.594–19.242, 
P<0.001).

Predictive model and evaluation of model 

These variables, selected through lasso regression followed 
by stepwise regression, were incorporated into a predictive 
model for TMB status. The predictive performance of the 
model was assessed using ROC curves. The AUC for the 
model was 0.822 (95% CI, 0.751–0.894) in the training 
set and also 0.822 (95% CI, 0.731–0.912) in the validation 
set (Figure 5). This consistent performance across both 
datasets underscores the model’s robustness. The model was 

Table 2 PET parameters of NSCLC

PET parameters All patients TMB low TMB high P value

SUVmax 7.1 [4.25–10.7] 5.5 [2.5–8.95] 9.75 [7–13.6] <0.001

SUVmean 4.5 [2.55–6.8] 3.5 [1.55–5.6] 6 [4.2–8.5] <0.001

MTV 8.5 [4.6–18.55] 8 [4.7–15.9] 10.75 [4.5–22.1] 0.24

TLG 35.28 [10.49–109.65] 22.68 [6.82–63.24] 46.54 [18.76–170.88] <0.001

Size*, cm 27 [20–39] 26 [19–34] 29.5 [20–44] 0.07

The data are expressed as median [interquartile range]. Size*, maximum diameter of the tumor. PET, positron emission tomography; 
SUVmax, maximum standardized uptake value; SUVmean, mean standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion 
glycolysis; NSCLC, non-small cell lung cancer; TMB, tumor mutation burden.

https://cdn.amegroups.cn/static/public/TLCR-24-416-Supplementary.pdf
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Figure 2 The performance of individual factors for discriminating between TMB-high and TMB-low. (A) ROC curves showing the 
diagnostic performance of individual factors in differentiating TMB-high from TMB-low. (B) The AUC of various factors in discriminating 
between TMB-high and TMB-low. LM, lymphatic metastasis; PT, pathology type; FMTH, family malignant tumor history; MPLC, 
multiple primary lung cancer; BMI, body mass index; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 125; Cyfra21-1, 
cytokeratin 19 fragment; SUVmax, maximum standardized uptake value; SUVmean, mean standardized uptake value; MTV, metabolic tumor 
volume; TLG, total lesion glycolysis; ROC, receiver operating characteristics; AUC, area under the curve; TMB, tumor mutational burden.

further visualized through a nomogram (Figure 6), designed 
to calculate the probability of NSCLC being classified as 
TMB-high. The calculation method involved assigning 
scores to each variable based on their contribution, summed 
across all selected factors. The total points were then used to 
determine the corresponding predicted probability of being 
TMB-high, as depicted on the nomogram’s lower scale. 

Figure 7 illustrates the calibration curve of the nomogram. 
The alignment of the prediction curve with the diagonal 
suggests a good correspondence between predicted and 
actual probabilities (the Hosmer-Lemeshow test, P>0.05, 
suggesting that it is of good fit). Decision curves for 
the predictive model (Figure 8) show the clinical utility 
across various risk thresholds, recommending risk-based 
interventions when the probability thresholds range from 
10% to 70% in the training set and from 10% to 80% in 
the validation set. These thresholds provide a guideline for 
clinical decision-making, suggesting the model’s practical 
application in patient management strategies.

Discussion

Immunotherapy has significantly transformed treatment 
strategies for various cancers, including NSCLC. However, 
response heterogeneity presents a substantial challenge 

(20,21). Consequently, identifying effective predictive 
biomarkers for ICIs is critical to improving prognosis in 
NSCLC patients (22,23).

PD-L1 expression is commonly used as a biomarker 
for selecting ICI therapy (24,25), yet its predictive efficacy 
is marred by inconsistencies due to methodological 
discrepancies and inherent limitations (26-28). Importantly, 
some studies have documented significant ICI responses in 
patients with PD-L1 expression below 1% (29,30).

Advancements in sequencing technologies have 
highlighted the role of non-synonymous mutations in 
creating neoantigens, which affect tumor immunogenicity 
and the response to ICIs (9). TMB, which measures the total 
number of non-synonymous mutations per DNA megabase, 
has emerged as a promising predictive biomarker for ICI 
response (29,30). Next-generation sequencing (NGS) 
is the preferred method for assessing TMB, providing 
a quantitative analysis across various tumor types (31).  
However, the clinical utility of NGS is hindered by its 
technical complexities, extended processing times, and 
invasiveness (12).

Radiological imaging, specifically 18F-FDG PET/CT, 
offers a non-invasive alternative for predicting TMB status, 
circumventing the limitations associated with invasive 
biopsies and the lengthy durations of NGS cycles. Previous 
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studies have investigated the relationship between baseline 
MPs from 18F-FDG PET/CT and TMB status, though 
these studies have been limited by small sample sizes and 
inconsistent TMB-high cutoffs. Moon et al. found no 
significant relationship between SUVmax and TMB status 
in lung cancer patients (13), possibly due to ignoring the 
time interval between 18F-FDG PET-CT and biopsy, 
which could impact the correlation. Addressing this issue, 
Haghighat Jahromi et al. (11) demonstrated a significant 

positive correlation between SUVmax and TMB status 
in multiple advanced cancers by limiting the interval to 
within six months. Furthermore, Zhang et al. (6) confirmed 
that SUVmax values were higher in the TMB-high group 
compared to the TMB-low group in NSCLC patients. 
Based on the previous study (12), we propose that an 
elevated mutation burden, indicated by TMB, could be 
linked to metabolic remodeling and immune inflammatory 
response. These characteristics, in turn, may correlate with 
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Figure 5 Diagnostic efficacy of the predictive model based on 18F-fluorodeoxyglucose uptake on positron emission tomography/computed 
tomography (18F-FDG PET/CT) parameters and clinical features in training set (A) and validation set (B). AUC, area under the curve.
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increased SUVmax.
In our study, we established a predictive model from 

the training set of 135 patients and evaluated the model’s 
performance in an independent validation set of 88 patients. 
AUC for the model was 0.822 (95% CI, 0.751–0.894) in 
the training set and 0.822 (95% CI, 0.731–0.912) in the 
validation set, respectively. This development marks the 
first time a predictive model combining 18F-FDG PET/
CT parameters and clinical features has demonstrated 
such significant predictive capability, representing a major 
innovation in our research.

Compared to previous studies, our study has the 
following improvements: (I) we have more strictly limited 
the interval between 18F-FDG PET/CT and biopsy to 
within three months, ensuring temporal consistency 
between PET parameters and TMB status; (II) we have 
expanded the sample size; (III) for the first time, we have 

used PET parameters and clinical features to establish 
a prediction model for TMB levels; (IV) we explored a 
different cutoff for TMB status, as there is no uniform 
cutoff value for high and low TMB groups. Zhang et al. (6) 
used TMB >10 mutations/Mb for grouping in their study, 
but this is not suitable for constructing a predictive model 
because the majority of patients have TMB status less than 
10 mutations/Mb. Based on previous research (18,19), we 
chose 4 as the cutoff between high and low TMB groups, 
making the high TMB group and low TMB group more 
balanced and enhancing the credibility of the prediction 
model.

Additionally, we innovated in statistical methods. Instead 
of traditional univariate analysis with backward stepwise 
elimination, we applied lasso regression followed by 
stepwise variable screening directly. This method proved 
more effective, particularly since the MTV variable, 
previously insignificant in univariate analysis, emerged as 
a key predictor in both lasso and stepwise regression. This 
underscores the robustness and efficacy of lasso regression 
in comprehensively considering interactions and overall 
effects among variables, thereby optimizing the variable 
selection process. The predictive model demonstrates a 
significant correlation between SUVmax and TMB status, 
providing a non-invasive method to assess TMB status 
effectively.

While our results are promising, the study is not without 
limitations. Being conducted within a single institution, 
future research should aim for multicenter studies to 
validate and generalize the findings. The retrospective 
nature of our study may also introduce potential biases, 
underscoring the need for prospective application of our 
predictive model in clinical settings. Furthermore, the 
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correlation between driver mutations such as EGFR and 
TP53 and TMB status remains unexplored and will be 
addressed in subsequent research efforts.

Conclusions

In our study, we successfully developed a predictive model 
that integrates 18F-FDG PET/CT baseline MPs with 
clinical features to evaluate the TMB status of NSCLC 
patients effectively. The model was visualized through a 
nomogram that demonstrated robust predictive accuracy 
and substantial clinical value, offering a non-invasive 
approach to assess TMB status.

This model’s non-invasive nature is particularly 
advantageous in the clinical setting, as it reduces the need 
for invasive biopsies and expedites the assessment process, 
which is vital for timely therapeutic decision-making. In 
the future, we aim to enhance this model by incorporating 
it into a multivariate efficacy prediction framework that 
includes TMB and other significant predictors relevant 
to the efficacy of ICI therapies. Such advancements could 
provide clinicians with a more comprehensive tool for 
making informed decisions regarding combination therapy, 
ultimately aiming to improve the survival rates and quality 
of life for NSCLC patients.
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Table S1 A balance test between the training set and the validation set

Variables Total (n=223] Validation set (n=88] Training set (n=135] P value

TMB >0.99

Low 127 [57] 50 [57] 77 [57]

High 96 [43] 38 [43] 58 [43]

Lymphatic metastasis 0.182

No 130 [58] 46 [52] 84 [62]

Yes 93 [42] 42 [48] 51 [38]

Sex >0.99

Male 122 [55] 48 [55] 74 [55]

Female 101 [45] 40 [45] 61 [45]

Stage 0.394

I 63 [28] 29 [33] 34 [25]

II 19 [9] 9 [10] 10 [7]

III 35 [16] 14 [16] 21 [16]

IV 106 [48] 36 [41] 70 [52]

Smoking history 0.366

Nonsmoker 72 [32] 32 [36] 40 [30]

Smoker 151 [68] 56 [64] 95 [70]

Pathology type 0.361

SCC 38 [17] 18 [20] 20 [15]

ADC 185 [83] 70 [80] 115 [85]

FMTH 0.894

0 170 [76] 68 [77] 102 [76]

1 53 [24] 20 [23] 33 [24]

MPLC 0.871

0 180 [81] 72 [82] 108 [80]

1 43 [19] 16 [18] 27 [20]

CEA 0.4

Normal 118 [53] 43 [49] 75 [56]

High 105 [47] 45 [51] 60 [44]

CA125 0.948

Normal 168 [75] 67 [76] 101 [75]

High 55 [25] 21 [24] 34 [25]

Cyfra21 0.574

Normal 90 [40] 33 [38] 57 [42]

High 133 [60] 55 [62] 78 [58]

Age, years 63±8.94 62.47±9.83 63.35±8.33 0.488

BMI, kg/m2 21.5 [20.2–23.15] 21.5 [20.2–23.02] 21.6 [20.2–23.2] 0.963

SUVmax 7.1 [4.25–10.7] 7.35 [3.9–10.6] 7 [4.35–10.7] 0.958

SUVmean 4.5 [2.55–6.8] 4.75 [2.45–6.8] 4.4 [2.6–6.9] 0.987

MTV 8.5 [4.6–18.55] 10.8 [4.55–18.6] 7.7 [4.8–17.35] 0.511

TLG 35.28 [10.49–109.65] 36.91 [11.31–123.69] 32.16 [10.49–99.18] 0.765

Size, cm 27 [20–39] 29 [20–40.25] 26 [19.5–36.5] 0.345

Data are expressed as n [%], mean ± standard deviation or median [interquartile range]. Upper limits of normal were 5.0 ng/mL for CEA, 
35.0 U/mL for CA125, 3.3 ng/mL for Cyfra21-1. SCC, squamous cell carcinoma; ADC, adenocarcinoma; BMI, body mass index; CEA, 
carcinoembryonic antigen; CA125, carbohydrate antigen 125; Cyfra21-1, cytokeratin 19 fragment; SUVmax, maximum standardized uptake 
value; SUVmean, mean standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis; ROC, receiver operator 
characteristics; AUC, area under the curve.
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