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Introduction

In the twenty years since the authors initial Early Lung 
Cancer Action Project (ELCAP) report in 1999 (1-3), low-
dose computed tomography (LDCT) screening has been 
implemented throughout the world (4-11). At the same 
time, a remarkable transformation in medicine is starting, 
due in part to the advancing knowledge in genetics, 
mathematical advances, and increased computing power. 

LDCT radiation doses are currently below the 
dose of mammographic studies. Ultra LDCT have 
radiation doses approaching those of chest X-ray (CXR) 
and are being used for evaluation of chest and heart  

diseases (12). New image analytics and statistical techniques 
have been developed, with even more innovations on the 
horizon. Future image interpretation will increasingly use 
computer-aided-diagnostics, already started as early as the  
1990’s (12). Further developments will continue to improve 
the assessment of three-dimensional volumetric doubling 
time (VDT), already introduced in the mid 1990’s by 
ELCAP. As the experience with LDCT continues to 
accumulate, the future application of LDCT will be to 
provide a comprehensive “health check,” perhaps together 
with expanded routine blood testing. 

Possible near-term advances are: 
(I)	 Expansion of the eligibility criteria for screening 
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using risk-based criteria, particularly to women, 
never smokers exposed to secondhand tobacco 
smoke, and to people of younger age.

(II)	 Integration of artificial intelligence (AI) approaches 
for LDCT interpretation. 

(III)	 Continued optimization of the regimen of 
screening. 

(IV)	 Understanding the benefit of identification of other 
early diseases. 

(V)	 Evaluation of new screening tests will emerge. 
(VI)	 New paradigms of treatment for early lung cancers. 
Future  development  of  screening wi l l  re ly  on 

comprehensive management systems that are integrated 
into hospital electronic medical record systems and also 
provide for outreach to potential screening participants. The 
International Early Lung Cancer Action Program (I-ELCAP) 
used the ELCAP Management System and provided many 
new insights for further development of screening regimens. 
Its success demonstrates the usefulness of comprehensive 
management systems which provide quality assurance of 
the interpretation and follow-up management needed in 
screening programs. The ELCAP Management System 
started in 1992 and has continued to be updated and used 
throughout the world. Its database has allowed for further 
development of the LDCT screening regimen and its 
efficiency as demonstrated by its contributions (12). The 
ELCAP Management System has now been translated into 
an open-source management system called VAPALS-ELCAP 
Management System for the Veterans Administration Health 
Care System. These large emerging high-quality databases, 
developed for comprehensive clinical management of 
screening, will become invaluable for further development of 
screening for lung cancer. 

Expansion of the eligibility criteria for screening 
using risk-based criteria, particularly to women, 
never smokers exposed to secondhand tobacco 
smoke, and to people of younger age

The National Lung Screening Trial (NLST) (6) and 
NELSON trial (11) showed that LDCT screening decreases 
lung cancer mortality rates for current and former smokers 
when compared with chest radiographic screening or no 
screening, respectively. The NLST criteria for screening 
was current and former smokers with at least 30 pack-years 
of smoking and for the former smokers, only those who had 
quit in the last 15 years prior to enrollment. 

The authors have previously shown that women are at 

higher risk to develop lung cancer than equally smoking 
men (13-16). When the probability of lung cancer among 
I-ELCAP smokers with sex, age, pack-years of smoking and 
years since quit was modeled a 55-year-old man with at least 
30 pack-years of smoking would have about the same risk 
as a 47 year-old woman with the same smoking history (17). 
This result suggested that if the NLST entry criteria used 
55 as the age cutoff for men to be eligible for screening, 
the corresponding age cutoff for women should be lower, 
at around 47 years old (17). This finding corroborates 
other studies that women with lung cancer are diagnosed 
at a younger age than men (18-20). Expanding screening 
to include women at a lower age would allow identification 
of those high-risk women who are currently outside of 
the guidelines. In fact, results of the NELSON trial also 
support the consideration to extend screening to younger 
smokers. The NELSON trial (7) included smokers aged 50 
and older with a lower smoking history than the NLST, and 
the trial showed a greater lung cancer mortality reduction 
when comparing LDCT screening with no screening. 
Expansion of the NLST criteria is being considered in the 
United States and elsewhere as it has been estimated that 
only 20% of the lung cancer patients diagnosed each year in 
the United States met these criteria.

Recently, lung cancer in never smokers, particularly 
in women has attracted attention. Never smokers are 
defined as having smoked less than 100 cigarettes in their  
lifetime (21). It is estimated that 10–25% of lung cancers 
occur in never-smokers so that lung cancer in never 
smokers is the 7th most common malignancy resulting 
in approximately 300,000 deaths annually (22-24). Lung 
cancer in never smokers has been considered by some to be 
a “different lung cancer” compared to smoking associated 
lung cancer (22,25). Epidemiologic studies showed that 
lung cancer in never smokers occurred more frequently 
in women (53%) and at a relatively young age compared 
to lung cancer in smokers which is traditionally found in 
elderly men. Among East Asian women, 61–80% of the lung 
cancer diagnoses were in never smokers (26-28). This high 
frequency is thought to reflect exposures to secondhand 
tobacco smoke, indoor air pollution from burning of coal 
for heating and cooking fumes, and outdoor pollution from 
ambient fine particles (29,30). The most common cell-
type in never smokers was adenocarcinoma. There are 
also differences in genetics and molecular findings as these 
cancers are often associated with epidermal growth factor 
receptor (EGFR) mutations and anaplastic lymphoma 
kinase (ALK) rearrangements while smoking related lung 
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cancers are associated with KRAS mutations (31-33); these 
differences can be used to guide specific targeted therapies. 
In light of the decreasing rates of cigarette smoking, the 
proportion of lung cancers diagnosed in never smokers is 
increasing (34). 

Expansion of eligibility criteria for individuals who 
never smoked is becoming an important issue. As eligibility 
criteria expand, attention to the regimen of screening, 
and continuous updating of an evidence-based nodule 
management protocol, is important to limit unnecessary 
workup and over-treatment. Results from Eastern Asian 
countries showed that LDCT screening can detect a 
significant number of lung cancers in never smokers, most 
of them in early stage; approximately 70% of these lung 
cancers would have been missed using the NLST selection 
criteria for screening (35-37). These studies recommended 
that individuals who have never smoked should be included 
in eligibility criteria of LDCT screening. Results in 
the United States also suggest that LDCT screening is 
beneficial for never smokers exposed to secondhand tobacco 
smoke for identification of early lung cancer, cardiovascular 
disease and emphysema (38). Future studies, with focus on 
young never smoking women, will be needed to address this 
issue.

Several validated lung cancer risk prediction models are 
available for ever-smokers. Earlier risk prediction models for 
lung cancer that considered never smokers, however, were 
limited as they were either developed in case-control studies 
which may produce biased samples (39-42) or the predictive 
accuracy was poor with area under the receiver operating 
characteristic curves (AUCs) in the region of 0.5 (39,43). 
In the early 2010s, a few risk prediction models were 
developed to identify high risk individuals in the general 
population (regardless of smoking history). However, these 
models only captured the never smoking status by inverting 
the smoking duration or intensity to zero, or by including 
an indicator for ‘never-smokers’ or ‘never-smokers with 
secondhand tobacco smoke exposure’ in their model (44-47). 
Furthermore, they did not consider many of the distinct 
risk factors which are unique to never smokers and thus 
failed to capture the entire spectrum of exposure among 
never smokers. Despite the overall good calibration and 
discrimination demonstrated by the PLCOM2014 model, 
when model performance was evaluated separately by never- 
and ever-smokers, results indicated that the PLCOM2014 

model had much higher discriminatory power in ever-
smokers than in never smokers (AUC of 0.85–0.86 for ever-
smokers vs. AUC of 0.62 for never-smokers) (44). Concerns 

about misclassification and inaccuracy in the classification 
of smoking and exposure status have also been raised (48,49), 
although others have shown reasonable correlations of self-
reported smoking status and biologic confirmation (50).

Since lung cancer is traditionally associated with 
smoking, the risk in never-smokers remains under-
recognized. In recent years there are, however, increasing 
efforts to understand the etiology of lung cancer in never 
smokers (21,51-56). Most studies have reported links to 
family history of cancer, genetic susceptibility, occupational 
exposure, environmental exposure including secondhand 
tobacco exposure, air-pollution and cooking oil fumes. 
Some evidence also suggested the effect of diet and lifestyle 
on risk of lung cancer while the role of hormones remained 
unclear. Unfortunately, most of these risk factors have 
been recently identified and were not collected in historical 
datasets. These analyses require complex assessment of 
exposure or additional cost and thus have limited progress 
in the development and validation of risk models for never 
smokers. With the advancement in technology, big data 
analytics and increasing awareness of the risk of lung cancer 
in never smokers, more researchers are now working 
to develop personalized risk prediction tools to more 
accurately stratify lung cancer risk across smoking status 
by integrating clinical, laboratory and biomarkers/genetic 
information (57-60). Through better risk assessment, the 
effectiveness of screening can be increased by identifying 
those never smokers who have as high a risk of developing 
lung cancer as some heavy smokers. 

In the era of precision medicine, there is growing 
recognition that use of these risk factor-based criteria 
which dichotomize age and pack-years of smoking to select 
eligible individuals for screening may not be the most 
efficient and may also lead to increase lung cancer disparity 
(18,61). Furthermore, multiple retrospective analyses and 
modeling studies have demonstrated that risk prediction 
models that incorporate additional risk factors help improve 
risk stratifications. These models demonstrated higher 
sensitivity and positive predictive value, and increased 
cost-effectiveness than older, less complex criteria for 
determining screening eligibility (44,62-64). A few studies 
are currently underway to prospectively evaluate the use 
of risk prediction models and to determine the optimal 
approach for selecting high risk individuals for lung cancer 
screening (65-68). Despite the superiority over risk factor-
based criteria in preventing lung cancer deaths, concerns 
have been raised that risk prediction models may be 
suboptimal and increase overdiagnosis. As these lung cancer 
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risk prediction models do not account for life-expectancy, 
they are more likely to select older smokers with longer 
smoking history and more comorbid conditions. These 
individuals are more likely to die from competing causes 
and may not live long enough to experience the net benefit 
of screening. To address these issues, alternative models that 
select individuals based on life-years gained have also been 
proposed (69-71). 

Integration of AI approaches for LDCT 
interpretation

AI techniques in the field of medicine are gaining more 
interest recently, but it should be recognized that initial 
efforts had started as early as in 1970s (12). Due to enhanced 
algorithms and computing power, AI has made great strides 
in many areas – classification of photos, person recognition, 
self-driving vehicles, natural language processing, and 
data mining, just to name a few and has generated great 
enthusiasm for streamlining cancer screening to improve 
early detection and diagnosis of cancer and personalize 
treatment and outcome prediction (72-78). The future of AI 
in lung cancer screening lies in the integration of algorithms 
that detect and diagnose all diseases visible in a LDCT, not 
only lung cancer but emphysema, interstitial lung disease, 
cardiovascular disease, and liver disease to automatically 
produce a report of everything that is visible on a LDCT 
chest scan.

AI algorithms for lung cancer screening have focused on 
the detection and characterization of pulmonary nodules. 
Early studies used manually engineered features, where an 
algorithm is designed to compute a specific feature, such 
as the distribution of density within the nodule, and these 
studies either targeted the detection of nodules (79,80) 
or the classification of nodules as benign or malignant 
(81,82). However, performance of these systems is still not 
sufficient for completely automated use. Nodule detection 
results are commonly reported as the sensitivity, the rate 
of detecting actual nodules, for a given number of false 
positives, detection of objects that are not nodules. Recent 
comparative studies of research nodule detection systems 
report results in the range of 75–85% sensitivity with an 
average of a single false positive per case (83,84). Likewise, 
the performance of nodule classification systems still leaves 
much to be desired, with reported AUC performance of 
0.75. Although these results are not sufficiently high for a 
completely automated system, software systems are now 
available from many commercial vendors that include tools 

for nodule detection, measurement, and classification that 
are intended to help support radiologists’ interpretation.

As a result of recent successes of neural networks and 
deep learning in the computer vision area, in particular 
the breakthrough performance deep learning on the 
ImageNet challenge (85), a competition to classify images 
into 1,000 different categories, deep learning has been 
applied to all areas of image interpretation (86). A team of 
researchers at Google applied deep learning to detecting 
diabetic retinopathy from retinal fundus photographs 
with great success—they achieved a performance of over 
90% sensitivity and specificity (87). Another recent study 
developed a deep learning algorithm to predict the risk 
of lung cancer (88). The authors report an AUC of 0.944 
for predicting lung cancer, performing as well as or better 
than radiologists. However, the system was developed 
and tested on data from the NLST, which was collected 
over 15 years ago; CT technology has made great strides 
during this time, and the high performance on the NLST 
dataset may not translate to modern images. In addition to 
lung cancer (89,90), deep learning has also been applied to 
quantification of aortic calcification (91), emphysema (92), 
and breast cancer (93,94).

As AI continues to improve, there are two technical 
obstacles to overcome. Deep learning, more so than 
previous AI approaches, requires large amounts of data; 
however, there is a lack of large, public, well-documented 
databases of medical images. A key reason for the success of 
computer vision in the ImageNet challenge is its database 
which allows research groups all over the world to train and 
test their algorithm on the same database as others in the 
field, allowing for direct comparisons between algorithms. 
Unfortunately, while there have been efforts to create such 
databases for lung screening, such as the public lung database 
(PLD) (95), NLST (96), ANODE09 (97), LUNA16 (98), 
and The Cancer Imaging Archive (TCIA) (99) to name a 
few, these all have few cases—from 50 to a couple thousand. 
As a point of comparison, the ImageNet database contains 
over 1 million images. There are many reasons for the lack 
of such large public databases—patient privacy, funding, 
and time and difficulty in properly annotating data to  
name a few.

A second major technical obstacle facing the continued 
improvement of AI is the lack of consistency between 
different scanners and protocols in the images that are 
acquired. This issue has been recognized (100), with studies 
showing that radiomic features have low reproducibility 
(101,102), and that CT reconstruction parameters can 
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affect the performance of radiomics systems (103). There 
is ongoing work in developing tools and methods for 
characterizing CT scanner performance (104), so that in 
the future, radiomic features and quantitative measurements 
can be consistent across scanners and acquisition protocols.

In conclusion, the field is rapidly progressing towards the 
goal of automatically producing a report of everything that 
is visible in the lung, not only related to lung cancer, but 
also other diseases. The individual algorithms exist today, 
but much work remains to improve their performance. This 
will require large, documented databases and high-quality 
imaging.

Continued optimization of the regimen of 
screening 

Since 1992, when the initial regimen of screening was 
developed, it was recognized that continual updating 
was needed to integrate technologic and knowledge  
advances (12). Growth assessment was an important 
component to differentiate between lung cancer and benign 
nodules. This led to recognition of the measurement 
errors of CT scanners. The need for large data and image 
repositories was also recognized, particularly in light of the 
new statistical approaches using AI techniques. Risk models 
are being developed to provide follow-up recommendations. 
Lessons learned in the past years since the introduction of 
LDCT screening studies starting in 1992 (12) are useful in 
illustrating the importance of accumulated knowledge and 
data to guide approaches in the future. 

When assessing the benefit of screening, it is important 
to understand implications of the trial designs in assessing 
the benefit of screening (105-107). This is particularly 
important when providing information about the benefits 
and risks of screening to a participant seeking the screening 
(108,109). The high cure rates of small, early, screening-
diagnosed lung cancers are frequently not presented. It 
needs to be recognized that the lung-cancer mortality 
reductions of randomized screening trials do not present 
the benefit of an early diagnosis which is the cure rate of 
screening-diagnosed lung cancers (108). It needs to be 
understood that the NLST and NELSON trials were 
designed to show a mortality reduction of 20% and 25%, 
respectively to justify screening. These two trials were not 
designed to provide the cure rate of screen-diagnosed lung 
cancers. Future development of better tools to explain the 
benefit of LDCT, or any other screening test for any cancer, 
should be developed. Increasing patients’ and providers’ 

awareness of the benefit of screening is key to improving 
both uptake and adherence to lung cancer screening. 

Approaches for comparisons of different regimens of 
screening are needed to determine the optimal work-up for 
nodules detected on baseline and annual repeat rounds of 
screening, by nodule consistency. One such approach was 
developed to compare the International Early Lung Cancer 
Action Protocol with those of the American College of 
Radiology LungRADS and the European Protocol (110). 
Continuous update of protocols to incorporate advancing 
technology and knowledge will minimize unnecessary 
diagnostic work-ups and biopsies/surgeries. Research is 
being performed to identify new predictors of benign 
and malignant/aggressive etiology, especially with the 
help of AI. These include perifissural and costal-pleural  
nodules (111). 

The regimen should strive to maximize the likelihood 
of early diagnosis of lung cancer while minimizing 
unnecessary invasive workup. The importance of having a 
well-defined regimen was demonstrated by the comparison 
of I-ELCAP results with those of the NLST which did not 
specify a regimen. I-ELCAP’s higher percentage of Stage I 
diagnoses and long-term survival rates compared with those 
of the NLST, after consideration of multiple alternative 
explanations, was due to the I-ELCAP regimen (112). 

Aside from a well-defined regimen, appropriate 
radiologic interpretation can minimize unnecessary workup 
and interventional procedures. It has also been shown 
that high quality LDCT screening can be performed 
in academic or community settings as long as a quality 
assurance process is in place (113). Integration of new image 
analytic tools being developed should further improve 
the diagnostic interpretation and lead to a reduction of 
unnecessary further testing and reduce the frequency of 
surgical resection of benign nodules. It has been shown that, 
by carefully following a well-defined regimen of screening, 
the frequency of benign resection can be below 5% (114). 

Volumetric measurement is acknowledged to be a better 
assessment of nodule size. Volume doubling time is a 
more reliable measure of growth for distinguish between 
malignant and non-malignant nodules. However, volumetric 
measurements need to be interpreted cautiously with 
regard to CT acquisition parameters and CT measurement 
errors (115). The recent update of Lung-RADS version 1.1 
added volume measurements next to the nodule diameter 
measurements. Use of volume measurement to provide 
more accurate growth assessment over time is expected to 
increase as well as further refinement of growth assessment, 
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including use of phantoms to adjust for measurement 
var iabi l i ty  of  the CT wil l  improve measurement 
accuracy. The ability to reliably assess tumor growth and 
advancement in prediction tools can help inform follow-up 
interval/screening interval (116). 

Development of blood-based tests will continue to 
develop and, when proven to be useful, should be integrated 
into the screening process. New pathologic criteria will 
continue to emerge together with advances in lung cancer 
biomarkers as has already been demonstrated by the revised 
World Health Organization classifications (117-120). In 
the future, more precise biologic information as to the 
aggressiveness of the screening-diagnosed lung cancers will 
be achieved by improved imaging of growth in a timely 
manner and pathologic biomarkers. 

Understanding the benefit of identification of 
other early diseases identified 

It has been recognized that LDCT screening provides a 
comprehensive “health check” of the lungs, heart, and other 
organs visualized on the LDCT. This vision is gaining 
increasing recognition throughout the world. An entire 
session at the 20th World Conference on Lung Cancer 
(WCLC) in Barcelona, Spain in September 2019 was 
devoted to these other findings (121). I-ELCAP protocol 
recommendations for these other findings were developed 
together with relevant medical specialties, with the 
recognition that these are findings in asymptomatic screening 
participants and not patients presenting to physicians 
with symptoms. Initial focus was on the cardiac findings 
(122,123) and emphysema (124-126) which, together with 
lung cancer, are the three big killers of older smokers. This 
focus has now been expanded to consider the other findings 
on the LDCT of the chest and the recommendations are 
provided in the I-ELCAP protocol (127). 

Such a comprehensive “health check” optimal LDCT 
screening requires a carefully-specified, validated regimen 
which provides for identification and interpretation of 
critical LDCT findings and the appropriate follow-up 
recommendations. The recommendations need to be 
developed together with the relevant medical specialties and 
may differ in different medical care settings.

Evaluation of new screening tests will emerge 

As new screening tests emerge, both imaging and blood-
based ones, it should be recognized that these new tests can 

be rapidly evaluated using designs similar to the low-cost, 
efficient prospective ELCAP cohort design. Two rounds 
of screening, a baseline round and a single annual repeat 
round can provided pertinent information on the tumor 
size at detection, the stage shift (1,2), and after appropriate 
follow-up, the cure rates (3). This same design can be used 
to test new blood tests for earlier detection of lung cancer. 
Both the blood test and a LDCT can be given to individuals 
at risk of lung cancer and tested within two years. 

Hopefully there will be recognition that randomized 
start-stop trials to test methods of screening for a cancer 
do not provide the ultimate benefit of the screening test, 
but rather only provide that a minimum level of benefit is 
met before providing the screening on a larger population-
wide basis. For example the NLST required 3 rounds of 
screening with 5.5 years of follow-up to show at least a 
20% lung cancer-specific mortality reduction by LDCT 
screening compared to chest radiography; its results took 
nine years from start to publication (6). The NELSON 
Trial, started in 2004 to provide 4 rounds of screening with 
10 years of follow-up (11), reported that it provided at least 
a 25% lung cancer-specific mortality reduction compared to 
no screening. 

New paradigms of treatment for early lung 
cancers

As already seen in the past 20 years since screening was 
introduced, understanding of the pathologic findings of 
small, early lung cancers has increased. Identification of 
small, early cancers has stimulated advances in treatment 
of early lung cancer which in turn has led to updates 
in the pathologic and staging criteria. The current 
recommendation of lobar resection of Stage I lung cancers 
has not changed in more than 50 years. 

The authors postulate that, similar to the impact of 
breast cancer screening which transformed treatment of 
breast cancer from radical mastectomy to a very nuanced, 
personalized approach, lung cancer treatment will become 
more personalized with an emphasis on post-treatment 
quality of life and preservation of lung tissue as new primary 
lung cancers may emerge. 

LDCT screening has already led to significant changes 
in the pathologic classification and the 8th Staging 
Classification (128-130). Screening results stimulated two 
randomized surgical trials comparing lobectomy with 
sublobar resection which started in 2007, one in Japan and 
the other in the United States (131,132). Both anticipate 



Current Challenges in Thoracic Surgery, 2021

© Current Challenges in Thoracic Surgery. All rights reserved. Curr Chall Thorac Surg 2022;4:42 | https://dx.doi.org/10.21037/ccts-20-125

Page 7 of 13

publishing their final results around 2020 and their interim 
reports are encouraging as both have shown extremely low 
rates of surgical deaths (133,134). 

New technologies have been introduced such as robotic 
surgery, navigational bronchoscopy, ablation approaches, 
and in the future, there will be further innovations. None 
of these, however, have had critical assessment, and often 
there is only limited data for small lung cancers. Published 
cohort studies using the I-ELCAP database (114,135-138) 
have already provided timely outcome results and Quality 
of Life measures which will become an increasingly 
important consideration in treatment determination given 
the high long-term cure rates of screen-diagnosed lung 
cancer (139-143). 

For  t imely  assessment  of  new treatments ,  the 
Initiative for Early Lung Cancer Research on Treatment  
(IELCART) (144) was started using the same prospective 
cohort design used for I-ELCAP and capturing treatment 
information in the context of clinical care. The ELCAP 
Management System, used for both management and 
research purposes allowed for the accumulation of over 
82,000 participants with clinical data, imaging and biologic 
specimens, has been adapted for the multi-institutional, 
international IELCART database. The system also allows 
for randomization for future innovative randomized trials. 
The vision for IELCART is to become as productive 
as I-ELCAP has been in producing ongoing screening 
evidence. 

Conclusions

Continued advances in CT technology, including reduction 
in radiation dose as well as new image analytics and 
statistical techniques being developed will continue to 
improve LDCT screening, perhaps together with new 
pre- and post-CT tests, such as those currently under 
development. Optimizing the screening will reduce the 
frequency of unnecessary workup and invasive diagnostics, 
increase the frequency of earlier diagnoses, and provide 
for an even more comprehensive “health check.” In light 
of the continued advances in screening for lung cancer and 
the integration of the advances in screening protocols, a 
key focus of ongoing and future research should be on the 
treatment of these cancers. 
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appropriately investigated and resolved. 
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