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“If you always do what you always did, you’ll always get what 
you’ve always got.”—Henry Ford

“Continuous improvement is better than delayed perfection.”—
Mark Twain

“We cannot become what we want to be by remaining what we 
are.”—Max DePree

“Perfection is not attainable. But if we chase perfection, we can 
catch excellence.”—Vince Lombardi

For years,  autogenous costochondral  bone was 
considered the “gold standard” for temporomandibular 
joint (TMJ) reconstruction. Commercial or “stock” 
alloplastic temporomandibular joint replacement (TMJR) 

devices were restricted to the management of ankylosis, 
reconstruction after ablative surgery, trauma, or end-stage 
joint disease cases. However, the anatomical architectural 
aberrations and local pathologic reactions created by the 
failure of materials like Proplast-Teflon and silicone rubber 
TMJ implants led to the development of patient fitted or 
“custom” TMJR devices in 1990 (1).

Since that time, the US Food and Drug Administration 
(FDA) has approved both custom and improved stock 
TMJR systems that employ orthopedic alloplastic joint 
replacement biomechanical concepts and material 
embodiments that have proven over decades to be not 
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only safe, but also effective in the management of end-
stage joint disease (2). However, future advancements in 
material science, design, manufacturing as well as surgical 
techniques and equipment will foster improvements in all 
joint replacement devices.

Based on evidence from material science, orthopedic and 
TMJR literature, this paper will discuss TMJR relative to 
future demand for these devices, the training of surgeons to 
meet those demands, the materials, design/manufacturing 
processes, biomechanical analysis and clinical testing, 
regulatory requirements and clinical outcomes.

The demand for total alloplastic joint replacement 
has increased over the years in both orthopedic and 
maxillofacial surgery. This is the result of improved designs/
materials, reported enhanced successful subjective and 
objective outcomes over autogenous tissue grafts, and most 
importantly reports of increased quality of life for patients 
receiving these devices. 

Onoriobe et al. reported a 38% increase in TMJR cases 
between 2005 and 2014 (3). Using the same statistical 
metrics as in the Kurtz et al. total hip and knee utilization 
projection study, these authors projected a 58% increased 
demand for TMJR by 2030 (4).

In a survey of US oral and maxillofacial training program 
directors, Lotesto et al. reported an average of 0 to 6 
TMJR cases were performed annually at those programs. 
Further, the respondents significantly disagreed when asked 
if residents nationwide will be competent to operated and 
manage TMJR patients. Therefore, 46.9% thought that 
increased TMJR training was necessary to improve future 

outcomes (5).
In order to assess the confidence level of US trainees 

in the performance of arthrocentesis and arthroscopy 
and TMJR upon completion of residency, Momin et al. 
conducted a follow-up to the Lotesto survey. The results 
revealed that the confidence level of responders correlated 
directly with their exposure to and experience with a TMJ 
related procedure during residency (6).

Therefore, in the future there should be concern that 
the next generation of oral and maxillofacial surgeons 
may not be sufficiently trained to manage the projected 
TMJR demand unless there is modification in the training 
requirements and experience in the US and potentially 
world-wide.

The general considerations for the development of a 
biomedical device were described by Lantada and Morgado 
as the existence of a relevant medical need, the anatomical 
and biological regard for the selection of biomaterials with 
appropriate mechanical and chemical properties, the availability 
of appropriate sterilization methods, and the knowledge of the 
consequences of wear and corrosion (Table 1) (7) .

With regard to the general requirements for joint related 
devices, Katti stated that they should be composed of 
biocompatible materials that do not produce inflammation 
or systemic toxicity beyond acceptable levels, are designed 
to provide the mechanical properties for their intended 
function, and are able to be fabricated cost-effectively, 
employing rigorously tested and vetted processing and 
manufacturing procedures (Table 2) (8).

Specifically for TMJR, Mercuri described the criteria 

Table 1 General considerations for the development of a biomedical device

1. Existence of a relevant medical need

2. Anatomical and biological regard for the selection of biomaterial with appropriate mechanical and chemical properties 

3. Availability of sterilization methods 

4. Knowledge of the consequences of wear and corrosion

Lantada AD, Morgado PL. General Considerations for the Development of Biomedical Devices. In: Lantada AD (ed). Handbook on 
Advanced Design and Manufacturing Technologies for Biomedical Devices. New York: Springer, 2013;19-45.

Table 2 General requirements for joint replacement devices

1. Utilization of biocompatible materials that do not produce inflammation or systemic toxicity beyond acceptable levels 

2. Designed to provide the mechanical properties for their intended function 

3. Able to be fabricated cost-effectively employing rigorously tested and vetted processing and manufacturing procedures

Katti K. Biomaterials in total joint replacement. Colloids and surfaces. Biointerfaces 2004;39:133-42.
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for a successful TMJR device as, it be designed and 
manufactured from material biocompatible with the 
implant environment; it be able to withstand repetitive 
loading and unloading delivered over the full range of TMJ 
function while remaining stable in situ; and that the surgery 
to implant the TMJR be performed aseptically and for the 
proper indications  (Table 3) (9). 

Elledge et al. published a review of emerging TMJR 
systems (10). The authors reported that at the time of that 
publication, 15 countries had already created or were in the 
process of developing 27 TMJR systems, 21 of which were 
custom designed and manufactured. However, only 4 had 
been sanctioned by a regulatory agency. Twenty-one devices 
employed an ultra-high-molecular-weight polyethylene 
(UHMWPE) fossa-bearing surface. Ten contained all-
titanium alloy condyles. Nineteen manufacturers report 
that a titanium alloy was used for the ramus portion of the 
ramus/condyle component. Twelve reported preclinical 
biomechanical testing, but no clinical outcomes were 
reported for 9 of the 27 systems. The two US FDA-
approved systems (TMJ Concepts, Ventura, CA (11) and 
Zimmer Biomet, Jacksonville, FL (12) had been providing 
the market share of TMJR devices worldwide. However, 
tariffs, agent, and distributor fees, as well as the economic 
conditions and healthcare conventions in many countries 
contributed to an increased premium for utilizing US 
devices. These factors, along with the lure of 3D printing, 
appeared to have led clinicians, researchers, and device 
manufacturers in many countries to start developing what 
were considered “less costly” TMJR devices. 

After reviewing the data from this study, Elledge et al. 
discovered that all TMJR systems uncovered were not 
equivalent with regards to design, materials, manufacturing 
practices, biomechanical testing, clinical outcomes reporting 
or regulatory status (10).

Considering TMJR device design, the uniqueness of the 
mandibular ramus and temporal glenoid fossa anatomies 
do not lend themselves to the use of stock modular 

replacement components. The bony anatomy of the pelvis, 
femur, and tibia lend themselves to the use of modular 
stock components. Therefore, for the foreseeable future, 
all TMJR components must be designed to be fixated and 
secured for stabilization to the maxillofacial skeletal host 
ramus and temporal bones with bicortical screws (13).

Biomechanically, finite element analysis confirmed that the 
maximum functional forces placed on a TMJR ramus/condyle 
component are concentrated at the most superior screw hole 
(14). Further, Hsu et al. (15) and Ramos et al. (16) reported 
studies demonstrating the importance of the screw fixation 
along the full length of lateral ramus to maintain stable 
fixation of the ramus condyle component. Therefore, any 
future ramus/condyle component design that does not require 
the use of the most superior fixation screw or does not utilize 
the full length of the vertical mandibular ramus for screw 
fixation, should not be considered biomechanically sound.

Additive manufactured or 3D printed devices are being 
integrated into surgical practice. Applications vary from 
development of anatomical models for surgical planning 
to surgical guides as well as implant devices themselves. 
As of the date of their publication, Elledge et al. reported 
that 7 TMJR systems involved the use of 3D printed metal 
components. Three were fashioned using direct metal laser 
sintering (DMLS), 1 by electron beam melting (EBM), and 
3 by selective laser melting (SLM) (10).

In a systematic review of the 3D printing process from 
selected papers in the medical literature, Tack et al. found that 
the major clinical advantages were reported to be reduced 
surgical times, improved medical outcomes, and decreased 
radiation exposure. However, they concluded that there 
was lack of data supporting most of those advantages (17).  
The major disadvantage reported was increased cost, 
making it questionable whether 3D printing is cost effective 
for all patients and applications (18,19).

Biomechanical concerns have arisen associated with the 
use of additive 3D printing of metallic medical devices. 
These include, porosity—the size and number of pores 

Table 3 Criteria for a successful TMJR device

1. Designed and manufactured from material biocompatible with the implant environment 

2. Able to withstand repetitive loading and unloading over the full range of TMJ function 

3. Components must be stable in situ

4. Surgery must be performed for the appropriate indications and aseptically

Mercuri LG. The Use of Alloplastic Prostheses for Temporomandibular Joint Reconstruction. J Oral Maxillofac Surg 2000;58:70-5. TMJR, 
temporomandibular joint replacement.
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developed in 3D printed component can result in a low-
density material making it more prone to fracture under 
functional loading; density control—when a component 
undergoes functional cyclical stress, its density will 
determine whether the part will crack and fail when loaded; 
residual stress control—temperature changes during the 
3D printing process can lead to residual stress resulting in 
deformation of the component; cracking and warping—
this occur when the melted metal cools down after printing. 
Cooling causes contraction which makes edges of the 
component deform and the part cracking under stress. 
Cracking may also occur if the powder material was not 
properly melted; and post processing surface roughness—
3D printed components are often developed with rough 
surfaces. In order to achieve the desired final finish further 
machining, grinding, or polishing is required. Those 
operations can further damage the surface of the component 
by exposing deeper, larger pores which ultimately may 
provide harbor for contaminant organisms (Table 4) (20).

Finally, the biggest future challenges facing the 3D 
printing industry have been reported to be equipment costs, 
limited material availability, manufacturing resources and 
costs, lack of in-house additive manufacturing expertise, 
limited accuracy from case to case, longer production 
timelines, liability implications, and lack of formal industrial 
standards (Table 5) (21).

Tack et al. concluded that further research is required 
to determine whether the increased intervention costs 
associated with 3D printing can be balanced by observable 
advantages (17). Therefore, TMJR manufacturers planning 
to use this technology in the future should perform cost–
benefit analyses. 

When deciding on the materials to be used in the 
manufacture of future TMJR devices, researchers and 
manufactures must utilize materials that have the most 
beneficial physical and biocompatible characteristics.

At present, ultra-high molecular weight polyethylene 
(UHMWPE) remains the “gold standard” in orthopedic 
joint replacement devices as the bearing surface for the 
stable component of hip and knee replacement devices (i.e., 
acetabular cup, tibial plateau) (13) UHMWPE combines a 
low coefficient of friction with outstanding impact strength. 
The property of creep (cold flow), rather than particulation, 
making this self-lubricating polymer an excellent choice for 
a bearing surface of any joint replacement device. 

Biofilm infection is the most common cause of alloplastic 
joint replacement failure in both TMJR and orthopedic 
joint replacement. The material qualities that make 
UHMWPE the ideal bearing surface also make it the most 
likely target for biofilm formation. Biofilms form with the 
attachment of planktonic microorganisms to a surface. 
The first colonist bacteria of a biofilm initially adhere to 
UHMWPE surfaces by weak van der Waals forces and 
hydrophobic effects (22-25).

Chemical modification has become the main strategy 
for biofilm prevention on indwelling medical devices. 
Antibiotics, biocides, and ion coatings have been the 
most commonly used chemical methods for biofilm 
prevention. They prevent biofilm formation by interfering 
with planktonic cell attachment and expansion of biofilm 
colonies on the surface of the device (26).

In the future, it will be very important while developing 
and designing any TMJR device that the compound or 
coating used to combat a biofilm is properly applied to the 
surface so that it does not wear off with function, and that 
the dosage of any anti-biofilm compound will be effective 
when delivered. 

The characteristics of biocompatibility and bio-
integration have made titanium alloy (Ti6AL4V) alloy the 
metal of choice for the major components of orthopedic 
and dental replacement devices. However, titanium alloys 
have low wear resistance and have been reported not to be 
appropriate as an articular bearing surface. Further, concern 
has been raised related to the release over time of corrosion 
wear related vanadium (V) and aluminum (Al) ions that 
have been reported associated with Ti6V4Al component 
instability in animal studies (27).

Titanium alloys are classified into the α, α+β, and β 
types based on the phase types existing in the alloy. β-phase 
titanium is the more ductile phase while the α-phase is 
stronger, but less ductile (28). A new class of titanium β-alloys 
may be promising candidates for the next generation of 
joint replacement implants. The advantages of newer 
titanium β-alloys are the incorporation of non-toxic alloying 

Table 4 Biomechanical concerns with the use of 3D printing of 
metallic medical devices

1. Porosity control 

2. Density control 

3. Residual stress control 

4. Cracking and Warping 

5. Post processing surface roughness 

https://www.autodesk.com/redshift/5-problems-with-3d-
printing-and-how-to-fix-them/

https://www.autodesk.com/redshift/5-problems-with-3d-printing-and-how-to-fix-them/
https://www.autodesk.com/redshift/5-problems-with-3d-printing-and-how-to-fix-them/
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elements such as Nb, Mo, Ta, Zr and Sn in the formulation. 
These improved titanium alloys have demonstrated an 
elastic modulus closer to human bone, improved corrosion 
resistance and higher mechanical strength (29-31).

Despite its high strength and good resistance to 
corrosion, studies have reported that titanium wear particles 
and ions have been detected in local peri-implant tissue and 
remote organs (32). Titanium particles and ions are released 
from a component by mechanical wear, interaction bacteria 
biofilm, and inflammatory cells (33).

The disadvantages of low surface hardness, high 
friction coefficient, and unsatisfactory abrasive wear 
resistance of titanium alloy cannot be overlooked. These 
poor tribological properties raise a particular concern for 
biomedical load bearing implants, since they are in contact 
with corrosive bodily fluids and are subjected to functional 
movements which result in the release of metallic ions and 
wear debris into the body (34).

In order to overcome some of these disadvantageous 
properties of titanium, several surface modification 
techniques have been developed, such as organic and 
inorganic coatings, thermal oxidation, acid etching, 
electrochemical processes, plasma spraying and laser 
nitriding. Nano-scale texture appears to be more effective 
when compared with the macro- and micro- scale textures. 
Textured surface covered by coating/film has increasingly 
influenced and enhanced the performance of titanium alloy 
under functional loading (35).

Diamond-like carbon (DLC) film, a hard surface with 
diamond-like characteristics, is biocompatible and has high 
wear resistance, a low coefficient of friction, high chemical 
inertia, and bactericidal properties which can be enhanced 
using silver nanoparticles that provide effective reduction of 

bacterial adhesion in acrylic resin and interfaces. However, 
to date factors associated with DLC film deposition must be 
studied in order to obtain the best biocompatibility (36).

Alumina ceramic bearing materials attracted researchers 
due to their low friction, wettability, wear resistance, and 
biocompatibility. However, the first applications of alumina 
in orthopedics were associated with high fracture rates (37).  
Ceramic composite alternatives to zirconia, fabricated 
from mixtures of alumina and zirconia, zirconia-toughened 
alumina (ZTA), or alumina-toughened zirconia (ATZ) are 
suitable for orthopedic ceramic-on-polyethylene as well as 
ceramic-on-ceramic joint replacement devices. However, 
to date research regarding the in vivo performance of ZTA 
is still far from complete. Longer implantation studies 
are required to fully determine if ZTA components will 
outperform their counterparts in orthopedic devices (38). 
Whether DLC or alumina ceramic bearing surfaces are 
the future of TMJR remains to be determined based on 
laboratory and clinical testing outcomes.

Cobalt chrome (CoCr) alloy has proven over time to 
have excellent wear resistance and because of this property 
has been successfully utilized as the bearing surface for 
the mobile component in both orthopedic (femoral head) 
and TMJR (condylar head) devices when paired with 
UHMWPE. However, when paired with a CoCr alloy 
bearing surface (metal-on-metal), this combination has led 
to device failures due to excessive metal particle and ion 
related adverse local tissue reactions (13).

Cobalt chrome alloy as used in orthopedic and TMJR 
implants contains cobalt alloyed with 27–30% chromium, 
5–7% molybdenum, with manganese and silicon <1%, iron 
<0.75%, nickel <0.5%, and with traces of carbon, nitrogen, 
tungsten, phosphorus, sulfur, and boron (39).

Dependent on their chemical composition, all metals 
implanted in the body undergo electrochemical related 
corrosion releasing free metal ions that can activate the 
immune system (40). Warshaw et al. reported that the most 
common allergen is nickel, affecting 15.5% of the general 
population (41). Foussereau and Laugier first reported 
the correlation between an eczematous dermatitis and 
orthopedic devices containing the CoCr alloy (42).

To date, there are few studies that report the incidence 
of TMJR metal hypersensitivity. Sidebottom and Mistry 
reported 39% of patients implanted with either TMJ, 
Inc (aka, Christensen, Golden, CO) CoCr alloy metal-
on-metal or polymethylmethacrylate-on-metal TMJR 
devices demonstrated allergy to one or more of the metal 
components on skin patch testing (SPT) (43).

Table 5 Future challenges facing the 3D printing industry

1. Equipment costs

2. Limited materials availability

3. Manufacturing resources and costs

4. Lack of in-house additive manufacturing expertise 

5. Limited accuracy from case to case 

6. Longer production timelines

7. Liability implications 

8. Lack of formal standards

https://amfg.ai/2019/10/08/10-of-the-biggest-challenges-in-
scaling-additive-manufacturing-for-production-expert-roundup/

https://amfg.ai/2019/10/08/10-of-the-biggest-challenges-in-scaling-additive-manufacturing-for-production-expert-roundup/
https://amfg.ai/2019/10/08/10-of-the-biggest-challenges-in-scaling-additive-manufacturing-for-production-expert-roundup/
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Hassan et  a l .  quest ioned whether TMJR long-
term outcomes are affected by the use of nonreactive 
metals in patients with documented preoperative metal 
hypersensitivity, and/or lead to the development of TMJR 
devices using new nonreactive materials (44).

De Meurechy and Mommaerts suggest exploration of 
the use of β-titanium alloys with better biocompatibility 
and wear properties, and an elastic modulus closer to bone, 
as well as alumina-toughened zirconia condyle bearing 
surfaces leading to the improved future TMJR devices (45).

Henry et al. recommended the use of an all titanium 
alloy condyle/fossa bearing to eliminate the use of nickel 
containing cobalt chrome alloy (46). The future of TMJR 
devices not only lies in the use of higher-quality CoCr, Ti, 
or Zr alloys as the embodiment of customized, patient fitted 
devices. The manufacture of TMJR systems may improve 
and become less costly as 3D printing techniques evolve (47).

Complications diagnosis and management in 
the future (Table 6)

Infection

Despite the incidence of TMJR periprosthetic joint 
infection (PJI) being low (2.74%) (25), the clinical, 
psychological, and economic consequences are significant 
(48,49). Prevention of TMJR PJI includes reducing 
patients’ bacterial burden (50), administering prophylactic 
antibiotics one hour before surgery (51), and deterrence of 
biofilm formation on TMJR components by coating them 
with antimicrobial drugs or bactericidal nanocrystals (52,53).

While TMJR PJI prevention has proven to be the 
most effective strategy, making an appropriate well-
timed diagnosis is not only critical, but can be the most 
challenging aspect of PJI management. A PJI is difficult to 

diagnose because to date there is no uniform or standardized 
criteria for the diagnosis. This is further complicated by the 
difficulty of differentiating a PJI from an adverse local tissue 
reaction, material hypersensitivity, aseptic joint failure, or a 
localized but unrelated skin reaction (54).

To date, there is no PJI diagnostic test that provides 
definitive organism sensitivity and specificity data. New 
molecular and genomic based assays are being developed 
in orthopedics. To determine their validity, these assays 
are being adapted to a diagnostic algorithm and subjected 
to clinical testing (55). However, many involve synovial 
fluid sampling which is a difficult undertaking in TMJR 
PJI cases. Future TMJR PJI research must investigate and 
determine the how to utilize these synovial fluid based 
molecular and genetic assays. 

Heterotopic ossification (HO)

After infection, acquired HO is the next most common 
post-TMJR implantation complication (1.24%). Despite 
some evidence to support their use in the management of 
TMJR HO, NSAIDs, radiation therapy, and the autogenous 
fat graft have been considered as acceptable management 
and prophylactic options until further research elucidates 
improved alternatives (56). 

Researchers have demonstrated a critical role for a 
naturally occurring glycoprotein, Alpha 2-Heremans-
Schmid glycoprotein/fetuin-A (Ahsg fetuin-A) as an 
inhibitor of unwanted mineralization indicating further 
investigation may provide the use of fetuin-A as a novel 
therapeutic concept to prevent HO (57-60). Further 
research into this and other inhibitors of heterotopic bone 
and their delivery systems will undoubtedly follow.

Material hypersensitivity

Hypersensitivity reactions to implant materials, although 
uncommon, have been reported in the literature and, if 
symptomatic, require correct diagnosis and appropriate 
management (61). Wear and corrosion of functional joint 
implants introduce metal particles as well as metal ion 
debris into the adjacent tissues (62). Typically, a minor 
amount of metal debris does not prompt an adverse 
local tissue response. However, persons with a known 
hypersensitivity to a metal that is a component of an 
implant may respond differently. Contact with metal 
wear debris for them can result in immune cell activation, 
division, and the encouragement of the contribution of 

Table 6 The most common complications associated with TMJR 

1. Infection

2. Heterotopic ossification

3. Material hypersensitivity 

4. Chronic post-TMJR pain 

Mercuri LG. Complications Associated with TMJ TJR: Management 
and Prevention. In: Mercuri LG (ed). Temporomandibular Joint Total 
Joint Replacement – TMJ TJR – A Comprehensive Reference 
for Researchers, Material Scientists and Surgeons. New York: 
Springer, 2016;187-226. TMJR, temporomandibular joint 
replacement.
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other immune cells in the reaction, thereby initiating an 
inflammatory response. Depending on the intensity of 
the person’s sensitivity to the material and the amount of 
wear debris generated, the response can be mild to severe 
(63,64). The resultant inflammatory response can also lead 
to damaging effects at the bone-implant interface resulting 
in symptoms of reflex muscle pain, skin eruptions and 
facial edema in TMJR patients (65). Chronic exposure to 
sensitizing metal debris can also result in protracted peri-
implant inflammation which can lead to osteolysis around 
fixation screws, component micromotion and loosening, 
and catastrophic device failure (61,66). 

The two most common diagnostic tests employed to 
determine material hypersensitivity are the SPT, and the 
lymphocyte transformation test (LTT). SPT is purely 
subjective and the testing process potentially can sensitize 
the patient to the metals being tested. Reports have 
demonstrated that false-negative SPT results may be due 
to the inability to reproduce on the skin the biological 
conditions to which a deep implant is exposed. Antigen 
responding cells in the skin (Langerhans cells) have 
different antigen-specific reactivity compared to those cells 
(T-lymphocytes) that respond to a deep implant (67,68). 
The LTT is an objective assay of material sensitivity based 
on the analysis of a patient’s T-lymphocytes to specific 
allergens in vitro elicited from a simple blood draw (69).

If, prior to TMJR a patient provides a history of 
intolerance to jewelry or an allergic reaction to a prior 

metal implant, LTT material hypersensitivity testing should 
be considered. However, to date, routine testing is not 
supported by the literature (40,70). Future investigation 
into the immune response to implanted materials leading to 
improved diagnosis and management and/or development 
of less reactive implant materials are required. 

Post TMJR pain 

The estimated mean incidence of chronic post-surgical pain 
has been reported between 10 and 50% for procedures such 
as thoracotomy, breast, inguinal hernia, and amputation 
surgery (71). However, it has rarely been reported post 
TMJR (0.43%) (72). However, when it occurs after TMJR, 
it is not only a problem for the patient, but also poses a 
diagnostic dilemma for the surgeon.

Acute pain typically derives from nociception in somatic 
or visceral tissues (intrinsic pain). However, not every pain 
sensation originates from an injury related stimulus (extrinsic 
pain) (73). There are both intrinsic and extrinsic that can 
cause pain after TMJR (figure 11). The surgeon must rule 
out one or the other in a systematic manner in order to 
manage the situation appropriately (48).

Intrinsic causes for post TMJR pain (Table 7)

The "Biologic Response to Metal Implants" document (74)  
states that when working up a patient with a painful 
total joint, hypersensitivity should be the last item on 
the differential diagnosis list, since the literature clearly 
demonstrates that 1% or less of joint replacement device 
failures are causally related to material hypersensitivity. 
Infection, heterotopic ossification, micromotion and loose 
hardware are much more common and should be ruled out 
first (75).

However, two other potential intrinsic causes have 
recently surfaced that may account for post-TMJR pain 
and therefore should be ruled out before TMJR removal 
and replacement—synovial impingement, and wear related, 
non- hypersensitivity local adverse tissue response.

Synovial impingement syndrome is a known cause of 
pain and dysfunction after orthopedic joint replacement 
(76-79). After joint replacement, a pseudosynovium 
develops. Westermark et al. and Monje et al. demonstrated 
this in TMJR patients (80,81). Further, Murakami et al. 
demonstrated synovial invaginations of synovial tissue in 
the TMJ similar to those found in the hip and knee (82) 
(See Murakami, et al. in this issue) If the pseudosynovium 

Table 7 Intrinsic causes for post TMJR pain

1. Infection

2. Heterotopic ossification

3. Dislocation

4. Material hypersensitivity 

5. Aseptic component or screw loosening

6. Component or screw fracture

7. Osteolysis

8. Neuroma formation

9. Synovial entrapment syndrome

Mercuri LG. Complications Associated with TMJ TJR: Management 
and Prevention. In: Mercuri LG (ed). Temporomandibular Joint Total 
Joint Replacement – TMJ TJR – A Comprehensive Reference 
for Researchers, Material Scientists and Surgeons. New York: 
Springer, 2016;187-226. TMJR, temporomandibular joint 
replacement.
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invaginates and becomes trapped between the bearing 
surface of a joint replacement device it can become inflamed 
and painful.

Davis et al. presented arthroscopic images of inflamed 
pseudosynovial tissue entrapped between the bearing surface 
of TMJR devices in patients with post TMJR pain and 
dysfunction. The results demonstrated that arthroscopic 
excision of the inflamed entrapped tissue led to decreased 
pain and increasing mandibular range of motion. However, 
the authors advised that future larger long-term studies were 
needed to further classify and define causes of post-TMJR 
chronic pain, the role of synovial entrapment in post-TMJR 
pain, and stressed that TMJR arthroscopy be reserved only 
for surgeons with Level 3 arthroscopy skills (83).

Although rare in TMJR due to minimal functional 
loading compared to hips and knees, material wear results 
in UHMWPE particulation and metal ion release leading 
to an adverse local tissue inflammatory response within 
the joint unrelated to material hypersensitivity (32,84). 
Therefore, this could be another source of post TMJR pain 
and dysfunction. Diagnostic local anesthesia infiltration may 
be diagnostic and careful debridement can be therapeutic. 
Further investigation into TMJR adverse local tissue 
response is certainly warranted.

Extrinsic causes for post TMJR Pain (Table 8)

I t  i s  noteworthy that  many of  these  painful  and 

dysfunctional post TMJR patients have been multiply 
operated and/or misdiagnosed muscular TMJ dysfunction 
patients with multiple comorbidities and persistent centrally 
mediated muscle pain. 

A multicenter, cross-sectional study of the pre-
operative risk factors associated with pain after total hip 
and knee replacement conveyed data that moderate to 
severe pain was reported by 20% at rest and 33% with 
activity. Predictors of post-implant pain at rest were 
female gender, severe pre-implant pain requiring the use 
of pre-implant opioids. Predictors of post-implant pain 
with activity were severity of the pain pre-implant, the use 
of anticonvulsants and anti-depressants, and prior hip/
knee surgery (85).

A prospective analysis  of  data from total  knee 
replacement patients identified potential predictors of 
outcomes. The most robust predictors were reported to be 
pre-implant pain/function, the less severe the pre-implant 
disease the better the outcome; diagnosis, rheumatoid 
arthritis patients did better than osteoarthritis patients; 
deprivation, patients from poorer areas had worse outcomes; 
and anxiety/depression, patients diagnosed with anxiety/
depression had poorer outcomes (86).

The orthopedic literature also demonstrates that the 
greater the number of pre-implant co-morbidities, the 
poorer the outcomes (87-90). These results are harmonious 
with similar TMJ disorder data that showed that co-morbid 
conditions may explain why 50% of patients seeking care for 
TMJ pain, some of whom were multiply operated and/or 
exposed to failed materials or devices, still report experiencing 
pain 5 years later and 20% of chronic TMJ pain patients 
experience long-term disability from that pain (91-93).

The appropriate overall management of patients 
requiring TMJR requires the surgeon has made the right 
diagnosis, understands the patient associated predictors of 
outcomes and the comorbid conditions discussed above. 
The surgeon must then execute the surgical plan at the right 
time utilizing the appropriate TMJR device. This assures 
the results will be professionally satisfying for the surgeon, 
and most importantly will provide the best outcome for the 
patient. Improved understanding of the role of pre-TMJR 
co-morbid conditions on post-TMJR outcomes using 
patient reported data should be investigated in the future.

Clinical outcomes 

Presently and certainly in the future, it should be required 
that all TMJR devices, whether custom or stock, wherever 

Table 8 Extrinsic causes for post TMJR pain

1. Prior misdiagnosis

2. Chronic centrally mediated pain

3. Persistent myofascial/muscular pain

4. Complex regional pain syndrome I

5. Neurologic injury (CPRS II)

6. Temporalis tendonitis

7. Coronoid impingement

8. Frey’s neuralgia

9. Integrin formation

Mercuri LG. Complications Associated with TMJ TJR: Management 
and Prevention. In: Mercuri LG (ed). Temporomandibular Joint 
Total Joint Replacement – TMJ TJR – A Comprehensive 
Reference for Researchers, Material Scientists and Surgeons. 
New York: Springer, 2016; 187-226. TMJR, temporomandibular 
joint replacement.
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and however they are manufactured, undergo rigorous 
biomechanical laboratory and clinical testing, the results of 
which are reviewed by the appropriate regulatory body for 
safety and efficacy before marketing, sales, and use. Elledge 
et al. reported that as of the date of their publication, only 4 
of the 27 devices presented had received regulatory agency 
approval. (10).

The 2 US TMJR devices, TMJ Concepts and Zimmer 
Biomet have demonstrated the kind of biomechanical 
and clinical outcomes testing, reporting and analysis by a 
government regulatory agency (US FDA) that should be 
mimicked in the future by all TMJR device manufacturers 
and the regulatory bodies to whom they report to assure 
the safety and efficacy of any prospective TMJR devices. 
Both of these devices have also continued to report 
successful clinical outcomes, as well as post-market 
surveillance studies demonstrating long-term safety and 
efficacy (94-97). 

In the future, additive manufacturing (3D printing), 
augmented reality (AR), artificial intelligence (AI) and 
robot-assisted surgery (RAS) will become important tools 
in the growth and development of oral and maxillofacial 
surgery. What role these technologies will play in the 
future of TMJ disorder diagnosis, non-surgical and surgical 
management as well as TMJR device development and 
manufacturing remain to be determined.

Conclusions

Salvage management of end-stage TMJ pathologic 
conditions are considered indications for TMJR. The 
primary goal of TMJR is the long-term safe and effective 
restoration of mandibular function and form. In order to 
provide successful function and form long-term outcomes, 
any present or future TMJR device must be capable of 
managing the divergent functional, anatomic, aesthetic 
situations encountered. Therefore, all present and future 
TMJR devices must be able to demonstrate that they 
consist of biologically compatible materials, are designed 
and manufactured to bear the functional loads that will 
be delivered to their components, and that they are 
biomechanically and clinically analyzed and tested to assure 
their long-term safety and efficacy for patients.

“The arrogance of success is to think that what you did 
yesterday will be sufficient for tomorrow.”—C. William Pollard
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