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Background and Objective: Basal cell carcinoma (BCC) is the most widespread malignant skin cancer and 
also the most common cancer in adults. Although its mortality rate is low, its incidence is increasing, especially 
in Caucasians. Among many risk factors, ultraviolet radiation (UVR) is the essential factor in forming BCC. 
However, the molecular mechanisms leading to transformation are not fully understood. This review provides 
a comprehensive description of the interaction of UVR and genetic features in the pathogenesis of BCC, and 
specifically, current advances in molecular therapy based on these mechanisms are introduced.
Methods: A literature search was performed in the PubMed database using the search algorithms [(basal 
cell carcinoma) OR (BCC)] AND [(gene mutation) AND (ultraviolet radiation) AND (carcinogenesis)] to 
identify relevant publications until April 1, 2020. The database search was not restricted to any language, and 
relevant references were searched from the identified articles.
Key Content and Findings: This review summarizes the potential mechanisms underlying BCC 
development due to UVR. UVB can be directly absorbed by DNA and induce skin cancer through 
intracellular signaling leading to DNA damage and altered gene expression. UVA radiation generates 
reactive oxygen species (ROS), which causes skin cancer through secondary damage to DNA and usually 
requires long-term cumulative exposure. Cells can repair damaged DNA, but DNA repair may be faulty 
due to genetic or environmental factors. As a result, mutations in proto-oncogenes and suppressor genes 
may occur, leading to tumor formation. Various immune responses of the body are usually reduced after 
UVR. UVR damages DNA, and its repair system alters the immune system and leads to progressive genetic 
alterations and tumor formation, genetic alterations, and tumor formation. Based on these advances in 
molecular mechanisms, targeted therapies such as smoothened (SMO) inhibitors (vismodegib and sonidegib), 
and immunotherapy such as pembrolizumab [anti-programmed cell death-1 (PD-1)] have been developed. 
Further future studies on the molecular genetics of UVR in the development of BCC may facilitate new 
targeted therapies and chemoprevention, thus improving treatment efficacy and prevention.
Conclusions: This review highlights UVR damages DNA and its repair mechanisms, suppression the 
immune system, causes progressive gene mutations, and ultimately leads to tumor formation. Further studies 
on the molecular mechanisms associated with BCC will help raising public awareness of UV protection and 
explore new targeted therapeutic and chemopreventive means.
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Introduction

Non-melanoma skin cancer (NMSC) is the most common 
type of cancer (1). NMSC mainly includes basal cell 
carcinoma (BCC) and squamous cell carcinoma (SCC), 
which account for 70% and 25% of NMSC, respectively (1). 
Both BCC and squamous carcinoma have a good prognosis, 
especially in their early stages (2). BCC contributes the 
least to NMSC mortality (MR), with an estimated MR of 
0.02 per 10,000 population (1,2). On the other hand, SCC 
has a variable metastasis rate of 0.1–9.9% and accounts 
for approximately 75% of NMSC deaths (1,2). In whites, 
approximately 50–70% of SCCs and 50–90% of BCCs are 
caused by ultraviolet (UV) exposure (3). 

The most common skin malignancy in Caucasians is 
BCC, which accounts for approximately 70–80% of all 
skin cancers (4). Published epidemiological data show 
that the incidence of BCC is still on the rise (5). Despite 
the low mortality rate of BCCs, it can lead to substantial 
morbidity and cosmetic defects that strongly impact health 
care budgets due to their remarkable high incidence (6). 
This type of skin tumor usually occurs in chronically sun-
exposure sites of the elderly, most commonly on the head 
and neck (7). Among many etiologies of BCC, the most 
important is ultraviolet radiation (UVR). It is the leading 
environmental risk factor for the development of BCC. 
Some literatures have found that military personnel, 
engineers, tilers, farmers, lifeguards, mountain guides, 
and mail carriers more likely to develop skin cancers 
(mainly basal and SCCs) (8-17). All these individuals have 
in common the characteristic of being outdoor workers 
for long periods. Thus, there may be an association 
between prolonged occupational sun exposure and intense 
exposure to the sun and inappropriate use of sunscreen 
during working hours, and the risk of developing NMSC  
(8,10,18-20). As time goes on, changes in people’s dressing 
style, entertainment, work, lifestyle, and increased life 
expectancy may lead to increased sun exposure. While most 
UVR originates from the sun, the incidence of UV-induced 
skin cancer has risen further due to tanning popularity (21). 
We receive daily UVR exposure from natural and artificial 

sources. Long-term exposure can lead to photoaging, such 
as skin wrinkling, roughness, sagging, freckling, and even 
benign and malignant tumors. It is recognized that UV 
exposure is a significant risk factor for BCC. However, 
the molecular mechanisms leading to transformation are 
not fully understood. Therefore, this article attempts to 
summarize the current research progress of UVR in the 
occurrence and development of BCC. We present the 
following article in accordance with the Narrative Review 
reporting checklist (available at https://fomm.amegroups.
com/article/view/10.21037/fomm-21-31/rc).

Methods

In this study, we developed a comprehensive search in 
the PubMed database until April 1, 2020 by using the 
following algorithms [(basal cell carcinoma) OR (BCC)] 
AND [(gene mutation) AND (ultraviolet radiation) AND 
(carcinogenesis)]. The database search was not restricted to 
any language, and relevant references were searched from the 
identified articles (Table 1).

Discussion

UVR and BCC

Sunlight consists of a continuous ionization spectrum 
tha t  inc ludes  UVR (100–400  nm) ,  v i s ib le  l i ght  
(400–760 nm), and infrared radiation (IR; 760 nm–1 mm). 
This spectrogram is shown in Figure 1. UVR is further 
divided into three ranges according to the wavelength: 
UVA (315–400 nm), UVB (280–315 nm), and UVC  
(100–280 nm). Most UVB and all UVC (wavelengths 
below 280 nm) are removed by the ozone layer, and 
these shorter wavelengths do not occur in incident  
sunlight (22). UVA radiation (90–95%) is the most extensive 
UVR to reach the Earth’s surface, and it extends deep 
into the cutaneous dermis. Only 5–10% of UVB radiation 
reaches the Earth’s surface and is mostly absorbed by 
the epidermis. However, the efficiency of UVA-induced 
biological effects (expressed as the minimum amount of 
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erythema) is 1,000 times lower than that of UVB (23,24). 
The effects of UVB are mainly mediated by chromophores 
(24-27). At the same time, moderate doses of UVB have 
significant positive effects on all organisms on Earth, 
including humans. UVB can induce the production of 
vitamin D in the skin. In fact, active forms of vitamin D 
can play important role in photoprotection (28) and skin 
cancer (29). Vitamin D deficiency (20 ng/mL) is associated 
with increased incidence and worse prognosis in various 
types of cancer, including melanoma (30). In contrast, the 
phenotypic effects of UVA, although weakly absorbed 
by DNA and a limited number of cellular chromophores 
(including NADH, reduced NADP, riboflavin, and 
porphyrins), are mainly caused by cellular oxidative changes 
induced by reactive oxygen species (ROS) (24,26,27). Several 
studies have found that the ozone layer has decreased 
with the increased use of chlorofluorocarbon (CFC)-
containing products (31). Depletion of the ozone layer and 
increased cumulative UV exposure may be responsible for 

the increased risk of skin cancer in humans with increased 
longevity (32). The skin is a protective barrier organ with 
self-regulating sensory and computational capabilities to 
counteract environmental stresses and maintain and restore 
balance to damaged skin (25). These complex functions 
are coordinated by the cutaneous neuroendocrine system, 
which also communicates in both directions with the 
central nervous, endocrine, and immune systems, all of 
which are consistent with controlling the body’s dynamic 
balance (25,33). Although UV is a crucial determinant 
of the origin and evolution of life on Earth (34), UV 
absorption by the skin not only stimulates mechanisms 
that protect skin integrity and maintain global dynamic 
homeostasis, but it also induces the development of skin 
pathologies such as cancer, aging, and autoimmunity (35). 
After absorbing electromagnetic energy and converting it 
into chemical, hormonal and neural signals in a wavelength-
dependent manner,  UV regulates global  dynamic 
homeostasis, depending on its tissue penetration and the 

Figure 1 Overview of UV radiation and basal cell carcinoma: Solar UV radiation is mainly of UVA, UVB and UBC types, the first two types 
of UV radiation cause immunosuppression and DNA damage to human skin. UVA causes DNA damage through ROS, while UVB directly 
causes DNA damage and immunosuppression, which eventually leads to the formation of basal cell carcinoma. BCC, basal cell carcinoma; 
ROS, reactive oxygen species; UV, ultraviolet. 
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nature of the chromophores with which UV interacts. 
This balancing activity is achieved by activating the 
central nervous system and/or endocrine glands through 
neurotransmission or chemical messengers in the skin (35). 
And this type of regulation follows precise neuroendocrine 
regulatory mechanisms such as hypothalamic-pituitary-
adrenal (HPA) (36), corticotrophin-releasing hormone-
p r o o p i o m e l a n o c o r t i n  ( C R H - P O M C )  ( 3 7 , 3 8 ) ,  
opioids (39), serotonin/melatonergic (27,40,41), secosteroid/
steroidogenic (42-44), or NO systems (45,46).

Several clinical subtypes of BCC include nodular, 
superficial, micronodular, infiltrative, morphologic, 
infudibulocystic, etc. (47-52) (Table 2). Among them, 
nodular, superficial, and morphologic BCCs are the 
most common clinical subtypes (47,53). Different 
clinical subtypes vary in terms of clinical presentation, 
histopathology, and aggressive behavior. Based on various 

prognostic factors, BCC can be classified as low, and high 
risk (54) (Table 3).

According to several epidemiological investigations, 
BCC incidence was found to be less correlated with 
lifetime cumulative sun exposure and more likely to be 
associated with intermittent (recreational) sun exposure 
and childhood exposure (55). Recreational activities, such 
as sunbathing or water sports on the beach, are associated 
with an increased incidence of BCC. However, spectators 
of outdoor sports activities are often unaware of sun 
exposure dangers (56). In addition to occupational and 
recreational UV exposure, UV phototherapy has been 
associated with BCC development.

UV impact on BCC

UV-induced skin carcinogenesis is a complex and sequential 

Table 2 Clinical subtypes of basal cell carcinoma

Subtypes of BCC Clinical characteristics

Nodular Glossy pearly papules or nodules with smooth surface and curled edges, dendritic capillaries, occurring on the 
head and neck (46-48)

Superficial Well-defined and erythematous thin patches or plaques with scales, clear in the center and thinning at the edges. 
Common in the trunk area (48)

Micronodular Erythema or thin papules/plaques

Infiltrative Poorly defined, sclerotic, flat or depressed plaques that are white, yellow or pale pink and may be covered with 
crusts, erosions, ulcers or papules

Morpheaform Infiltrative plaques with faint borders and shiny surfaces, commonly on the head and neck

Infundibulocystic Well-defined pearly papules on the head and neck are common in the elderly

Fibroepithelial Sessile patches of skin color or erythema or pedunculated papules with a predilection for the trunk (49)

Basosquamous Most found on the head and neck (50)

BCC, basal cell carcinoma.

Table 1 The search strategy summary

Items Specification

Date of search April 1, 2020

Databases and other sources searched PubMed database

Search terms used [(basal cell carcinoma) OR (BCC)] AND [(gene mutation) AND (ultraviolet radiation) AND 
(carcinogenesis)]

Timeframe Until April 1, 2020

Inclusion and exclusion criteria No searching restrictions

Selection process Wanlin Fan conducted the selection



Frontiers of Oral and Maxillofacial Medicine, 2023 Page 5 of 16

© Frontiers of Oral and Maxillofacial Medicine. All rights reserved. Front Oral Maxillofac Med 2023;5:9 | https://dx.doi.org/10.21037/fomm-21-31

biological process caused by different wavelengths of UV 
light. UVB can be absorbed directly by DNA, leading 
to DNA damage and altered gene expression through 
intracellular signal transduction, which can induce skin 
cancer. UVA radiation generates ROS, which cause skin 
cancer through secondary damage to DNA and generally 
requires chronic cumulative exposure. Cells could repair 
damaged DNA, but DNA repair may go wrong due to 
genetic or environmental factors. Therefore, the mutation 
of proto-oncogenes and suppressor genes may occur, 
leading to the formation of tumors. Various immune 
responses of the organism are usually decreased after UV 
irradiation, which we call immunosuppression. UVR causes 
damage to DNA and its repair system and changes the 
immune system, leading to progressive genetic changes and 
tumor formation (57).

UVR-induced DNA damage
UVB can penetrate several layers of cells into the dermis 
and perhaps basal cells. The forms of UVB-induced DNA 
photodamage include pyrimidine dimers, purine and 
pyrimidine dimers, purine photoproducts, protein-DNA 
crosslinks single-strand breaks. The most important one is 

pyrimidine dimers (58).
The direct absorption of UVB photons by DNA bases 

leads to photoproducts between two adjacent pyrimidine 
sites [thymine-thymine (TT), cytosine-thymidine (CT), 
thymidine-cytosine (TC), cytosine-cytosine (CC)] on 
the same DNA strand. Products include cyclobutane 
pyrimidine dimer (CPD) and 6-pyrimidine-4-pyrimidinone 
photoproduct (6-4 PP). Both are essential prerequisites 
for the increased frequency of mutations and underlie skin 
cancer induction by UV exposure. Cells can repair 6-4 
PP more efficiently. The TC and CC dimers of CPD are 
the most mutagenic because, in UV-induced skin cancer, 
the p53 gene often shows C→T and CC→TT mutations, 
hence the term UV signature mutation (59). The major 
photoproduct TT dimer is rarely mutated due to DNA 
polymerase’s repair effect. UVB induces dimer formation 
through adenine residues and thymine residues on the 
DNA strand. Although limited in number, such dimers have 
been shown to cause mutations (59). UVB can also induce 
guanine oxidation to produce the purine photoproduct 
8-hydroxy-2'-deoxyguanosine (8-OHdG). 8-OHdG is a 
general marker of oxidative stress. Although it accounts 
for only a small fraction of medium-wave UVB damage, it 

Table 3 Low- and high-risk features of basal cell carcinomas

Grading criteria Features1 Low risk BCC High risk BCC

Clinical Forms Primary Recurrent, metastatic

Immune status Immunocompetent Immunosuppressed

Anatomic location Area L and M Area H

Radiotherapy No Yes

Tumor boundaries Well-defined Poorly defined 

Tumor dimensions Surface area2: area L, <20 mm; area M, 
<10 mm

Surface area2: area L, >20 mm; area M, 
>10 mm

Size/diameter: <5 cm Size/diameter: >5 cm

Involvement of specified nerves Absent Present

Pathologic Histologic type/growth pattern Superficial, nodular, keratotic 
infundibulocystic, fibroepithelioma of 
Pinkus

Micronodular, infiltrative, sclerosing 
morpheaform, basosquamous, 
metatypical/sarcomatoid

Perineural invasion Absent Present, diameter of involved nerve  
≥0.1 mm, multifocality, involvement of 
named nerves

1, features as defined by the National Comprehensive Cancer Network; 2, human skin is divided into three zones according to the risk 
of invasive keratinocyte carcinoma: area H is a high-risk zone (frontal hairline, central face, nose, eyelids, chin, ears, genitalia, hands, 
feet, and bald scalp); area M is a medium-risk zone (cheeks, forehead, scalp, neck, and jawline); and area L is a low-risk zone (trunk and 
extremities, excluding areas H and M). BCC, basal cell carcinoma.
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can induce G→T translocation, leading to gene mutations. 
Besides the above three DNA damages, UVB radiation 
causes other DNA damage types, such as protein-DNA 
cross-linking and single-stranded DNA breaks (60).

UVR-induced DNA repair
Normal human keratinocytes harbor an effective DNA 
damage repair system that prevents multiple genetic 
mutations induced by UV damage. Signaling pathways for 
DNA damage repair include DNA double-strand break 
repair (DSB), nucleotide excision repair (NER), base 
excision repair (BER), mismatch repair (MMR), and post-
replication repair (PRR) (61-64). Two major DNA repair 
systems play a crucial role in UV-induced damage: the NER 
and BER systems. The NER plays a crucial role in repairing 
CPDs and 6-4 PPs (65-68).

The BER system can repair single base lesions such as 
8-OHdG. This pathway involves depurine/depyrimidine site 
nucleic acid endonucleases (APEX1/REF-1), proliferating 
cell nuclear antigen (PCNA), replication protein A (RPA), 
and enzymatic glycosylation (69). Commonly, glycosylases 
recognize the lesion, severing the base’s glycosyl bond and 
the leading DNA strand. The lesion presents as a basic site 
(AP site), identified by the APEX1/REF-1 protein. The 
APEX1/REF-1 protein produces a single-strand break (a 
nick site), then repaired by DNA polymerase I and DNA 
ligase III (69). The BER system activity is controlled by 
the HOGG1 and inhibited by nitric oxide (NO) (70). 
Therefore, UVR-induced NO not only leads to DNA 
damage but also suppresses the BER system’s activity, 
contributing to an increase in gene mutations and the risk 
of skin cancer (69).

UVR-induced DNA mutation
Basal cell carcinogenesis is the result of the interaction of 
multiple genetic and environmental factors. Significantly, 
most of the genes involved in the pathogenesis of BCC 
exhibit mutational features consistent with UV-induced 
DNA damage. After UV irradiation, cells normally repair 
CPD and 6-4 PP lesions through the repair system. 
However, if the repair system is defective or occasionally 
repair errors occur, DNA damage will result in genetic 
mutations. Mutations may affect cell cycle regulation, 
leading to clonal proliferation and immortalized growth, 
eventually causing BCC. 
Hedgehog (HH) pathway genes
The HH pathway is a highly conserved developmental 
pathway involved in organogenesis, stem cell maintenance, 

tissue repair, and regeneration. In the skin, it maintains 
stem cell populations and controls the development of hair 
follicles and sebaceous glands (71). The HH pathway is 
mainly inactive in adults, except for its functions in tissue 
repair and maintenance (72). The major components of 
the HH pathway include three secreted ligands [sonic HH 
(SHH), Indian HH, and desert HH], a negatively regulated 
receptor [Patched (PTCH)], a positively regulated receptor 
[smoothened (SMO)], and glioma-associated oncogene 
(GLI) transcription factors (GLI1, GLI2, and GLI3) 
(72,73). HH signaling relies on primary ciliary structures, 
which are highly specialized microtubule-based organelles 
that protrude from its plasma membrane in nearly all 
types of cells and act as sensors of extracellular signals 
(74,75). Usually, extracellular HH ligands bind to PTCH1 
receptors, thereby relieving the inhibitory effect of PTCH1 
on SMO. Active SMO migrates to primary cilia, a highly 
specialized microtubule organelle that acts as a sensor of 
extracellular signals. SMO activates a signaling cascade of 
interacting proteins, including a repressor of fusion (SUFU), 
which leads to activation of the GLI family of transcription 
factors. In the lack of HH ligand, PTCH localizes to cilia 
and inhibits SMO activity by blocking SMO transport 
and localization to cilia (76). GLI transcription factors 
are sequestered in the cytoplasm through various protein 
mediators such as protein kinase A (PKA) and SUFU. GLI 
undergoes protease cleavage and the resulting blockers 
form GLI translocations to the nucleus, thereby repressing 
translation of HH target genes (Figure 2A) (76).

Aberrant HH signaling activation is a hallmark of basal 
cell carcinogenesis (77). A recent study indicated that over 
85% of BCCs have defects in the HH signaling pathway 
(78,79). Somatic mutations in PTCH were found in 90% 
of sporadic BCC (80), and gain-of-function mutations 
in SMO were detected in BCC (81). In particular, 
recurrent mutations and functional studies in SMO have 
shown that these mutations lead to abnormal activation 
of HH signaling and promote tumor development  
(Figure 2B) (81). The frequency of PTCH mutations 
in BCC patients has been reported to be 11–75% 
(73,78,80,82-89). About half of these mutations carry the 
UV signature (i.e., C→T and CC→TT transitions at the 
pyrimidine locus) (78,83-85,88-90), and these mutations are 
associated with radiation dose. However, the mutation was 
not present in SCC, suggesting that PTCH mutations are 
critical in BCC but not in SCC.

In addition to the canonical HH pathway, which relies on 
HH-PTCH1 binding and SMO activation, transcriptional 
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or post-translational modification of GLI can be executed 
by interacting with various other different oncogenic 
signaling networks [epidermal growth factor receptor 
(EGFR), insulin-like growth factor (IGF), transforming 
growth factor (TGF) β, protein kinase C, (phosphoinositide 
3-kinase (PI3K), and nuclear factor κB (NF-κB)]. Non-
canonical HH signaling pathways (e.g., EGFR, IGF, TGF 
pathways) may synergistically promote BCC development 
through transcriptional or post-translational modifications 

of GLI bypassing HH-mediated SMO activation (77,91,92). 
RAS, TGF, PI3K/AKT, NF-κB, and atypical protein kinase 
C ι/λ  (aPKCι/λ) can positively regulate GLI activity, and 
p53 and PKA negatively regulate GLI activity. The non-
canonical regulation of GLI may partly explain the failure 
of some SMO antagonists in clinical trials. For example, 
high levels of PKCι/λ were found in basal cells resistant 
to Vismodegib (93). Therefore, the use of SMO or GLI 
antagonists in combination with therapeutic strategies 

Figure 2 HH pathway in embryonic development (A) and basal cell carcinoma (B). HH, Hedgehog; BCC, basal cell carcinoma; SMO, 
smoothened; Gli, glioma-associated oncogene; UVR, ultraviolet radiation.
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capable of inhibiting atypical HH signaling may reduce 
the incidence of resistance. Interestingly, topical treatment 
with imiquimod enhances PKA activity, which leads to GLI 
phosphorylation and cleavage into its blocker form (94).
P53 gene
Basal cell carcinogenesis is associated with the inactivation 
of the P53 gene. The oncogene P53 is involved in 
the regulation of the cell cycle and the activation of 
programmed cell death (95,96). As a gatekeeper of the 
genome, P53 monitors the integrity of the genome. Once 
a cell undergoes DNA damage, P53 activates cell cycle 
checkpoints to repair the damaged DNA. If the repair fails, 
P53 can cause programmed cell death, thereby preventing 
mutant cells’ production. When various carcinogens 
inactivate P53, it cannot repair DNA damage and fails to 
initiate programmed cell death when repair fails, ultimately 
leading to cell transformation (58). About 50% of BCCs 
have detectable P53 mutations. Most of the mutations are 
C-T, CC-TT alterations, which indicate the importance 
of UV in BCC with P53 gene mutations (90, 97-99). One 
study found that lower levels of P53 mutations were indeed 
found in BCC patients who used sunscreen compared to 
those who did not use sunscreen (100).
RAS gene
RAS genes are divided into three proto-oncogenes, H-ras, 
K-ras, and N-ras, which together encode 21 kDa proteins. 
These three genes share 70% homologous sequences (101). 
RAS proteins are located on the inner surface of cells and 
bind to GTP, thus participating in signal transduction. It 
was found that RAS mutations occurred mainly at codons 
12, 13, and 61 (102). When bound to GTP, the RAS 
gene is activated. The mutation may lead to activation by 
decreasing the rate of hydrolysis of GDP by GTP. However, 
RAS genes do not seem to be common in BCC at present.

UVR-induced immunosuppression
UVR-induced immunosuppression plays a crucial role in 
skin carcinogenesis (103). UVR production such as CPDs 
has been reported to cause immunosuppression (104). UVR 
significantly reduces the antigen-presenting capacity of 
skin dendritic cells, thereby suppressing the local immune 
response (Langerhans) and promoting the evasion of tumor 
immune surveillance by premalignant and early melanoma 
cells (36,37,103,105). Furthermore, exposure to UVB 
promotes the migration of UVR-damaged Langerhans 
cells to regional lymph nodes, which leads to the expansion 
of regulatory T cells and decreases effector and memory 

T cells, resulting in suppression of the adaptive immune 
system (105,106). UVR also stimulates other molecules 
with immunosuppressive properties such as prostaglandins, 
platelet-activating, IL-10, and ROS (107). 

UVB is a significant skin stressor that, on the one 
hand, causes several skin lesions, including cancer  
(108-110), and on the other hand, is necessary for vitamin 
D production (111,112), activation of local neurohormones 
( 25 ,38 )  and  s t imu la t ion  o f  me l an in  depos i t i on  
(4,34,38-40,109,113-116). UVB induces the production 
of  POMC pept ides  that  are  immunosuppress ive 
(33,37,38) and glucocorticoids at local and systemic levels  
(117-119). Cutaneous melanin pigments play a crucial 
role in protection from the harmful effects of solar 
radiation. Melanin formation is complexly regulated by 
multiple factors that interact in a hormonal, automatic, 
quasi-automatic, or endocrine manner through pathways 
activated by receptor-dependent and non-dependent  
mechanisms (115). The above findings fully illustrate 
t h e  a p p a r e n t  r e l a t i o n s h i p  b e t w e e n  U V R  a n d 
immunosuppression in skin cancer formation.

Treatment of BCC

Surgery
The treatment of BCC is usually determined by patient 
characteristics, such as comorbidities and ages, and tumor 
characteristics, classified into low- and high-risk tumors 
(Table 2). The majority of treatment options for primary 
BCC are surgical, including resection with postoperative 
margin evaluation and Mohs micrographic surgery (MMS) 
(120,121). Low-risk primary BCC is usually treated using 
surgical resection. High-risk BCC may then be considered 
for MMS, especially for sclerosis, recurrence, large BCCs, 
poorly defined, and tumors in anatomic areas that require 
tissue preservation, such as the eyes, nose, lips, and  
ears (122,123).

Non-surgical destructive treatments
Non-surgical destructive treatments include electrodissection 
and curettage (EDC) and cryosurgery. EDC uses electricity 
to destroy the remaining cancer cells in the tumor bed when 
scraping the tumor from the skin and is mainly applied to 
low-risk BCC in non-hairy areas of the extremities and trunk 
(122,123). Cryosurgery uses liquid nitrogen to destroy tumor 
cells through a freeze-thaw cycle and is suitable for low-risk 
tumors where other effective treatments are limited (122-126). 
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Light-based therapy
Light-based therapies mainly use discrete wavelengths of 
light to target BCC and can be divided into photodynamic 
therapy (PDT) and laser. PDT uses photosensitizers to 
wake up in rapidly dividing cells selectively, and the ROS 
produced destroys the rapidly proliferating cancer cells 
when exposed to the light source. PDT can be used to 
treat low-risk superficial tumors in non-hairy areas. Laser 
therapy is used to ablate skin cancers with a carbon dioxide 
laser (122,127). Alternatively, a pulsed dye laser is employed 
to selectively convert light into heat energy within the 
blood vessels, thereby destroying tumor tissue (128,129). 

Radiation therapy
In radiation therapy, high-energy rays such as X-rays or 
particles (photons, electrons, or protons, most commonly 
electron beams) are traditionally used to destroy BCC 
(122,130). X-ray brachytherapy can also be administered 
to the tumor with the aid of a shielded surface. Radiation 
therapy can be given first when surgery is not feasible for 
low-risk tumors. Radiotherapy should not be used for skin 
cancer patients who have genetic disorders (e.g., basal cell 
nevus syndrome, erythroderma) or connective tissue diseases 
(e.g., lupus, scleroderma). It is also not recommended for 
patients younger than 60 years of age (131). 

Topical treatment
Topical treatment regimens are usually appropriate 
for superficial BCC, including 5-fluorouracil (132), 
imiquimod (132), tazarotene (133), ingenol mebutate (134) 
and diclofenac (135). Dosing regimens and outcomes 
vary between drugs and are inf luenced by tumor 
location, side effects, and patient compliance. Patients 
with contraindications to surgery could be treated 
with intratumoral drug injections (e.g., methotrexate, 
5-fluorouracil, bleomycin, or interferon) (136). 

Molecular therapy
Identifying tumor-specific genetic alterations is currently 
one of the hottest areas of cancer research, and the resulting 
new molecular therapeutic approaches include mainly target 
therapy and immunotherapy.
Target therapy
Targeted therapy is available for patients with metastatic 
BCC or locally advanced unresectable BCC. This therapy 
focuses on SMO inhibitors (vismodegib and sonidegib) 

to inhibit the activation of the SHH signaling pathway 
that is frequently mutated in BCC (137-141). The 
FDA approved Vismodegib in 2012 for the treatment 
of local advanced or metastatic BCCs (142). Follow-up 
studies found objective efficacy rates of 48% and 33% 
in patients with locally advanced and metastatic BCC,  
respectively (143). However, almost all patients experienced 
at least one of the following adverse reactions: hair loss, 
muscle cramps, weight loss, postural disturbances, diarrhea, 
or fatigue. And grade 3 or 4 adverse reactions occurred 
in 25% of patients (144). Another study showed that 
vismodegib significantly reduced the incidence of new 
BCC and the size of existing tumors. However, only 17% 
of patients were able to tolerate the drug consistently 
throughout the study period. Hepatotoxicity has also been 
reported, and the drug should be used with caution in 
patients with severe liver disease (145). 

A second HH pathway inhibitor, sonidegib, is approved 
by the FDA to treat locally advanced BCC that has recurred 
after surgery or radiation therapy or that cannot be treated 
with surgery or radiation therapy. A clinical (BOLT) 
trial of LDE225 found response rates of 44% to 58% 
for locally advanced BCC and 8% to 17% for metastatic  
BCC (146). Notably, Hou et al. recently reported that the first 
successful case of periocular locally advanced BCC with oral 
sonidegib (141). However, almost all patients experienced at 
least one adverse reaction, with the most commonly occurring 
grade 3 or 4 adverse reactions being creatinine kinase and 
lipase elevations. Unlike vismodegib, sonidegib should be taken 
on an empty stomach and should not be used concomitantly 
with potent or moderate CYP3A inhibitors (147). 
Immunotherapy
Immunotherapy blocks immune checkpoint proteins 
by monoclonal antibodies such as anti-programmed 
cell death-1 (PD-1) and PD-ligand-1 (PD-L1), thereby 
enhancing the anti-tumor immune response. Several 
immune-related markers have been found to correlate with 
the pathogenesis of BCC (148-153), suggesting the potential 
use of immunotherapy to treat BCC. Recent case reports 
have found the efficacy of anti-PD-1 therapy for advanced 
BCC, both on initial treatment and after developing 
resistance to HH pathway inhibitors (154-156). The 
effectiveness of pembrolizumab (anti-PD-1) in combination 
with vismodegib for the treatment of metastatic or 
unresectable BCCs is being studied (NCT02690948) in a 
phase 1 clinical trial (157).



Frontiers of Oral and Maxillofacial Medicine, 2023Page 10 of 16

© Frontiers of Oral and Maxillofacial Medicine. All rights reserved. Front Oral Maxillofac Med 2023;5:9 | https://dx.doi.org/10.21037/fomm-21-31

Prevention of UVR-induced BCC

As solar UVR is the most important environmental risk factor 
for the development of BCC (158), protection against UVR 
is a fundamental approach to preventing BCC. The measures 
include avoiding direct exposure to the sun at noon (10 a.m. 
to 2 p.m.), taking care not to get burned, avoiding tanning 
and avoiding tanning beds; taking special care near water, 
snow, and sand; taking care to find shade; wearing protective 
clothing, hats, and sunglasses when necessary; applying 
sunscreen to protect against UVA and UVB radiation-
induced immunosuppression and DNA damage (159) as well 
as regular whole-body skin cancer screening (160).

Furthermore, new chemoprevention methods have 
emerged, such as the use of nicotinamide (vitamin B3) (161). 
Vitamin B3 prevents ATP depletion and glycolytic blockage 
caused by UVR, thus enhancing cellular DNA repair. It also 
reduces radiation-induced immunosuppression. A series of 
studies (161-163) concluded that nicotinamide (500 mg/d 
twice/d) could be an effective method for preventing BCC, 
especially for secondary prevention in high-risk patients 
with existing BCC. Besides, some studies have found 
that the cyclooxygenase-2 (COX-2) inhibitor celecoxib 
reduces the risk of BCC (164,165). Due to the lack of 
relevant evidence and conflicting results, it is currently 
not recommended for chemoprevention (166). PDT may 
reduce the incidence of actinic keratoses (AK) cases (167), 
but its preventive effect on BCC has been rarely reported 
and needs to be validated in more extensive studies (168).

Long-term monitoring is also essential for patients with 
BCC. In the National Comprehensive Cancer Network 
(NCCN) guidelines, it is recommended that patients 
with BCC undergo a whole-body skin examination every  
6 months to 1 year for the first 2 years after diagnosis and 
then annually after that (169). Patients are also encouraged 
to self-monitor.

Conclusions

No doubt, UVR is a fundamental cause of BCC. The 
role and mechanism of UVR in the development of 
BCC are discussed in detail. Therefore, physicians 
should educate the public about the importance of 
UV protection in preventing BCC. Meanwhile, the 
further study of the molecular genetics of UVR in the 
development of BCC may promote new targeted therapies 
and chemoprevention, resulting in improved therapeutic 
efficacy and prevention.
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