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Outline of the molecular pathogenesis of 
gastrointestinal stromal tumor (GIST)

GISTs are the most common mesenchymal tumors affecting 
the gastrointestinal tract (1). GISTs were formerly regarded 
as smooth muscle or neural neoplasms referred to as 
leiomyomas, leiomyosarcomas or schwannomas. However, 
identification of KIT mutations and high CD34 and 
c-KIT (CD117) positivity rates in these tumors led to the 
establishment of a new category of stromal tumors (2). The 
cellular origins of GISTs are thought to be interstitial cells 

of Cajal (ICCs), which are located in the myenteric plexus 
of the gastrointestinal tract, where they act as pacemaker 
cells for gastrointestinal motility. Subsequent studies 
showed that DOG1 (discovery on GIST1), also known 
as TMEM16A or ANO1, is a novel diagnostic marker of 
GISTs (3,4). Both DOG1 and KIT can serve as positive 
controls for immunohistochemical analysis in ICCs, though 
DOG1 is not expressed in KIT-positive mast cells (5). 
Protein kinase C θ (PKCθ) is specifically upregulated in 
GISTs as compared to other soft tissue tumors and, thus, it 
is also a useful diagnostic marker of GISTs (6). 
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Activating mutations in the receptor tyrosine kinase gene 
KIT or platelet-derived growth factor receptor alpha (PDGFRA) 
play essential roles in the pathogenesis of GISTs through 
upregulation of downstream signaling pathways, including 
RAS/RAF/MAPK and PI3K/AKT/mTOR (Figure 1) (7).  
Mutations in RAS family genes and BRAF play a similar 
role, but are less frequently observed in GISTs (8). 
Succinate dehydrogenase (SDH)-deficient GISTs are 
characterized by wild-type KIT/PDGFRA and dysfunctional 
mutation or downregulation of members of the SDH 
heterotetramer (SDHA, SDHB, SDHC and SDHD). SDH 
deficiency and the resultant accumulation of succinate 
promote GIST development through different mechanisms 
than do oncogenic mutations, including upregulation of 
HIF1α and inhibition of DNA demethylation (Figure 1). 
Neurofibromin 1 (NF1) also acts as a tumor suppressor gene 
in GISTs, and patients with neurofibromatosis type I are 
known to be at high risk of developing multiple GISTs (9). 

GISTs with no mutations in KIT, PDGFRA or RAS 
pathway genes or SDH-deficiency are referred as wild-
type GISTs. They are characterized by overexpression of 
CALCRL/COL22A1, the tyrosine kinase NTRK2, the 
cyclin dependent kinase CDK6, and ERG, a member of 
the ETS-transcription factor family (10). A subset of wild-
type GISTs exhibit mutations in TP53, MEN1 or MAX, and 

are characterized by a neural-committed phenotype and 
upregulation of the master endocrine regulator ASCL1 (11). 

Chromosomal instability plays an important role in 
the development of many tumor types, and GISTs are 
characterized by various chromosomal abnormalities. For 
instance, losses of 14q and 22q frequently occur during 
the early stages of GIST development, and some of the 
chromosomal aberrations are associated with the clinical 
characteristics of GISTs (12). Epigenetic alterations, 
including aberrant DNA methylation and histone 
modification, have also been implicated in the development 
of GISTs (13,14). Recent studies have begun to shed 
light on the physiological and pathological importance 
of noncoding RNAs, and several noncoding RNAs are 
reportedly associated with the clinicopathological features 
of GISTs (15). 

GISTs are rare tumors with an annual incidence of 10 
to 20 per 1 million cases, but recent studies have shown 
that small GISTs may be occurring more frequently 
than previously documented. For instance, Agaimy et al. 
reported that microGISTs (less than 10 mm) are found 
in 22.5% autopsies performed in individuals older than  
50 years (16). These lesions were located in the cardia, 
fundus, or proximal body of the stomach, but not in the 
antrum, duodenum, or remainder of the bowel. All tumors 

Figure 1 Key signaling pathways in GIST. The majority of GISTs harbor KIT or PDGFRA gain-of-function mutations, which lead to 
activation of downstream signaling, including via the MAPK, PI3K and STAT3 pathways. Minor populations of GISTs exhibit mutation 
of NF1, RAS or RAF, which leads to the activation of MAPK signaling. SDH deficiency also contributes to GIST development through 
activation of HIF1α and inhibition of DNA demethylation. GIST, gastrointestinal stromal tumor; NF1, neurofibromin 1; PDGFRA, platelet-
derived growth factor receptor alpha.
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showed a histologically spindle cell morphology, and 57% 
of the tumors showed hyalinization and calcification. 
MicroGISTs were immunohistochemically positive for 
CD117, CD34, and vimentin, while KIT and PDGFRA 
mutations were found in 46% (11 of 24) and 4% (1 of 24) of 
these tumors, respectively (16). Kawanowa et al. investigated 
stomach specimens resected from 100 gastric cancer patients, 
and found a total of 50 microGISTs in 35 patients (17).  
All tumors were immunopositive for KIT or CD34 and 
negative for desmin. A large majority (45 of 50) of these 
tumors were located in the upper stomach, while only 8%  
(2 of  25)  exhibited KIT  mutat ion.  In contrast  to 
microGISTs, another study reported that KIT or PDGFRA 
mutations were detected in nearly all (12 of 13) small GISTs 
(less than 20 mm) (18). These results highlight the fact 
that although KIT/PDGFRA mutations are early events 
during GIST development, they are not sufficient for the 
progression of GISTs.

KIT mutations in GIST

KIT encodes the 145 kDa receptor tyrosine kinase c-KIT, 
which was identified as a normal cellular homolog of the 
feline sarcoma viral oncogene v-kit (19). KIT belongs to 
the type III receptor tyrosine kinase family, which includes 
PDGFRA, PDGFRB, macrophage colony stimulating 
factor receptor (CSF1R) and FL cytokine receptor 
(FLT3) (20). KIT is composed of an extracellular domain, 
juxtamembrane domain, tyrosine kinase domain I and 
tyrosine kinase domain II. KIT is maintained in an inactive 
form through auto-inhibition of the kinase domain (21). 

Stem cell factor (SCF) is a KIT ligand, the binding of 
which promotes dimerization of the enzyme, ATP binding 
to the tyrosine kinase domain and auto phosphorylation of 
the tyrosine residue in the juxtamembrane domain (22). The 
SCF-KIT signal activates downstream pathways, including 
the MAP kinase cascade and PI3K/AKT pathway. The 
former leads to upregulation of such transcriptional factors 
as MYC, ELK, CREB and FOS, while the latter results in 
downregulation of cell cycle inhibitors and promotion of 
anti-apoptotic effects. 

Approximately 70% to 80% of GISTs exhibit KIT 
mutations (23,24). The critical role of KIT mutation in 
GIST development has been well studied. For instance, the 
mutant forms of KIT protein harbor autonomous activity 
in the absence of ligand SCF binding (2), and a mutant Kit 
knock-in mouse model resembles familial GIST syndrome 
patients and shows diffuse ICC hyperplasia or GIST-

like tumors (25,26). The mutant KIT activates multiple 
downstream signals, including MAPK, AKT, S6k, STAT1 
and STAT3, in a SCF independent manner (27). The 
Kitv558Δ/+ mouse model shows that the PI3K/mTOR pathway 
is also upregulated in GISTs, and treatment with the mTOR 
inhibitor everolimus suppresses tumor proliferation (27).  
An ETS family member, ETV1, is regulated by active KIT, 
and cooperates with KIT to promote GIST growth. ETV1 
is highly expressed in GISTs and acts as a transcriptional 
master regulator by binding to enhancer regions (28). ETV1 
and KIT form a positive feedback loop to regulate target 
genes through stabilization of ETV1, and combination 
treatment with the KIT inhibitor imatinib and the MEK 
inhibitor MEK162 suppresses GIST growth in vivo and  
in vitro (29). 

PDGFRA is another member of the receptor tyrosine 
kinase family and contributes to cell viability through 
ERK-dependent stabilization of ETV1 in KIT-mutant 
GISTs (30). Heat shock protein 90 (HSP90) is involved in 
the degradation of wild-type and mutant KIT (31), and a 
preclinical study showed that a HSP90 inhibitor promoted 
KIT degradation and suppressed GIST growth in vitro and 
in vivo (32). In a clinical trial, however, the response rate to 
IPI504, an ansamycin analogue HSP90 inhibitor, was low 
with a high toxicity rate (33). CDC37, a HSP90 cofactor, 
regulates KIT activation and expression and also interacts 
with oncogenic KIT (33).

Within GISTs, KIT mutations are found in several 
gene regions, including exons 8, 9, 11, 13, 14, 15, and 17. 
Exons 8 and 9 encode the extracellular domain, exon 11 
encodes the juxtamembrane domain, and exons 13 and 17 
encode the tyrosine kinase domain. Approximately 70% 
of GISTs exhibit mutations in exon 11, and 5% to 10% of 
GISTs show mutations in exon 9. Mutations in exon 11 
disrupt auto-inhibition and lead to constitutive activation 
of KIT (34). Codons 557-558 in exon 11 are mutation hot 
spots, and deletions of W557 and/or K558 are associated 
with a metastatic phenotype (35) and poor post-operative 
recurrence-free survival (36). Another study showed that 
deletion-including codon 557/558 mutations are more 
strongly associated with larger tumor size, high mitotic 
count, high risk grade, and poor disease-free survival 
than other mutations in exon 11 (37). A small number 
of GISTs (6/427, 1.4%) show deletions in the boundary 
between intron 10 and exon 11, which could lead to loss 
of the normal splice acceptor site and p.K550_K558del 
mutation (23). GISTs with single nucleotide substitutions 
in exon 11 show indolent phenotype, lower mitotic activity, 
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smaller tumor size, and favorable disease free survival 
(23,38). Within exon 11, tandem internal duplications 
occur mainly at the 3' end of the exon, and codons 576-579  
are preferentially involved (23,39). Mutations in exon 9 
are characterized by tandem duplication of six nucleotides 
at codons 502-503 (p.A502_Y503dup), and are associated 
with small bowel location, larger tumor size, older age  
(>60 years), female gender and spindle cell morphology (39). 

Approximately 1% to 2% of KIT mutations are found 
in exons 13 and 17 (24,37,40). Most exon 13 mutations 
(e.g., c.1945A>G and c.1948G>A) result in p.K642E, which 
suppresses auto-inhibition of the juxtamembrane domain (41).  
About 70% of exon 17 mutations are c.2487T>A (p.N822K), 
while other infrequent mutations (p.N822Y, pN822K, 
p.N822H, p.D816F, p.D816Y, p.D820Y, p.D820V and 
p.Y823D) have also been identified (23,40). Exon 17 
encodes the activation loop of the tyrosine kinase domain, 
and mutations in exon 17 are thought to be involved in 
maintenance of the constitutively active conformation (40). 
GISTs with mutations in exons 13 and 17 are associated with 
spindle cell morphology, and exon 13 mutations in particular 
correlate with the malignant potential of GISTs (40). 

Mutations in exon 8 are rarely observed in GISTs, and 
in two cases with p.D419del mutation, one developed 
multiple peritoneal metastasis (42). Another study reported 
that, among three GISTs with exon 8 mutations (one case 
with p.D419del and two cases with heterozygous mutations 
of p.TYD417-419Y), all tumors were located at extragastric 
sites, and two cases showed distant metastasis (43).  
These reports suggest that mutations in exon 8 are 
potentially associated with the malignant phenotype of 
GISTs. Mutations in exon 14 are found as secondary 
mutations occurring after treatment with tyrosine kinase 
inhibitors (44,45). Mutations in exon 15 are rarely found 
in GISTs, and only c.2153C>G substitutions have been 
identified (46).

PDGFRA mutations in GIST

Approximately 10% to 15% of GISTs exhibit PDFRA 
mutations (47). These mutations are found in exon 12 
(juxtamembrane domain), exon 14 (ATP biding domain), 
and exon 18 (activation loop), and cause constitutive 
PDGFRA activation in the absence of ligand binding, 
leading to downstream activation of signaling pathways. 
Like KIT mutations, PDGFRA mutations can activate 
a series of signal transduction molecules, including 
MAPK, AKT, STAT1 and STAT3 (47). HSP90 and a co-

chaperone, CDC37, stabilize PDGFRA, and treatment with 
a HSP90 inhibitor represses AKT signaling (48). KIT and 
PDGFRA are close homologues, and their mutation occurs 
in a mutually exclusive manner. GISTs with PDGFRA 
mutations are characterized by gastric location, epithelioid 
morphology, and an indolent clinical course (49,50).

The most common PDGFRA mutation is p.D842V, which 
accounts for 60% to 65% of PDGFRA mutations in GISTs 
(approximately 5% of all GISTs) (23,37). This mutation 
is located in exon 18, a region encoding the second kinase 
domain, and is associated with extremely favorable disease-
free survival as compared to other mutation types (37).  
Mutations in exon 14 are reportedly found in about 1% 
of all GISTs (51). The majority of exon 14 mutations are 
c.2125C>A or c.2125C>G missense mutations, which 
result in p.N659K, and c.2123A>T (p. N659Y) has also 
been reported (51). Mutations in exon 14 are associated 
with a gastric location, favorable clinical outcome and 
epithelioid morphology (51). Mutations in exon 12 
are rarely observed (less than 1% of all GISTs) and 
include substitutions, small deletions and insertions (52). 
Locations and frequencies of KIT and PDGFRA mutations 
are summarized in Figure 2A.

Familial GIST

Familial GIST syndrome is characterized by germline 
muta t ion  o f  KIT  o r  PDGFRA ,  mu l t ip l e  GISTs , 
hyperpigmentation, mast cell tumors and ICC hyperplasia-
associated dysphagia (53,54). KIT mutations observed 
in individuals with familial GIST include p.V559A, 
c . 1 7 5 6 _ 1 7 5 8 d e l G AT  a n d  p . W 5 5 7 R  i n  e x o n  1 1  
(juxtamembrane domain) (55-57), deletion of one of 
two consecutive valine residues located between the 
transmembrane and tyrosine kinase domains (58), deletion 
of codon 419 in exon 8 (extracellular domain) (59), and 
D820Y substitution in exon 17 (53). A missense mutation 
(D846Y) in the exon 18 of PDGFRA has been also identified 
in familial GIST individuals (54). PDGFRA D846 is 
homologous to KIT D820, which is located within the 
tyrosine kinase domain. Most of the affected individuals 
develop multiple GISTs by middle age, and the tumors show 
histological features similar to sporadic GISTs, except for 
expansion of the myenteric plexus Cajal cell population (53).  
The ICC hyperplasia in familial GIST individuals represents 
non-neoplastic polyclonal proliferation, whereas GISTs in 
the same patients exhibit monoclonal proliferation (60).  
Mutations in familial GIST are summarized in Figure 2B.
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SDH-deficient GIST

The most frequent molecular alteration in GISTs with 
wild-type KIT/PDGFRA is SDH deficiency. SDH consists 
of four subunits (SDHA, SDHB, SDHC, and SDHD), 
and is a component of the citric acid cycle and respiratory 
electron transfer chain (Figure 3) (61). SDH deficiency 
underlies Leigh syndrome, a neurodegenerative disorder 
caused by mitochondrial dysfunction, or several types of 
tumors, including paraganglioma, GIST, renal cell carcinoma 
and pituitary adenoma (62). SDH-deficient GISTs are 
immunohistochemically negative for SDHB due to its 
decreased expression or mutations in other SDH subunits 
that destabilize the SDH heterotetramer (63). Approximately 
30% of SDHB-negative/SDH-deficient GISTs are also 
immunohistochemically negative for SDHA, the loss of 
which correlates generally with SDHA mutation (64).  
Patients with SDHA-positive GISTs are characterized by 
older age, female predominance, and a higher rate of liver 
metastasis than among those with SDHA-negative GISTs, 
although the mitosis rate, tumor size and clinical course are 
similar between SDHA-positive and -negative cases (64,65).

SDH deficiency results in the accumulation of succinate, 
which is a competitive inhibitor of ɑ-ketoglutarate-
dependent dioxygenases, including the TET family of 
5-methylcytosine hydroxylases (66). Members of the 
TET family are active DNA demethylases that convert 
5-methylcytosine to 5-hydroxymethylcytosine, and 
inhibition of TET activities can lead to aberrant DNA 
methylation in GISTs. In fact, a genome-wide DNA 
methylation analysis of SDH-deficient GISTs revealed 
greater DNA hypermethylation than in GISTs with KIT 
mutation (67). 

Accumulation of succinate is also involved in the 
stabilization of HIF1-ɑ ,  which controls oncogene 
transcription (68). Insulin-like growth factor 1 receptor 
(IGF1R) is overexpressed in KIT/PDGFR wild-type GISTs, 
and the expression is particularly elevated in SDH-deficient 
GISTs (69-71). The IGF family consists of two ligands 
(IGF1 and IGF2), two receptors (IGFR1 and IGFR1) and 
6 IGF binding proteins (IGFBPs), and binding of IGF and 
IGFR activates downstream signals, including the MAPK 
and PI3K/AKT pathways (72). Inhibition of IGF1R induces 
apoptosis and represses AKT and MAPK signaling in GIST 
cells, which implicates the IGF signal in the development of 
SDH-deficient GISTs (73). 

The Carney triad, Carney Stratakis syndrome, and 
several sporadic GISTs are included among the SDH-
deficient GISTs (Figure 3) (1). Carney triad is characterized 
by gastric stromal sarcoma, paraganglioma, and pulmonary 
chondroma. It predominantly affects young females but 
has no heritability (74-76). Carney Stratakis syndrome is 
characterized by gastric GISTs and paragangliomas that 
exhibit mutation of the SDH subunits (77). This syndrome 
is inherited in an autosomal dominant manner, and some 
patients carry germline mutations in SDH family genes 
(64,65). 

RAS signaling gene mutations in GIST

Mutations in RAS family genes and BRAF are found in a 
subset of GISTs. RAS proteins act as molecular switches that 
change between active GTP-bound and inactive GDP bound 
states. This switching mechanism is highly conserved among 
species, and conversion from the inactive GDP-bound form 

Figure 2 KIT and PDGFRA mutations in GIST. (A) Locations and frequencies of KIT and PDGFRA mutations in sporadic GISTs; (B) 
locations of KIT and PDGFRA mutation in familial GISTs. GIST, gastrointestinal stromal tumor; PDGFRA, platelet-derived growth factor 
receptor alpha.
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to the active GTP-bound form is mediated by guanine 
nucleotide exchange-factors (GEFs), while conversion back 
to the inactive form is mediated by GTPase-activating 
proteins (GAPs) (78). KRAS is frequently mutated in 
pancreatic, colorectal, and lung cancers, and most mutations 
occur at codon 12 or 13. The replacement of glycine at 
codon12 or 13 is thought to prevent inactivation by GAPs, 
which results in RAS activation in the absence of upstream 
stimulation (79). The BRAF V600E mutation is detected 
in malignant melanoma and thyroid and colorectal cancers  
(80-82). The mutant BRAF cooperates with Rac1b, AKT3 
and other signal molecules to promote tumor cell viability 
and proliferation (83). 

Miranda et al. detected KRAS mutations in 3 of 60 GISTs 
(5%) (8). In all three cases, the KRAS mutation was at codon 
12 and/or 13 (G12D, G13D and G12A/G13D). The tumors 
carrying the G12D and G12A/G13D mutations showed 
deletions at exon 11 of KIT (Δ570-576 and Δ579), while 
the tumor with the G13D mutation exhibited PDGFRA 
mutation at exon 18 (D842V). 

Multiple studies also identified the BRAF V600E 
mutation in GISTs with wild-type KIT/PDGFRA (84-86).  
Huss et.al. analyzed a cohort of 444 GISTs (272 KIT/
PDGFRA-mutant and 172 wild type GISTs) and detected 
BRAF mutations in seven tumors (1.6% of all GISTs and 
3.9% of wild-type GISTs) (87). Because BRAF mutation 
is found in small GISTs with diameters of 4 mm, it is 
considered to be one of the earliest events in the GIST 
development (88). 

Other gene mutations in GIST

In addition to the mutations in well-known key driver genes, 
including KIT and PDGFRA, recent studies have revealed 
genetic alterations of other tumor-related genes in GISTs. 
For instance, EGFR mutations are found in 0.93% (3/323) 
of primary GISTs, and do not overlap with mutations in 
KIT, PDGFRA, KRAS or BRAF (89). EGFR mutations are 
associated with a stomach location, female gender and low 
recurrence rate. PIK3CA mutation (p.H1047L) has also been 
reported in a GIST case with KIT exon 11 deletion (84). 

Analysis of 24 wild-type GISTs (without mutations 
in KIT/PDGFRA/RAS signal genes or SDH deficiency) 
identified 7 commonly mutated genes, ARID1B, ATR, 
FGFR1, LTK, SUFU, PARK2 and ZNF217 (90). Two of 
these tumors harbored FGFR1 gene fusions (FGFR1-
HOOK3 and FGFR1-TACC1) and one exhibited ETV6-
NTRK3 fusion. The ETV6-NTRK3 fusion transcript 
encodes the helix-loop-helix dimerization domain of ETV6 
fused to the protein tyrosine kinase domain of NTRK3 (91),  
and the same fusion gene has been identified in breast 
carcinoma (92). 

Alteration in protein phosphatase 2 regulatory subunit A 
alpha (PPP2R1A) causes dysfunction of protein phosphatase 
2A (PP2A). Toda-Ishii et al. found PPP2R1A mutations in 
17 of 94 (18%) GISTs, while a majority of the PPP2R1A 
mutant GISTs (16 of 17) harbored mutations in KIT, 
PDGFRA or RAS family genes and a remaining case showed 
SDH deficiency (93). BRCA1 and BRCA2 are well known 

Figure 3 SDH-deficient GISTs caused by dysfunction of SDH complex. (A) SDH complex is a component of the citric acid cycle and 
respiratory electron transfer chain; (B) Carney Stratakis syndrome, Carney triad, and a subset of sporadic GISTs are included in SDH-
deficient GISTs. SDH, succinate dehydrogenase; GIST, gastrointestinal stromal tumor.
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tumor suppressor genes in breast and ovarian cancer, and 
a potential association between BRCA2 and GIST has 
been reported. An individual with a BRCA2 8642del3insC 
germline mutation developed prostate cancer, breast cancer 
and GIST (94). 

Tumor suppressor genes in GIST

Neurofibromatosis type1 is an inheritable disease caused 
by bi-allelic loss of the NF1 gene (95). Neurofibromin 
contains a GAP-related domain (GRD) that is responsible 
for converting active Ras-GTP to inactive Ras-GDP, and 
negatively regulates RAS signaling. Individuals with NF1 
mutations are at high risk of developing GISTs. NF1-
associated GISTs are characterized by younger age at onset, 
location in the duodenum and small intestine, small size, 
tumor multiplicity and an indolent clinical course (9,96). 
Most NF1-associated GISTs are CD117-positive, have a 
spindle cell morphology, and generally show low mitotic 
rates. Hyperplastic foci (diffuse and focal) of CD117-
positive ICCs are thought to be likely precursor lesions for 
GISTs, and precursors of NF1-associated GIST are often 
found around nerve plexuses. NF1-associated GISTs do not 
harbor KIT/PDGFRA mutations; instead, loss of NF1 leads 
to MAPK signal activation, while PI3K-AKT and JAK-
STAT signals are less active than in common GISTs (97). 

One recent study revealed that intragenic deletion of 
dystrophin (DMD) is a frequent event in metastatic GISTs (98).  
Dystrophin is expressed in sorted ICCs and inhibits 
GIST cell invasion, migration, anchorage independence 
and invadopodia formation, suggesting it plays a tumor 
suppressor and anti-metastatic role in GIST. 

TP53 is the most frequently mutated gene in human 
malignancies. p53 acts as a tumor suppressor by mediating 
DNA repair, cell cycle arrest and apoptosis. Wild-
type p53 is present at only low levels in normal cells 
due to its short half-life. TP53 mutant tumor cells are 
immunohistochemically positive for p53 because changes 
in its structure inhibit its ubiquitination and proteasomal 
degradation (99). Within GISTs, the rate of p53 positivity 
increases along with elevations in the mitotic index and 
tumor size (100). The p53 positivity is lower in gastric 
than intestinal GISTs, and is associated with epithelioid 
cell morphology, mucosal invasion, risk category and 
worse clinical outcomes (101). Murine double-minute 2 
(MDM2) is an E3 ubiquitin ligase that negatively regulates 
p53 by mediating its ubiquitination and degradation (102).  
Induction of p53 through MDM2 inhibition exerts a 

moderate growth suppressive effect in TP53 wild-type 
GIST cells, suggesting p53 modulation may be an effective 
therapeutic strategy (103).

Chromosomal alterations in GIST

Chromosomal aberrations are prevalent among GISTs, with 
approximately 60% to 70% of all GISTs exhibiting alterations 
in chromosome 14, including loss of 14q and monosomy 14  
(104,105). Loss of 14q is associated with gastric location, 
predominantly stable karyotypes, and favorable clinical 
outcomes (12). In addition, nearly half of GISTs show loss 
of 22q, while losses of 1p, 9p, 10q, 11p, 13q, 15q and 17p 
are also reported with lesser frequencies (12,106). Loss of 
1p is associated with intestinal location, increased capacity 
for cytogenetic complexity and worse clinical outcomes, 
while loss of 22q is associated with increased capacity for 
cytogenetic complexity and poor disease-free survival (12). 
Losses of 9p, 11p and17p are also significantly associated 
with the GIST malignancy (104-107). 

A number of functionally important genes are located in 
the regions frequently deleted in GISTs, including PARP2, 
APEX1, and NDRG2 at 14q11.2; SIVA at 14q32.33; MAX at 
14q23.3; and NF2 at 22q12.2 (108). PARP2 suppresses genomic 
instability by regulating DNA repair and apoptosis (109).  
APEX1 also encodes a DNA repair enzyme implicated in the 
base excision pathway (110). NDRG2 is downregulated in 
various tumor types (111,112) and acts as a tumor suppressor 
by inhibiting tumor proliferation and promoting apoptosis 
(112,113). SIVA encodes a pro-apoptotic protein that 
binds to the tumor necrosis factor receptor CD27 (114).  
MAX encodes a basic helix-loop-helix leucine zipper 
transcription factor that interacts with MYC (115).  
Hemizygous or homozygous inactivating mutations of MAX 
are reported in 21% of all GISTs (17% of sporadic GISTs 
and 50% of sporadic and NF-1-associated GISTs) (115).  
Inactivation of MAX is also reported in microGISTs, suggesting 
its early onset during the development of GISTs (115).  
NF2 encodes the tumor suppressor protein merlin, which 
suppresses tumor cell growth by inhibiting the activities of 
RAS and RAC (108,116). 

Gains and high level amplifications at 8q (including 
MYC) and 17q (including ERBB2) are significantly 
associated with metastatic GISTs, while those at 20q 
(including AIB1, AIB3, PTPN1 and MYBL2) are found in 
malignant primary and metastatic GISTs (105). AIB1, also 
referred to as nuclear receptor coactivator 3 (NCOA3), was 
first identified in a frequently amplified region in breast 
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cancer (117). PTPN1 (also known as PTP1B) is involved in 
the regulation of cell growth, while MYBL2 is associated 
with cell cycle progression (118,119).

Epigenetic abnormalities in GIST

DNA methylation is an important mechanism for regulating 
gene expression, and hypermethylation of CpG islands is 
a major mechanism by which tumor suppressor genes are 
inactivated within tumor cells. Saito et al. analyzed a series 
of representative CpG islands and found methylation of 
MLH1, p73, p15, p16, CDH1 (E-cadherin), MGMT, MINT1 
and MINT2 in GISTs, although the methylation status was 
not associated with KIT or PDGFRA mutations (120). They 
also concluded that 57% of GISTs exhibit hypermethylation 
of multiple CpG islands, which is referred as the CpG 
island methylator phenotype (120). Another study found 
that six genes (MGMT, p16, RASSF1A, CDH1, MLH1 
and APC) are commonly methylated in GISTs and that 
methylation of CDH1 correlates with early recurrence and a 
poor prognosis in gastric GIST patients (13). p16 encodes a 
cyclin-dependent kinase inhibitor that negatively regulates 
G1/S-phase transition, while methylation and reduced 
p16 expression correlate with larger tumor size and poorer 
outcomes in GIST patients (121). A genome-wide DNA 
methylation analysis revealed that methylation of RASSF1A, 
REC8, and PAX3 are associated with the malignancy of 
GISTs (122). 

Seventy to 80% of GISTs are immunohistochemically 
positive for the hematopoietic marker CD34 (123), and 
expression of CD34 is regulated through DNA methylation 
in gastric PDGFRA-mutant GISTs (124). Hypermethylation 
of PTEN is observed in GIST cells after long-term exposure 
to the tyrosine kinase inhibitor sunitinib, which suggests 
epigenetic silencing of PTEN may lead to drug-resistance in 
GISTs treated with tyrosine kinase inhibitors (125). Recent 
studies showed that microRNA (miRNA) genes are targets 
of aberrant DNA methylation in cancer, and we reported 
methylation-associated silencing of miR-34a and miR-335 
in GIST cells (126).

DNA hypomethylation is associated with oncogene 
activation and chromosomal instability in various tumor 
types. ENDOGLIN/CD105 (ENG) is a transmembrane 
glycoprotein and auxiliary unit of the transforming growth 
factor-β (TGF-β) receptor encoded by ENG, which is 
overexpressed in KIT-positive GISTs (127). The elevated 
ENG expression is strongly associated with malignant and 

high-risk GISTs, and its overexpression is reportedly the result 
of DNA hypomethylation (127). About 45% of the human 
genome is composed of repetitive sequences, and methylation 
of long interspersed nuclear element-1 (LINE-1) is often used 
as a surrogate to evaluate global DNA hypomethylation in 
cancer. We reported that LINE-1 hypomethylation is strongly 
associated with clinical aggressiveness and DNA copy number 
aberrations in GISTs (128). 

SETD2 is a histone methyltransferase that catalyzes 
methylation of histone H3 lysine 36 (H3K36), and 
trimethylation of H3K36 (H3K36me3) is a mark of active 
transcription (129). SETD2 mutations were recently 
identified in high-risk and metastatic GISTs (14). Loss 
of SETD2 is associated with reduced H3K36me3, DNA 
hypomethylated heterochromatin, and significantly worse 
outcomes in GIST patients, which suggests SETD2 is a 
novel GIST tumor suppressor (14).

Noncoding RNAs in GIST

Noncoding RNAs, including miRNAs and long noncoding 
RNAs (lncRNAs), play important roles in the development 
of various tumor types. miRNAs are small RNA molecules 
approximately 22 nt in length. Mature miRNAs are 
incorporated into RISC complexes and act to cleave 
complementary messenger RNA, or they repress translation 
by binding to the short complementary 3'-UTR region (130).  
Among their various functions, miRNAs are involved in cell 
proliferation, differentiation and apoptosis, and a number of 
miRNAs reportedly act as tumor suppressors or oncogenes 
(oncomir). 

In GISTs, miRNA expression patterns are associated 
with tumor locations, risk classification and KIT/PDGRFRA 
mutation status (131,132). Because a large miRNA cluster is 
located in 14q32.31, loss of 14q is strongly associated with 
decreased expression of those miRNAs (131,132). Moreover, 
analysis using next generation sequencing identified a series 
of miRNAs differentially expressed in GISTs. These include 
miR-509-3p and miR-215-5p, expression of which is associated 
with cell type and risk grade (133). Another study showed 
that miR-133b is downregulated and its putative target 
gene, fascin-1, is overexpressed in high-risk GISTs (134).  
We showed that elevated expression of miR-196a is 
associated with high grade tumors and poor prognosis (15), 
while decreased expression of miR-186 correlates with post-
operative recurrence (135). miRNAs also impact the drug 
sensitivities of GISTs, and overexpression of miR-125a-5p 
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and miR-107 is associated with imatinib resistance (136). By 
contrast, miR-218 increases the sensitivity of GIST cells to 
imatinib by inhibiting the PI3K/AKT pathway (137). 

Several studies have shown functional interactions 
between miRNAs and KIT in GISTs. For instance, 
expression of miR-221 and miR-222 correlates inversely 
with KIT expression in GISTs, suggesting these miRNAs 
may negatively regulate KIT expression (138). Other studies 
showed that members of the miR-17-92 and miR-221/222  
clusters target KIT and ETV1 (139), and that miR-494 
targets KIT (140). These results are indicative of the 
therapeutic potential of miRNAs for treatment of GISTs.

LncRNAs are generally defined as transcribed RNAs 
that do not have protein coding potential and are greater 
than 200 nt in length (141). LncRNAs exert their molecular 
effects by interacting with other cellular molecules, 
including DNA, protein and RNA, and through those 
interactions regulate various cancer-related pathways (142). 
Playing important roles in metastatic tumors, HOTAIR 
(HOX transcript antisense intergenic RNA) is one of the 
most extensively studied oncogenic lncRNAs (143,144). 
HOTAIR interacts with polycomb repressive complex 2  
(PRC2) through its 5' terminal binding domain, and 
promotes H3K27me3-mediated gene silencing (145). We 
showed that overexpression of HOTAIR is associated with 
aggressiveness, and that HOTAIR knockdown suppressed 
the invasiveness of GIST cells (15). A more recent 
study showed that HOTAIR induces SUZ12-dependent 
hypermethylation of the protocadherin 10 (PCDH10) gene 
promoter in GIST cells, which further confirms the role of 
HOTAIR in GIST malignancy (146).

Conclusions

Molecular biological studies have greatly improved our 
understanding of the pathogenesis of GISTs, which has led 
to the successful use of receptor tyrosine kinase inhibitors 
for their treatment. In addition, recent advances in genomic 
and epigenomic analyses have enabled us to identify novel 
alterations that could be causally associated with GIST 
development. However, drug resistance due to additional 
mutations acquired during treatment remains a serious issue 
to overcome. Moreover, no specific treatments for wild-
type GIST have yet been developed. It is anticipated that 
further molecular characterization of GISTs will contribute 
to the discovery of novel therapeutic targets and improved 
management of GISTs.
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