
Page 1 of 16

© Current Challenges in Thoracic Surgery. All rights reserved. Curr Chall Thorac Surg 2023;5:49 | https://dx.doi.org/10.21037/ccts-23-15

Introduction

Surgical resection stands as the most effective treatment 
for patients with early-stage lung cancer (1). However, 
eligibility for surgical resection is constrained, ranging from 
38% to 83% for early-stage lung cancer patients, primarily 
due to prevailing comorbidities, age-related considerations, 
and performance status (2-5). For these patients, as well 
as those with medically inoperable conditions, several 
guidelines recommend stereotactic body radiotherapy (6). 
However, the indication of stereotactic body radiotherapy 

remains controversial in some populations; for instance, the 
presence of interstitial lung disease (ILD) or the proximity 
of vital mediastinal structures such as major blood vessels 
and the heart, may increase potential risks associated with 
radiotherapy. 

Alternative ablation technologies, such as radiofrequency 
ablation (RFA), microwave ablation (MWA), cryoablation, 
photodynamic therapy (PDT), brachytherapy, and pulsed 
electric field (PEF)-based therapy, are promising treatments 
for lung malignancies. Particularly for peripheral lung 
tumors, these technologies have been predominantly 
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employed percutaneously under image guidance. Computed 
tomography (CT) and cone-beam CT (CBCT) guidance are 
currently the most robust methods for localizing the tumor 
and probe tip during transthoracic procedures. Employing 
the transthoracic technique may provide an advantage 
in stabilizing the probe position through the cumulative 
resistance from penetrating the skin, chest muscle, and 
lung parenchyma. However, the transthoracic approach 
is associated with high complication rates, including 
pneumothorax, hemothorax, and pleural effusion. To 
address these complications of the transthoracic approach, 
transbronchial ablation strategies are being developed and 
evaluated. The transbronchial approach carries a lower risk 
of pneumothorax, as the treatment probe does not pass 
through the pleura.

In this review, we present a comprehensive overview 
of the historical evolution and recent advancements in 
transbronchial treatments for lung malignancies. This 
will also include a review of critical factors contributing 
to the success of the transbronchial approach, including 
localization and anesthesia strategies.

Endoscopic treatment 

Thermal ablation

Since the early 2000s, attempts to employ thermal ablation 
techniques for lung tumors have followed the success seen 
in hepatocellular carcinoma. Initially, RFA marked the 
initiation of local ablation therapy for lung tumors, followed 
by MWA (7). These thermal ablation strategies were 
predominantly performed using a transthoracic approach 
under image guidance, initially. While transthoracic RFA/
MWA has proven to be a secure and effective procedure, 
the majority of complications are pleural-related arising 
from the transthoracic and transpleural puncture (8). 

Transthoracic RFA has more comprehensive body of 
evidence regarding complications. A review of published 
literature in 2013 reported that the most common 
complication is pneumothorax resulting from electrode 
insertion, with reported frequencies ranging from 8% to 
49%, and approximately 10% of patients requiring a chest 
tube insertion (9). In comparison; in a large retrospective 
single-center study with 108 transthoracic MWA cases, 
pneumothorax occurred in 32%, and chest tube insertions 
were required in 19% of the cases. This study reported one 
fatal incident complicated with intraprocedural respiratory 
arrest due to an expanding pneumothorax (10). Hemothorax 

is another life-threatening and potentially fatal complication 
of transthoracic ablations. A case report documented 
massive intraparenchymal hemorrhage and hemothorax 
during RFA requiring intubation and admission to intensive 
care unit (11). Unfortunately, this patient died of pulmonary 
aspiration on Day 23 post-ablation. Another paper detailed 
a case with significant hemothorax, requiring transfusion 
and thoracotomy (10). Another important complication 
of transthoracic ablation is needle-tract seeding of viable 
cancer cells. Although the incidence of needle-tract seeding 
is rare (0.3–0.7%) (12,13), it must be carefully considered 
when aiming to cure lung cancer.

While the current clinical experience in this field is 
limited, it is worth noting that transbronchial ablation 
therapy for lung tumors has a favorable profile as it avoids 
pleural punctures. Beyond this, transbronchial ablation also 
offers the advantages of reducing the risk of needle-tract 
seeding and accessing challenging lung regions that are less 
accessible through the transthoracic approach. Such regions 
include those shielded by the scapula, or located near the 
lung apex and mediastinal pleura. Recent advancements 
in image-guided technologies have increased interest in 
transbronchial ablation.

RFA
RFA employs alternating high-frequency current to 
generate heat around a needle electrode, coagulating 
cancer tissue and inducing necrosis while minimizing injury 
to surrounding normal tissues. To increase the thermal 
necrotic area, various strategies have been integrated into 
RFA system algorithms and catheter tip functions (14). 

An internally-cooled electrode has been developed for 
bronchoscopic RFA. Internal cooling involves circulating 
chilled water through the electrode (without entering the 
tissue), preventing local charring around the uninsulated 
electrode tip and enabling a longer current flow duration. 
This prolonged current flow leads to a greater volume 
of local tissue coagulation. Tsushima et al. introduced an 
internally-cooled RFA device with 1.7-mm diameter that 
fits bronchoscopy working channels. In an animal model, 
they observed improved ablation efficiency compared to 
non-cooled RFA (15). Koizumi et al., also from the same 
group, conducted a prospective single-center study using 
bronchoscopic internally-cooled RFA in 20 inoperable 
patients with 23 non-small cell lung cancer (NSCLC) (T1-
2aN0M0) in 2015 (16). Prior to ablation, they confirmed 
the RFA electrode’s location with intra-operative CT 
scans. The disease-control rate was 83% and the median 
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progression-free survival was 35 months, with manageable 
complications.

Another type of RFA electrode is the wet-electrode 
(also known as a perfusion-electrode), which infused saline 
(either isotonic or hypertonic) into the tissue adjacent to the 
electrode. This increases tissue conductivity, resulting in 
higher current flow and a larger coagulated area. Steinfort 
et al. conducted an ablate-and-resect study in 2023 to assess 
the safety of a hypertonic saline-irrigated RFA catheter with 
an occlusion balloon (17). They included 11 patients with 
stage I NSCLC located in the outer two-thirds of the lung. 
The position of the electrode was confirmed using CBCT 
before ablation. In the first patient, heated saline dispersion 
occurred due to cough, resulted in sustained hypoxia 
requiring intensive care unit admission. However, in other 
patients, no severe adverse events were observed. 

MWA
MWA is based on the utilization of oscillating electromagnetic 
fields to generate heat. This technology is primarily explained 
by the dipole rotation theory: when subjected to an 
oscillating electric field, water molecules are dipole and 
undergo forced rotate and continuous realignment. This 
process increases their kinetic energy, thereby elevating the 
tissue temperature (18,19). 

In 2013, Ferguson et al. initially reported bronchoscopic 
MWA using a gas-cooling system in porcine models, 
demonstrating feasibility (20). Chan et al. reported a 
retrospective study of image-guided transbronchial MWA 
for lung nodules in a single institution in 2021 (21). Thirty 
lung nodules were treated with a mean maximal diameter 
of 15.1 mm (range, 7 to 29 mm) via transbronchial MWA, 
with 73% of the nodules situated in the peripheral-third 
of the lung field. Their procedure in a hybrid operating 
room was incorporated with several technologies, including 
CBCT at baseline, after positioning the catheter pre-
MWA, and post-MWA, electromagnetic navigation 
bronchoscopy (ENB) to navigate the MWA catheter to the 
target (± fluoroscopy), and the transbronchial access tool for 
accessing targets without a bronchus sign. Complications 
included pain (13.3%), pneumothorax requiring chest 
tube insertion (6.7%), post-ablation reactions (6.7%), 
hemoptysis (3.3%) and pleural effusion (3.3%). After 
a median follow-up of one year, none of the nodules 
displayed evidence of progression. Xie et al. conducted a 
prospective study in 2018 using water-cooled MWA for 
thirteen inoperable patients with fourteen peripheral lung 
cancer targets (22). The MWA probe was placed under the 

guidance of radial probe endobronchial ultrasound (RP-
EBUS), ENB, and fluoroscopy. Complete ablation, defined 
as stability or a decrease in the size of the ablation zone 
without enhancement in CT and/or hypermetabolism on a 
positron emission tomography scan, was achieved in 79% 
of cases. The 2-year local control rate was 71%, and the 
median progression-free survival was 33 months. In 2021, 
Bao et al. reported a pilot study aimed at treating ground 
glass nodules by transbronchial MWA (23). Fifteen patients 
underwent ENB-guided MWA, with ten of them having 
multiple lesions and undergoing simultaneous surgical 
resection. Ablation effectiveness, confirmed with CT scans 
within the first postoperative week, was observed in 73% 
of cases. Four patients experienced mild complications, 
including pneumothorax, hemoptysis, and pulmonary 
infection. Pritchett et al. reported a larger prospective multi-
center study using image-guided transbronchial MWA for 
stage I lung cancer in 2023 (24). They enrolled 40 patients 
who were medically inoperable or declined surgery for 
peripheral lung tumors with a maximum diameter less than 
2 cm. MWA was performed under augmented fluoroscopy 
guidance, with the tip location confirmed by CBCT pre-
and post-ablation. Technical success was achieved in all 
patients, and no evidence of local recurrence was observed 
during the 12-month follow-up. Two serious adverse events 
occurred within 30 days, including an exacerbation of 
chronic obstructive pulmonary disease requiring admission 
and a sudden death of unknown cause.

RFA vs. MWA
Both transbronchial RFA and MWA have demonstrated 
feasibility in the treatment of peripheral lung tumors 
using recent image-guided technologies. While no direct 
clinical comparisons between transbronchial RFA and 
MWA exist, MWA has recently been gaining interest due 
to the theoretical advantages over RFA. Unlike RFA, which 
generates heat through resistive heating when electrical 
current passes through ionic tissue, MWA enables direct 
heating of the tissue volume around the probe tip, resulting 
in homogenous and rapid heating. This feature theoretically 
enhances its ablation performance. The heat sink effect 
can limit the effectiveness of ablative techniques when 
tumors are in the proximity to blood vessels, leading to a 
cooling effect (25). MWA is less susceptible to the heat sink 
effect compared to RFA due to its rapid heating (26,27). 
Additionally, aerated lung tissue can hinder the effectiveness 
of RFA due to the low electrical conductivity (28,29), while 
MWA is less affected by this.
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Vapor ablation
Bronchoscopic thermal vapor ablation (BTVA) is an 
emerging technique with potential applications in the 
treatment for lung cancer. A disposable vapor catheter 
is inserted into the targeted lung subsegment through a 
bronchoscope’s working channel, and heated water vapor 
is delivered through the catheter. Initially developed as an 
endoscopic lung volume reduction technique for severe 
emphysema, BTVA reduces the volume of emphysematous 
segments by inducing a local inflammatory response through 
vapor exposure (30). In 2015, Henne et al. demonstrated 
the safety and potential effectiveness of BTVA for treating 
lung tumors in porcine models (31). Subsequently, the 
same group demonstrated the potential efficacy of BTVA 
for treating lung tumors using fresh explanted human 
lungs with primary and secondary cancer lesions, showing 
the uniformity of segmental ablation that did not extend 
beyond fissures (32). The first human application of BTVA 
in lung cancer treatment was conducted in an ablate-
and-resect study in 2018 (33). Among five patients, one 
exhibited microscopically complete necrosis of the entire 
tumor, with a median interval of 5 days (range, 4 to 5 days) 
between ablation and resection. One patient experienced 
pleuritic chest pain requiring oral opioids post-procedure. 
Conceptually, BTVA has a potential to treat lung 
cancer. However, further clinical evidence is required to 
conclusively establish its efficacy.

Cryoablation
In contrast to RFA, MWA, and BTVA, cryoablation (also 
known as cryotherapy) applies hypothermal effects on 
target tissue rather than heat energy. Cryoablation involves 
passing cryogenic liquid gas through a cryoablation 
probe. The expansion of the pressurised gas generates a 
rapid drop in temperature based on the Joule-Thomson 
effect (34). Multiple freeze-thaw cycles are used to induce 
cellular necrosis. The mechanisms of cryoablation involve 
both immediate effects, such as cell membrane disruption 
through cellular crystallization and dehydration due to 
osmolality change in the extracellular space, and delayed 
effects, including ischemia from microthrombi formation 
(34,35). 

Currently, cryoablation is most commonly used 
in the treatment of liver, kidney, lung, prostate, and 
breast cancers. For lung cancer treatment, a CT-guided 
transthoracic approach is performed, with its feasibility and 
efficacy demonstrated in multiple studies (36-39). Recent 
prospective multicenter trials have reported favorable 

local control outcomes for metastatic lung tumor treated 
with transthoracic cryoablation. The SOLSTICE study, 
involving 224 lung metastases in 128 patients, showed a 
local control rate of 85% at 1 year and 77% at 2 years (40). 
The ECLIPSE study, comprising 60 lung metastases in 
40 patients, demonstrated a local control rate of 88% at  
3 years and 79% at 5 years (41). However, similar to RFA 
and MWA, transthoracic approach in cryoablation is 
associated with a high complication rate of pneumothorax 
and bronchopleural fistula. Sänger et al. reported the safety 
of transthoracic cryoablation for 39 stage IA NSCLC 
patients in a retrospective single-center study; they observed 
complications within the first 90 days post-ablation, 
including pneumothorax in 21% and 55%, pneumothorax 
requiring chest tube insertion in 18% and 45%, and 
bronchopleural fistula in 7% and 9%, in patient with and 
without ILD, respectively (42). No acute exacerbation of 
ILD or deaths occurred within 90 days. 

To mitigate complications in lung tumor cryoablation, 
there is ongoing research for delivering cryoablation by 
a transbronchial approach, as opposed to a transthoracic 
one. Zheng et al. conducted a pilot study of transbronchial 
cryoablation using a novel flexible cryoprobe in an in-vivo 
porcine model in 2022 (43). The cryoprobe, with a 2.2-mm 
tip, is compatible with a therapeutic bronchoscope. They 
demonstrated the feasibility of transbronchial cryoablation 
with histopathological assessment. Currently, no published 
clinical studies describe the use of a transbronchial 
cryoablation as a curative treatment of peripheral lung 
tumors. 

In transbronchial cryoablation, a key challenge arises 
from the limited ablation volume associated with current 
flexible cryoprobes, which are less effective than rigid 
transthoracic probes due to the smaller diameter (44). 
Tumors located adjacent to the bronchus pose a particular 
challenge, necessitating a larger ablation volume to 
encapsulate the entire tumor, given that flexible cryoprobes 
are delivered through an airway. Furthermore, enhancing 
the flexibility of cryoprobes is essential for improved access 
to the peripheral lung area, particularly in the apices.

Table  1  summarizes  the selected outcomes and 
complications of thermal ablation for lung malignancies.

PDT

PDT is performed as a definitive treatment for early-
stage lung cancer, employing a unique biopharmaceutical 
approach leveraging an injectable photosensitizer and 
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Table 1 Selected outcomes and complications for different treatment modalities in lung malignancies

First author 
(reference)

Year
Study 
type

Approach Modality
Number of 

patients

Number of targets

Diameter, mm Follow-up period, months Local control rate, % (time point)

Complication rate

Total
Primary lung cancer/

metastasis/others

Pneumothorax
Bronchopleural 

fistula

Pleural effusion

Hemothorax Mortality
Total

Chest tube 
placement

Total
Chest tube 
placement

Simon (45) 2007 R TT RFA 153 189 116/73/0 – 20.5 (mean) Tumor ≤30 mm: 83% (1 y), 64% (2 y), 57% (3 y), 
47% (4 y), 47% (5 y); tumor >30 mm: 45% (1 y), 

25% (2 y), 25% (3 y), 25% (4 y), 25% (5 y)

28.4% 9.8% 3.9%

Choe (46) 2009 R TT RFA 65 67 67/0/0 44 (mean) 20.5 (mean) – 7.5% 1.5% 1.5% 1.5% 0.0%

Cryo 9 9/0/0 21 (mean) – 11.1% 0.0% 0.0% 0.0% 0.0%

Pennathur (47) 2009 R TT RFA 100 104 75/29/0 – 17 (mean) 65% (overall) 59.0% 3.0% 1.0%

Okuma (48) 2010 R TT RFA 72 138 12/126/0 21 (mean) 14 (mean) Primary lung cancer: 38% (1 y), 0% (2 y, 3 y) 34.8% 2.2% 10.1% 1.4%

Hiraki (49) 2010 R TT RFA 105 252 35/217/0 14 (mean) 15.9 (mean) 97% (6 m), 86% (12 m), 81% (18 m), 76% (24 m)

Hiraki (50) 2011 R TT RFA 50 52 52/0/0 21 (mean) 37 (median) 69% (overall) 1.9% 1.9% 1.9% 1.9% 0.0%

Kashima (51) 2011 R TT RFA 420 1,000 – 18 (mean) 22.1 (mean) 46.1% 1.6% 0.4% 0.1% 0.4%

Huang (52) 2011 R TT RFA 329 329 237/92/0 23 (mean) 24 (median) 70% (overall) 19.1% 3.0% 0.6%

Ambrogi (53) 2011 P TT RFA 57 59 59/0/0 26 (mean) 47 (mean) 77% (overall) 11.3% 5.0% 3.8% 0.0%

Kodama (54) 2012 R TT RFA 44 51 51/0/0 17 (mean) 28.6 (mean) 95% (1 y), 86% (3 y), 57% (5 y) 34.5% 25.5% 0.0% 5.5% 0.0% 0.0% 0.0%

Garetto (55) 2014 R TT RFA 81 100 30/70/0 23 (mean) 23 (mean) 79% (overall) 14.0% 6.0% 6.0% 2.0% 0.0%

Dupuy (56) 2015 P TT RFA 51 51 51/0/0 21 (median) 24 m in 71% of patients 69% (1 y), 60% (2 y) 5.9% 0.0% 2.0% 0.0%

Koizumi (16) 2015 R TB RFA 20 23 23/0/0 24 (median) – 83% (overall) 0.0% 0.0% 0.0% 0.0% 0.0%

Steinfort (17) 2023 P TB RFA 8 8 8/0/0 25 (mean) 5–12 days (range) – 12.5% 12.5% 0.0% 0.0% 0.0% 0.0%

Lu (57) 2012 R TT MWA 69 93 56/37/0 22 (mean) 36 m in all patients 78% (overall) 18.8% 1.4% 2.9% 0.0%

Vogl (58) 2013 R TT MWA 57 91 30/61/0 – 10.2 (mean) 67% (overall)

Yang (59) 2014 R TT MWA 47 47 47/0/0 49% of lesions ≤35 mm 30 (median) 96% (1 y), 64% (3 y), 48% (5 y) 63.8% 10.6% 2.1% 34.0% 6.4% 0.0%

Carrafiello (60) 2014 R TT MWA 24 26 14/11/1 31 (mean) 9.9 (mean) 71% (overall) 37.5% 0.0% 0.0% 4.2% 0.0% 0.0% 0.0%

Zheng (61) 2016 R TT MWA 183 183 138/45/0 34 (mean) 34.5 (median) 82% (1 y), 76% (2 y), 74% (3 y), 74% (4 y) 15.8% 3.3% 0.0%

Ko (62) 2016 R TT MWA 15 32 – 14 (mean) 14.9 (mean) 84% (overall) 37.5% 3.1% 0.0%

Healey (10) 2017 R TT MWA 108 108 82/24/2 30 (mean) 14.1 (median) 75% (1 y), 59% (2 y), 40% (40 m) 32.4% 3.7% 2.8% 0.9% 1.9%

Zhong (63) 2017 R TT MWA 113 113 113/0/0 31 (median) 22.1 (mean) 84% (overall) 10.6% 10.6% 8.0% 0.0%

Tsakok (64) 2019 R TT MWA 52 61 61/0/0 24 (mean) 12 (median) 93% (overall) 29.1% 21.8% 21.8% 0.0%

Chan (21) 2021 R TB MWA 25 30 14/1/15 15 (mean) 11.5 (median) 100% (6 m) 6.7% 6.7% 0.0% 0.0% 0.0%

Bao (23) 2021 P TB MWA 15 15 15/0/0 All lesions ≤30 mm, 53% 
of lesions ≤10 mm

– – 6.7% 6.7% 0.0% 0.0% 0.0% 0.0%

Xie (22) 2022 P TB MWA 13 14 14/0/0 20 (mean) 33 (median) 71% (2 y) 10.5% 10.5% 0.0% 0.0% 0.0% 0.0%

Pritchett (24) 2023 P TB MWA 10 11 11/0/0 14 (median) 12 m in all patients 100% (1 y) 0.0% 0.0% 0.0% 0.0% 0.0% 20.0%

Yamauchi (37) 2012 R TT Cryo 22 34 34/0/0 14 (mean) 29 (mean) 97% (overall) 28.0% 4.0% 32.0% 0.0%

Bang (65) 2012 R TT Cryo 13 20 0/20/0 26 (mean) 11 (median) 90% (overall) 7.7%

Callstrom (40) 2020 P TT Cryo 128 224 0/224/0 10 (mean) 12 m in 90% of patients,  
24 m in 77% of patients

85% (1 y), 77% (2 y) 26.0% 0.0% 0.0%

de Baère (41) 2021 P TT Cryo 40 60 0/60/0 14 (mean) 36 m in 83% of patients, 60 
m in 60% of patients

88% (3 y), 79% (5 y) 6.3% 4.2% 0.0%

R, retrospective study; P, prospective study; TT, transthoracic approach; TB, transbronchial approach; RFA, radiofrequency ablation; Cryo, cryoablation; MWA, microwave ablation; y, year; m, month.
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laser light of specific wavelengths. When exposed to the 
laser, photosensitizers induce the production of reactive 
oxygen species, leading to cell death through necrosis or 
apoptosis (66). The photosensitizer, administered prior 
to laser irradiation, accumulates in cancer tissue. This 
mechanism by which the agent accumulates in the tumor 
has been explained by the enhanced permeability and 
retention (EPR) effect resulting from abnormal vascular 
characteristics around cancer tissue. This effect allows 
the photosensitizer to preferentially leak into tumor 
tissue through the permeable tumor vasculature, where 
it is retained due to reduced lymphatic drainage (67,68). 
Additionally, a new mechanism has also become clear 
related to nano-sized agents; nanoparticles can actively 
transfer into tumors through endothelial cells (69). 
However, relying solely on the EPR effect results in only 
a modest increase in the photosensitizer concentration 
within the tumor, approximately two-fold higher than in 
normal tissues. To enhance the efficiency and the safety 
of PDT, photosensitizers with nanoforms or the ability to 
bind specifically to cancer cells has been developed (70). 
Conjugation of active nanocarrier systems with biomolecules 
like ligands and antibodies enhances their specificity for 
targeting tumor cells (71).

Transbronchial PDT is performed as a minimally 
invasive treatment for centrally located early-stage NSCLC 
and advanced NSCLC causing airway obstruction. In 
a literature review by Moghissi et al. in 2003, involving 
523 patients with early-stage lung cancer, transbronchial 
PDT treatment achieved a >70% complete response rate. 
Furthermore, for carcinoma in situ, the 5-year survival rate 
reached 90%, excluding deaths unrelated to cancer from the 
analysis (72). 

Over the past two decades, PDT has expanded to treat 
peripheral early-stage lung tumors in several clinical 
studies. In 2004, Okunaka et al. reported a case series of 
transthoracic interstitial PDT for non-surgical candidates 
with relapsed primary NSCLC after radical radiotherapy or 
metastatic lung tumors (73). A needle with a catheter was 
placed under CT guidance, and subsequently the needle was 
replaced with a PDT probe. Porfimer sodium was used as a 
photosensitizer. Seven out of nine patients achieved a partial 
response, and two had stable disease post-PDT. Recently, 
transbronchial PDT has been attempted for peripheral 
NSCLC. In 2018, Chen et al. conducted a pilot study of 
transbronchial PDT with porfimer sodium in three patients 
with primary adenocarcinoma and metastatic lung cancer 
under ENB guidance and CBCT confirmation (74). An 

8-mm lung adenocarcinoma achieved a complete response, 
while 20- and 36-mm metastatic lung nodules from colon 
cancer showed a partial response. In 2020, Usuda et al. 
reported a multi-center single-arm study for transbronchial 
PDT using talaporfin sodium as a photosensitizer for seven 
patients with peripheral stage IA NSCLC (75). They used 
RP-EBUS to confirm the target’s location and a guide 
sheath to maintain the same position near the target, where 
a laser probe was introduced. Four patients achieved a 
complete response and three patients had stable disease at 
3-month and 1-year assessments. Bansal et al. summarized 
and reported two phase 1 studies of transbronchial PDT 
using porfimer sodium for peripheral NSCLC in 2023 (76). 
RP-EBUS was used to confirm the location of the targeted 
lesion before the placement of the PDT probe. Among the 
five tumors not surgically resected after PDT, one showed 
a complete response, three exhibited stable disease, and one 
had progressive disease after 6 months. In ten tumors that 
were resected after PDT, only one squamous cell carcinoma, 
resected 32 days after PDT, demonstrated a tumor response. 
In contrast, other tumors resected 12–18 days after PDT did 
not show any tumor radiological response, but pathological 
assessment revealed a mean percent tumor cell necrosis of 
22% in the resected lung tissue. Table 2 depicts previous 
PDT studies for peripheral lung tumors (73-78).

An important adverse event associated with PDT is the 
potential for photosensitivity, which can persist in patients 
for up to 4–6 weeks following injection (79), with incident 
rate of 5–41% (80). Patients should be counselled to avoid 
sunlight exposure during this period.

One of the limitations of PDT in treating lung cancer is 
the penetration depth, particularly in transbronchial PDT. 
Scattering is one of the primary attenuation factors for 
limiting penetration depth when light is absorbed by tissue. A 
long excitation wavelength is desirable because the scattering 
intensity decreases significantly with wavelength (81).  
Generally, the expected penetration depth of the laser 
light into human mucous tissue is less than 10 mm (81). 
However, a study using mice xenograft tumors irradiated 
with near-infrared phototherapeutic window demonstrated 
that PDT was effective at a tissue depth of 20 mm (82). 
Another contributor to penetration depth is the beam size. 
Monte Carlo simulations indicated a ten-fold increase in 
the penetration depth by expanding the beam diameter 
from 0.5 to 3 mm (83,84). Overcoming the challenge 
of penetration depth in transbronchial PDT is expected 
through the adoption of photosensitizers activated by 
longer wavelengths. Additionally, the development of a 
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laser probe capable of broader irradiation and facilitation 
of delivery through bronchoscopy is anticipated to enhance 
the effectiveness of the procedure.

Brachytherapy

Brachytherapy is a technique that precisely places 
radioactive isotopes via a catheter, either within or adjacent 
to the tumor. In the case of lung cancer, radioactive seeds 
are delivered either transthoracically or transbronchially. 
Currently, 3D-treatment planning is calculated based 
on tumor volume and radiographic data after catheter 
placement. 

Endobronchial brachytherapy has proven effective for 
lung cancer confined to the endobronchial lumen without 
extrabronchial invasion. In 2011, Aumont-le Guilcher et al. 
conducted a large retrospective study to assess the feasibility 
of endobronchial brachytherapy using Iridium-192, 
involving 226 patients with contraindications to surgery 
and external beam radiation therapy (85). The majority of 
tumors were squamous cell carcinoma and at T1 stage. A 
complete endoscopic response rate was 94% at 3 months. 
The overall 2- and 5-year survival rates were 57% and 29%, 
respectively, while the cancer-specific 2- and 5-year survival 
were 81% and 56%, respectively. In another large study of 
endobronchial brachytherapy using Iridium-192 by Soror 

et al. in 2019, 126 patients with isolated endobronchial 
tumor recurrence after surgery or radiochemotherapy were 
retrospectively reviewed (86). The 3-month complete local 
response was 87%, with 5-year disease-free survival and 
overall survival were 41%, and 24%, respectively. 

A combination of brachytherapy and external beam 
radiation therapy has been proposed as an alternative to 
surgery for endobronchial carcinomas. Kawamura et al. 
reported a case series including 16 radiographically occult 
early endobronchial cancers in 13 patients (87). Ten 
lesions in ten patients were treated with a combination of 
endobronchial brachytherapy and external beam radiation 
therapy, achieving a 2-year local control rate of 89% 
compared 80% with brachytherapy alone. 

Combining brachytherapy with other therapeutic 
modalities may be feasible for selected patients with lung 
cancer. In 2004, Freitag et al. conducted a study involving 
32 patients with bulky endobronchial NSCLC tumors  
(10–60 mm along the bronchus) who received a combination 
of PDT and endobronchial brachytherapy (88). Six weeks 
after PDT, brachytherapy was performed with five fractions 
of 4 Gy at weekly intervals, resulting in a complete response 
in 75% of patients (24/32), which was confirmed with 
negative histological results from biopsy; 81% of patients 
(26/32) were free of residual tumor and local recurrence at a 
mean follow-up of 24 months.

Table 2 Photodynamic therapy studies for peripheral lung cancer

First author 
(reference)

Year Approach Photosensitizer
Number of 

patients

Tumor size Tumor response, n
Complications

Mean, mm CR PR SD PD Time point

Okunaka (73) 2004 Transthoracic Porfimer sodium 9 36 0 7 2 0 – 2 pneumothorax 
(1 chest tube 
placement) 

Chen (74) 2018 Transbronchial Porfimer sodium 3 21 1 2 0 0 At 3 months 1 photosensitivity

Usuda (75) 2020 Transbronchial Talaporfin sodium 7 16 4 0 3 0 At 1 year 1 photosensitivity

Allison (77) 2022 Transbronchial Porfimer sodium 1 28 1 0 0 0 – 1 photosensitivity

Allison (78) 2022 Transbronchial Porfimer sodium 1 18 1 0 0 0 – none

Bansal (76) 2023 Transbronchial Porfimer sodium 5 in non-
resection study

17 1 0 4 0 At  
3 months

8 photosensitivity

1 0 3 1 At  
6 months

10 in resection 
study

23 The mean percent tumor cell 
necrosis, 22%. One patient 
showed no residual tumor

CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.
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Transbronchial brachytherapy for peripheral lung 
cancer was reported by Kobayashi et al. in a case series 
in 2000 (89). The brachytherapy catheter location was 
confirmed with prior barium marking or a CT scan. One 
patient who received a total of 24 Gy in three fractions 
at 7-day intervals showed stable disease at the 18-month 
assessment, while another patient who received 15 Gy in 
a single fraction experienced a 75% decrease in tumor size 
in 10 months. In 2006, Harms et al. also reported a case in 
which transbronchial brachytherapy for peripheral NSCLC 
was performed under ENB guidance (90). This resulted in a 
durable partial response on CT follow-up at 12 months and 
repeated biopsies were negative for malignancy. 

However, it is important to note that complications 
associated with transbronchial brachytherapy for central 
airways are not negligible. Aumont-le Guilcher et al. 
reported that the most common late complication was 
radiation bronchitis, occurring in 19.5% of cases after a 
mean interval of 10 months (85). Bronchial stenosis and 
bronchial wall necrosis occurred in 9.5% and 3.5% of 
cases, respectively. Notably, fatal complications occurred in 
5.8% patients (4.4% from hemoptysis, 0.9% from necrosis 
of the bronchial wall, and 0.4% from radiation stenosis). 
Soror et al. also reported that 12.7% of patients died from 
massive uncontrollable hemoptysis post brachytherapy (86). 
For reference, among the complications of external beam 
radiotherapy for malignant airway obstruction, esophagitis 
is frequently observed. The reported incidence of any 
grade esophagitis ranged from 6% to 50%, while grade 
2 esophagitis was reported at 0–13% (91-93). Instances 
of fatal hemoptysis after external beam radiotherapy for 
palliative purposes are rare. 

PEF-based therapy

PEF is a unique nonthermal ablative modality. PEF 
utilized a short and strong electrical field generated 
around a catheter. The induced transmembrane voltage 
creates microscopic pores in cell membranes and increases 
membrane permeability. Specifically, the method used to 
induce cell membrane disruption leading to permanent 
loss of cell integrity is called irreversible electroporation 
(IRE) (94). IRE offers theoretical benefit as it is not affected 
by the heat sink effect caused by surrounding blood flow, 
unlike thermal ablation modalities. Clinical trials assessing 
the efficacy of IRE have mainly focused on liver, pancreas, 
and kidney malignancies (95,96). In 2011, Thomson et al. 
conducted a single-center prospective non-randomized 

cohort study of IRE for various cancers including six lesions 
of primary lung cancer or metastatic lung cancer in four 
patients (96). However, none of the patients exhibited 
a tumor response following CT-guided IRE. In 2015, a 
larger prospective multi-center phase 2 trial of CT-guided 
transthoracic IRE was conducted for lung malignancies, 
which included 23 patients (97). The study was terminated 
prematurely as the expected efficacy was not met at interim 
analysis. Although 7 (30%) patients achieved complete 
remission, the overall local control rate was 39%. 

PEF encompasses several different technologies, such 
as IRE, tumor-treating fields, and nano-pulse stimulation, 
which vary based on the properties of the shape of electric 
pulses, pulse durations, and electric field amplitude (94). 
New PEF technologies are being explored for transbronchial 
approaches for lung malignancies. Currently, clinical studies 
using a biphasic monopolar PEF system (the Aliya™ system, 
Galvanize Therapeutics, Redwood City, CA, USA) are 
ongoing (NCT04732520, NCT04773275, NCT05890872).

Anti-tumor immune response induced by local 
treatment

Tumor regression outside of the locally treated region is 
called the abscopal effect, firstly described in radiation 
therapy (98). Tumor antigens released following local 
therapy are taken up by antigen-presenting cells, such as 
dendritic cells, which then migrate to the tumor-draining 
lymph nodes and prime CD8+ T cells to differentiate into 
cytotoxic T cells. This leads to migration to tumor sites 
and the killing of tumor cells (99). The abscopal effect has 
been observed not only in radiotherapy but also in the local 
treatment modalities described above in this review. 

Immunogenic changes following thermal ablation 
techniques, such as RFA, MWA, and cryoablation, have been 
investigated across various malignancies, including lung 
cancer. Early investigations have revealed the abscopal effect 
subsequent to thermal ablation, accompanied by upregulation 
of immune cells in the peripheral blood (100-102).  
PD-1 expression in tumor-infiltrating CD4+ and CD8+ 
lymphocytes, along with an increased expression of 
programmed death-ligand 1 (PD-L1) in resected tumors, 
was observed post-RFA in colorectal cancer (103). 
Infiltration of natural killer cells and macrophages increased 
in tumors following thermal ablation (104,105). Recently, 
there has been increasing interest in the synergistic effect of 
thermal ablation in combination with immune checkpoint 
inhibitors. A synergistic anti-tumor effect of cryoablation 
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and intratumoral interleukin (IL)-12 injection combined 
with immunotherapy was shown using murine subcutaneous 
cancer models (106). In a retrospective study including  
64 patients with stage IIIB or IV NSCLC, patients treated 
with cryoablation combined with nivolumab exhibited a 
significant increase in the number of immune effector cells, 
including total CD4+ and CD8+ T cells and natural killer 
cells, as well as improved short-term efficacy compared 
to a group treated only with cryoablation. Like thermal 
ablation, non-thermal ablation including PDT and PEF 
also reports additional effects on immune responses. In a 
study investigating chlorin e6-mediated PDT combined 
with anti-PD-L1 therapy, mice inoculated with lung cancer 
cell lines exhibited significantly improved survival compared 
to those under naïve conditions or monotherapy (107). 
Similar synergistic effect of PDT combined with immune 
checkpoint therapy have been observed in glioma (108), breast 
cancer (107), colorectal cancer (109), and melanoma (110). 
Similar to PDT, animal experiments have suggested that 
PEF promotes the release of tumor-associated antigens 
from cancer cells, triggering a tumor-specific immune 
response and resulting in the abscopal effect (111). An 
ablate-and-resect clinical study for NSCLC stage IA2-IB 
treated with PEF demonstrated the formation of tertiary 
lymphoid structures within the tumor, suggesting that PEF 
enhanced immune activity (112). Moreover, a synergistic 
anti-tumor effect of PEF has been observed when combined 
with anti-PD-1 immune checkpoint inhibitor in a mouse 
model (113,114). 

Local treatment modalities have the potential to show 
the abscopal effect or synergistic effects combined with 
immune checkpoint inhibitors. However, one of the current 
issues is difficulties in predicting which patient benefits 
from immune effects following ablative treatment. Several 
post-treatment biomarkers were reported as potential to 
predict immune response. Circulating immune cells in 
peripheral blood, including CD4+ T cells (115), CD8+ 
T cells (115), and dendritic cells (116), were increased 
after thermal ablation therapy, and regulatory T cells in 
peripheral blood might be a negative indicator of effective 
immune responses post-RFA for lung cancer (101). 
Cytokines and soluble factors, including IL-2 (117), IL-6 
(118), IL-10 (118), IFN-γ (117), and heat shock proteins 
(119), were reported to be increased in patients undergoing 
thermal ablation. Although pre-treatment biomarkers to 
predict the efficiency of ablative therapy are warranted to 
select appropriate patients, such definitive markers are yet 
to be identified so far.

Localization and confirmation technologies

As previously mentioned, certain modalities have been 
developed for the treatment of lung tumors located in 
peripheral area using a transbronchial approach due to the 
reduced risk of pleural-related complications compared to a 
transthoracic approach. Precise probe placement is crucial for 
the treatment of peripheral lung tumors, and is achieved with 
two distinct components: ‘navigation’ and ‘confirmation’. 

Commercially-available navigation modalities include 
virtual bronchoscopic navigation, ENB, and augmented 
fluoroscopy. These technologies assist in guiding the 
insertion of the bronchoscope and the probe into the 
appropriate bronchus more efficiently. However, it is 
important to note that selecting the correct bronchus does 
not necessarily ensure optimal positioning of the probe 
tip (120). This precision becomes particularly significant 
when using preprocedural CT images for guidance, as it 
requires consideration of ‘CT-to-body divergence’ (121). 
Factors like atelectasis and instrumentation can distort the 
regional parenchyma, leading to a discrepancy between the 
expected target location and the actual target location. The 
I-LOCATE trial conducted by Sagar et al. revealed a high 
incidence of atelectasis during bronchoscopy under general 
anesthesia (122). This study demonstrated that 89% of 
patients experienced atelectasis in at least one lung segment 
within a median time of 33 minutes from the anesthesia 
induction. Notably, a higher body mass index and a longer 
time between the anesthesia induction and the atelectasis 
survey were identified as significant risk factors for the 
incidence of atelectasis. Given the relatively common 
occurrence of atelectasis during general anesthesia, it is 
essential to confirm the position of navigated tools relative 
to the target using other modalities. Two commonly used 
options for ‘confirmation’ in clinical practice are RP-EBUS 
and CBCT. In the context of local ablation therapy, CBCT 
offers an advantage over RP-EBUS as it allows for the 
conformation of probe position relative to the target and 
surrounding tissues. This capability enables a more precise 
calculation of both the potential efficacy and safety of the 
ablation zone. 

Anesthesia management during endoscopic 
treatment

Anesthesia strategy plays a critical role in preventing 
atelectasis during transbronchial treatments.  The 
Ventilatory Strategy to Prevent Atelectasis (VESPA) was 
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assessed in a randomized controlled study by Salahuddin 
and colleagues (123). In this study, the control group was 
intubated with a laryngeal airway mask and maintained 
at zero positive end-expiratory pressure (PEEP), while 
the VESPA group was intubated with an endotracheal 
tube, followed by recruitment maneuvers and subsequent 
maintenance at a PEEP level of 8 to 10 cmH2O. Chest 
CT imaging was conducted for all patients, and the scans 
were reviewed by a blinded chest radiologist to confirm 
the presence of atelectasis. Atelectasis was observed within 
20–30 minutes after artificial airway insertion in 84% of 
the control group compared to 29% in the VESPA group. 
Bhadra and colleagues introduced a Lung Navigation 
Ventilation Protocol (LNVP) as an optimized anesthesia 
protocol for diagnostic bronchoscopy under general 
anesthesia to mitigate atelectasis and minimize unnecessary 
respiratory motions (124,125). Under the LNVP, patients 
were intubated with an endotracheal tube using total 
intravenous anesthesia technique and neuromuscular 
blocking agents for paralysis. Recruitment maneuvers were 
performed with 30 cmH2O over 30 seconds or 40 cmH2O 
over 40 seconds, and patients received higher PEEP based 
on the lung tumor location. During the acquisition of 
CBCT images to confirm the biopsy tool’s location, breath-
holding was implemented, maintaining airway pressure at 
a plateau using an adjustable pressure-limiting valve. In a 
retrospective single center study, the LNVP protocol was 
compared to a conventional ventilation protocol, which 
involved intermittent or continuous mechanical ventilation 
with 0 or 5 cmH2O PEEP (124). Atelectasis was less 
frequently observed in CT images of the LNVP group 
(16–36%) compared to the conventional group (64–68%). 
Blinded readers analyzing CT images concluded that one 
or two lesions were obscured by atelectasis in the LNVP 
group (n=25), while nine lesions were obscured in the 
conventional group (n=25).

For peripheral lung tumor treatment, it is essential to 
employ dedicated ventilation strategies as described above 
to mitigate atelectasis. Additionally, precise placement and 
fine adjustment of treatment tools are necessary to ensure the 
treatment of malignant lesions with adequate margins while 
avoiding unnecessary injury to surrounding vital structures. 
Effective communication between the proceduralist and 
anesthesiologist is vital for treatment success.

Future direction of endoscopic treatment

The future direction of endoscopic treatment is shaped by 

ongoing advancements aimed at safer and more efficient 
lung malignancy management, particularly in peripheral 
lung areas. Various novel imaging technologies are used 
for precise placement of the tool tip in clinical practice, 
including ENB, augmented fluoroscopy, and CBCT. 
Additionally, the integration of recent robotic technology 
enhances reachability of bronchoscopic tools into the 
periphery (126). De Leon et al. assessed the safety of 
bronchoscopic MWA using the NEUWAVE™ system 
(NeuWave Medical, Inc., Madison, WI, USA) in conjunction 
with a robotic bronchoscope (the MONARCH™ platform, 
Auris Health, Redwood City, CA, USA) in swine lungs, 
observing no complications over a 30-day period (127). 
A prospective, multi-center, single-arm clinical study is 
currently underway, focusing on transbronchial MWA using 
the NEUWAVE™ guided by the MONARCH™ platform 
for oligometastatic lung tumors (NCT05299606).

In considering the future clinical applications of 
endoscopic treatment, a more in-depth discussion of 
its indications is warranted. Several studies have noted 
cases with multiple lung nodules, all treated using the 
ablation modality. Although many papers lack detailed 
discussions on lung function and the rationale behind 
choosing ablative therapy, it is conceivable that ablative 
therapy was selected in cases where surgical resection for 
multiple locations may pose challenges to postoperative 
lung function. Patients with multiple rather than singular 
lung tumors may tend to undergo local ablation treatment, 
potentially yielding benefits. Additionally, the presence of 
underlying lung disease is also a crucial aspect to consider 
when transbronchial treatment is indicated. For example, 
radiation therapy for ILD is often avoided due to the risk 
of exacerbation. Whether ablative treatment modalities 
like RFA/MWA/cryoablation/PDT are safe for such cases 
still lacks sufficient evidence. A previous systematic review 
compared the treatment for lung cancer in ILD patients 
with stereotactic body radiotherapy and RFA, summarizing 
treatment-related ILD-specific toxicity at 5.7% (7/122) for 
stereotactic body radiotherapy and a lower 2.4% (1/42) for 
RFA (128). A single-center retrospective study compiling 
42 sessions of transthoracic ablative therapy for lung cancer 
in ILD patients reported major adverse events at 0% 
(0/11) for RFA, 20% (2/10) for MWA, and 19% (4/21) for 
cryoablation (129). Given the limited evidence on the safety 
of ablation therapy regarding underlying lung diseases such 
as ILD, chronic obstructive pulmonary disease, and asthma, 
conclusive findings are yet to be established, emphasizing 
the need for ongoing case accumulation.
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Another noteworthy trend in endoscopic treatment 
for malignancy involved leveraging ablation techniques 
to stimulate immune responses. As described previously, 
recent evidence has highlighted the potential for enhancing 
anti-tumor immune responses following local treatments. 
Ongoing studies are assessing the synergistic treatment 
effects of those modalities when combined with immune 
checkpoint inhibitors. 

Conclusions

There has been a rise in demand of local treatment for lung 
malignancies due to the growing incidence of abnormal 
pulmonary lesions. For medically-inoperable patients with 
underlying comorbidities, the transbronchial approach 
has emerged as a pivotal option. Recent advancements in 
navigation and confirmation technologies have significantly 
improved the accuracy of tool placement, enabling the 
treatment of not only centrally-located tumors but also 
peripheral lung tumors with high efficiency. Moreover, 
there has been a growing interest in the anti-tumor immune 
response induced by local treatments recently. This has the 
potential to enhance anti-tumor effects and ensure long-
term effectiveness. Clinical studies are needed to assess the 
potential clinical benefits from the additive immunologic 
effect.
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