
© Translational Gastroenterology and Hepatology. All rights reserved. Transl Gastroenterol Hepatol 2018;3:37tgh.amegroups.com

Introduction

Liver  cancer  i s  the s ixth most  prevai l ing cancer  
worldwide (1). Hepatocellular Carcinoma (HCC) is the 
most common form of primary liver cancer (70–85% of total 
liver cancer). Common risk factors for the development of 
HCC include chronic hepatitis B or C infection, metabolic 
syndrome, Type 2 diabetes and alcohol consumption (2). 
Whereas the prevalence of hepatitis C virus is expected to 

decline in the next decades, the proportion of HCC related 
to non-alcoholic steatohepatitis (NASH), a condition 
characterized by liver inflammation and injury as a result 
of the build-up of fat in the liver and closely related to 
metabolic syndrome and obesity, is anticipated to increase 
exponentially in the near future. 

Nowadays, therapeutic options for HCC treatment 
rely mainly on the Barcelona Clinic Liver Cancer (BCLC) 
staging system (3) and include surgical, locoregional, and 
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systemic approaches. Their application depends on tumor 
extension, cirrhotic state and co-morbidities of the patient. 
Surgical procedures for HCC include both resection and 
transplantation and are used mainly in very-early and early 
stage of HCC. On the other hand, locoregional treatments, 
used in combination with surgery or when surgery is not 
an option, are mainly used in intermediate-stage HCC and 
include ablation and different types of transcatheter arterial 
chemoembolization (TACE) (4,5). Finally, according to 
the BCLC staging and treatment strategy the unique first-
line systemic chemotherapy agent currently approved for 
the treatment of unresectable and metastatic HCC is the 
multi-kinase inhibitor Sorafenib (2,6). In spite of alternative 
available therapeutic approaches for HCC, these patients 
have a poor and dismal prognosis, with a 5-year survival rate 
of less than 10%, making liver cancer the second leading 
cause of global cancer-related deaths (7). Indeed, tumor 
recurrence is a problem in the first 5 years after resection 
[almost 70% of cases (4)] and is made more probable by 
factors such as portal hypertension, multifocality, size, poor 
histological differentiation, satellites, and vascular invasion 
(8,9). Furthermore, advanced HCC is often refractive to 
Sorafenib treatment by mechanisms that still remain to be 
fully elucidated (10,11).

HCC is considered phenotypically and genetically a very 
heterogeneous cancer. Some of the most important genetic 
alterations in HCC are telomerase (TERT) promoter 
mutations being the most common mutations in HCC  
(30–60%) and also the most common form of TERT 
activation, a fundamental step in tumorigenesis (12,13). In 
addition, mutations of the tumor suppressor gene TP53 
in HCC depend on etiology and can range from 18% to 
50% (14). Other genes commonly mutated in HCC are 
Catenin beta-1 (CTNNB1) and Axis Inhibition Protein 1 
(AXIN1) (Wnt signaling) and AT-Rich Interaction Domain 
1A (ARID1A) (chromatin remodeling). Also, some HCC 
tumors seldom contain genomic amplifications of vascular 
endothelial growth factor A (VEGFA), TERT, MYC and/or 
MET genes (4).

In addition, HCC pathogenesis is characterized by 
disruption of a complex network of signaling pathways. The 
main signaling pathways associated with hepatic malignant 
transformation include p53, retinoblastoma (Rb), hypoxia 
inducible factor (HIF)-1α (15), c-Myc, Wnt/β-catenin  
(16-18), Ras/Raf/MEK/ERK (4,19), PI3K/Akt/mammalian 
target of rapamycin (mTOR) (19,20), nuclear factor κB 
(NFκB) and JAK/STAT (19) pathways. Likewise, growth 
and angiogenic factors such as hepatic growth factor (HGF), 

insulin-like growth factor (IGF), transforming growth factor 
(TGF)-β (21,22), platelet-derived growth factor (PDGF) 
and vascular endothelial growth factor (VEGF) (19) play 
a role in HCC pathogenesis. Furthermore, several studies 
have demonstrated oncogenic properties of other proteins 
in HCC, like for example Liver kinase B1 (LKB1) (23) and 
Hu Antigen R (HuR) (24-27), whose altered expression and 
signaling may lead to metabolic reprogramming, aberrant 
cell proliferation and apoptosis resistance. Although our 
knowledge of the major molecular pathways implicated 
in the pathogenesis of HCC has increased dramatically in 
the last years, one of the main difficulties when treating 
HCC is that many pathways are activated and inhibiting 
one generally drives compensation by other pathways. 
Thus, a more global mechanism, such as post-translational 
modifications (PTMs) of proteins that can simultaneously 
regulate multiple disrupted signaling pathways may 
provide a valuable therapeutic approach for HCC clinical 
management. 

PTMs

The human genome is estimated to contain around 
20,000 to 25,000 genes (28). However, there are an 
estimated 1,000,000 proteins (proteome) (29). Genomic 
recombination, initiation of transcription at different 
promoters, different transcription termination and 
alternative transcript splicing are a few ways of increasing 
protein diversity from the same set of genes (30). The 
remaining diversity is obtained from PTMs that occur 
during the “life cycle” of the protein. PTMs are considered 
key mechanisms regulating protein homeostasis and 
function in eukaryotic cells. These modifications extend 
the diversity of the proteome by inducing structural 
and functional changes in proteins through different 
mechanisms like covalent binding of functional groups, 
cleavage of regulatory subunits and degradation of other 
proteins. Protein PTMs influence enzymatic activities, 
protein turnover, subcellular localization, protein-
protein interactions, DNA repair and cell division, among 
other processes, being essential to maintain normal 
cellular signaling, metabolism and function. The most 
common PTMs include phosphorylation, methylation, 
acetylation, glycosylation, ubiquitination and ubiquitin-
like proteins (UBLs) mediated PTMs. Even though, UBLs 
are all structurally related, they can be classified in nine 
phylogenetically distinct classes comprising NEDD8, 
SUMO (small ubiquitin-like modifier), and others such 
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as ISG15, FUB1, FAT10, Atg8, Atg12, Urm1, and Ufm1. 
UBLs regulate a strikingly diverse set of cellular processes, 
including nuclear transport, proteolysis, translation, 
autophagy, and antiviral pathways. Because UBLs mediated 
PTMs are necessary for normal physiology, alterations in 
their pathways have been associated with the development 
and progression of many diseases (31,32). In the liver, 
UBLs PTMs also influence almost all aspects of normal 
cell biology and aberrant modifications have been linked to 
different hepatic pathologies (33,34). For all these reasons, 
in the last few years many groups have been dedicated to 
better understanding how changes in protein homeostasis 
may drive pathogenesis in human diseases, including liver 
cancer, providing the basis for the discovery of several 
important therapies. The role of PTMs mediated by the 
UBL NEDD8 protein in the pathogenesis of HCC is the 
main topic of this review. 

The NEDD8 conjugation pathway

The NEDD8 gene was initially identified in 1992 (35). The 
NEDD8 peptide shares 59% amino acid identity (36,37) and 
80% homology with ubiquitin (38). Despite their similarity, 
both NEDD8 and ubiquitin have non-interchangeable 

functions in cells as a result of small differences in their 
structures as will be addressed later in this section. 
NEDD8 is conserved in most eukaryotes being highly 
expressed in the embryonic mouse brain and presenting 
a broad expression pattern in adult tissues (39) (Figure 1). 
Structurally, NEDD8 can be subdivided into a flexible 
carboxy-terminal tail (40) and a globular ubiquitin-fold 
domain (UFD) characterized by four β-sheets interspersed 
by one α-helix and two 310-helices. The tail ends with a 
Gly-Gly sequence that becomes covalently attached to 
protein targets and adopts different extended structures 
upon interaction with neddylation and/or deneddylation  
enzymes (41-43).

The NEDD8 conjugation pathway, neddylation, is 
similar to that described for ubiquitination, resulting 
in the reversible covalent conjugation of a molecule of 
NEDD8 to a lysine residue of the substrate protein. The 
neddylation pathway is composed of a 3-step enzymatic 
cascade that involves the activities of E1 activating enzymes, 
E2 conjugation enzymes and E3-ligases (44,45). Briefly, the 
NEDD8 precursor form is first processed at the carboxy-
terminal glycine residue (Gly)76 by specific proteases and 
after this is then adenylated by the E1 NEDD8-activating 
enzyme (NAE), formed by the heterodimer of amyloid-β 

Figure 1  NEDD8 (neural precursor cell-expressed developmentally down-regulated-8) is ubiquitously expressed in human tissues. Tissue 
distribution of NEDD8 by immunofluorescence staining in a tissue array from healthy adult humans. WAT, white adipose tissue.
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precursor protein binding protein 1 (APPBP1) also called 
NEDD8 activating enzyme E1 subunit 1 (NAE1) and the 
catalytic subunit known as ubiquitin-activating enzyme 
3 (UBA3). In an ordered process, binding of ATP, Mg2+ 
and NEDD8 occurs first at the adenylation site of UBA3 
followed by adenosine monophosphate (AMP) attachment 
to the carboxy-terminal of NEDD8 (formation of NEDD8-
adenylate) and the release of inorganic pyrophosphate. 
The carboxy-terminal of NEDD8 can then be attacked by 
the catalytic Cys of NAE which probably adopts a ‘closed’ 
formation as a result of a structural remodeling, while a 
second NEDD8 binds to the adenylation domain, and NAE 
re-adopts an ‘open’ conformation. The NEDD8-loaded 
NAE is later transferred to the E2 NEDD8-conjugating 
enzymes. The neddylation cascade has two E2 enzymes 
known as ubiquitin-conjugating enzyme E2M (UBE2M or 
UBC12) and ubiquitin conjugating enzyme E2F (UBE2F) 
(41,46-49). Ultimately, a substrate specific-E3 ligase 
transfers NEDD8 to a lysine residue in its target protein. 
With the exception of SMURF1 all identified NEDD8 
E3-ligases belong to the RING family of E3s, including 
the cullins-associated ring-box proteins 1/2 (RBX1/2) 
and its cooperator DCN1 or DCUN1D1, murine double 
minute 2 (Mdm2), casitas β-lineage lymphoma (CBl) and 
the transcriptional co-activator TBF3 (50-60). Finally, 
neddylation is a reversible process through the action of 
isopeptidases, named deneddylases, such as the COP9 
signalosome (CSN) and NEDD8 protease 1 (NEDP1, also 

known as SENP8 and DEN1), which free the substrate 
and NEDD8 (38) in order to reinitiate the neddylation 
conjugation cycle (Figure 2).

Overall, binding of NEDD8 molecules to target 
proteins can affect their stability, subcellular localization, 
conformation and function. The direct effects of NEDD8 
on target proteins can be classified into three categories: 
those due to conformational changes, those that preclude 
certain interactions or those that provide a novel binding 
surface. Even though NEDD8 substrates are believed to be 
mainly mono-neddylated on a single or several conserved 
lysine residues, like other UBLs proteins, NEDD8 can 
form chains on its substrates in vitro although it is unclear 
whether they have a function in vivo (61). Interestingly, 
NEDD8 can form mixed chains with ubiquitin and can 
function as a chain terminator as NEDD8 is not a good 
ubiquitin acceptor due to the fact that Lys60 is conserved 
in NEDD8 but not in ubiquitin (62). Moreover, under 
physiological conditions, both the ubiquitination and 
neddylation pathway exhibit great specificity, mostly due 
to a single amino acid difference in the carboxy-terminal of 
the two UBLs, Ala72 in NEDD8 and Arg72 in ubiquitin, 
which are recognized by their respective E1 enzymes. 
On the other hand, under conditions where neddylation 
may be increased, as occurs in different disease stages, the 
ubiquitin E1 enzyme UBE1 can activate NEDD8 (36,63). 
In agreement, after NEDD8 overexpression, an extensive 
ectopic neddylation pattern dependent on UBE1 is 
detectable (64). Neddylation is regulated in vivo by several 
mechanisms, being that in humans the main regulators of 
neddylation are the five defective in cullin neddylation 1-like 
(DCNLs) proteins that bind both cullins and NEDD8 E2 
enzymes (65). Their involvement in the neddylation of non-
cullin proteins is not currently known and must be further 
investigated.

Due to  the  re levance  of  neddyla t ion  in  many 
physiological and pathological processes found in the last 
years, genetically modified mice presenting disrupted 
neddylation were created together with the development 
of pharmacological inhibitors specifically targeting 
neddylation.

Genetically modified animal models with 
impaired neddylation

Germline knockout (KO) of the regulatory NAE1 enzyme 
in mice leads to embryonic lethality before E10.5, revealing 
its critical role in embryonic development. Likewise, mice 

Figure 2 NEDD8 (neural precursor cell-expressed developmentally 
down-regulated-8) conjugation pathway, neddylation.
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with cardiomyocyte-restricted KO of NAE1 (αMHC-
CreTg/+::Nae1flox/flox) exhibited myocardial hypoplasia, 
defective ventricular chamber maturation, heart failure, 
and embryonic and neonatal lethality (66), whereas  
Nae1 CamKIIα-CreERT2 mice ,  in  wh ich  neddy la t ion  i s 
conditionally ablated in adult excitatory forebrain 
neurons, show synaptic loss, impaired neurotransmission 
and severe cognitive deficits (67). Alternatively, our group 
has recently acquired Nae1tm1b(EUCOMM)Wtsi heterozygous mice, 
generated at the Mouse Clinical Institute of the Institut 
Clinique de la Souris (ICS), CERBMgie, France. Our group 
has been breeding these animals in our animal facilities and 
hepatic NAE1, as detected by immunohistochemistry, is 
significantly reduced. Most probably these changes are not 
so significant at the mRNA level, as mice are heterozygous 
for NAE1, but slight changes in NAE1 mRNA hepatic 
levels may be associated with these dramatic effects at 
the protein level. Under these circumstances, the liver 
phenotype between NAE1 wild-type and heterozygous 
animals of old age (15 months old) is similar (Figure 3), with 
animals presenting enhanced steatosis characteristic of old 
animals and mild fibrosis and inflammation (68). These 
preliminary evidences suggest that long-term inhibition of 
neddylation is not associated with adverse hepatic effects, 
at least under ageing conditions that to our knowledge 
are not characterized by augmented neddylation, and that 
long-term therapeutic approaches targeting neddylation 
inhibition appear to be safe. However, we cannot exclude 
that mice with impaired hepatic neddylation activity may 
be protected against liver diseases characterized by aberrant 
neddylation, as we will address further ahead in this Review. 

Pevonedistat, a neddylation pharmacological 
inhibitor

Pevonedistat or MLN4924 ((((1S,2S,4R)-4-{4-[(S)-
2,3-Dihydro-1H-inden-1-ylamino]-7H-pyrrolo[2,3-d]
pyrimidin-7-yl}-2-hydroxycyclopentyl)methyl sulfamate 
hydrochloride) from Takeda Oncology (previously 
Millennium Pharmaceuticals) was discovered as a result 
of iterative medicinal chemistry efforts on N6-benzyl 
adenosine that was originally identified as an inhibitor of 
NAE1 via high throughput screening. Pevonedistat is an 
adenosine sulfamate analogue and a first in class inhibitor of 
NAE1 and the NEDD8 pathway (69). Due to the fact that 
Pevonedistat is structurally related to AMP—a tight binding 
product of the NAE reaction- its action of inhibition is 
based on a substrate-assisted mechanism (70). The main 

differences between AMP and Pevonedistat are: (I) in 
place of the adenine base, Pevonedistat has a deazapurine 
base substituted with an aminoindane at N6; (II) in place 
of the ribose sugar, Pevonedistat has a carbocycle and the 
equivalent of the 29-hydroxyl group of AMP is absent; (III) 
in place of the phosphate, Pevonedistat has a sulfamate; 
and finally, (IV) in contrast to the stereochemistry of 
AMP, the methylene sulfamate of Pevonedistat is in a non-
natural anti-relationship to the deazapurine. As previously 
described, NEDD8 and Mg-ATP (active magnesium 
adenosine triphosphate) bind to NAE where NEDD8 is 
adenylated before it reacts with the catalytic cysteine in 
UBA3 to form a thioester-linked NEDD8. A second round 
of NEDD8 adenylation allows the thioester linked NEDD8 
to be transferred to UBC12 or UBE2F (41). During this 
round, Pevonedistat competes for Mg-ATP binding on 
NAE1 and attacks the thioester-linked NEDD8. The 
resultant NEDD8-Pevonedistat covalent adduct is not 
transferred on the E2s and subsequently blocks NEDD8 
conjugation (70). Pevonedistat specificity for neddylation 
arises from the fact that the IC50 of this drug for NAE is in 
the nanomolar range compared with micromolar scale for 
UBE1 or other E1-activating enzymes (69). 

Neddylation, a relevant PTM in the prognosis 
and therapy of HCC

NEDD8 plays a vital role in regulating processes such as cell 
growth, viability and development and hence, alterations in 
the neddylation conjugation pathway have been associated 
with a variety of human diseases, including different types 
of cancer, Alzheimer, and pulmonary fibrosis among others 
(71-73). Regarding liver disease, neddylation conjugation 
was shown to be aberrant both in early stages of the disease, 
such as during progression of the fibrosis stage of the  
disease (74) as well as in HCC (75,76). Furthermore, 
neddylation was also aberrant during intrahepatic 
cholangiocarcinoma progression, the second most 
common primary hepatic malignancy (77). Aberrant 
neddylation conjugation in HCC agrees with earlier 
evidence showing that both NEDD8 and NAE1 mRNA 
expression of published microarrays were augmented 
in a large cohort of HCC patients (78). Additionally, a 
significant correlation among global levels of neddylation, 
NAE1 protein expression and the poorest prognosis of 
HCC in human liver tumors has been detected (75). More 
importantly, treatment with Pevonedistat was shown to 
suppress the outgrowth of liver cancer and pre-tumoral cells  
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Figure 3 Liver characterization of Nae1 (NEDD8 activating enzyme E1 subunit 1) wild-type (WT) and heterozygous mice (HE)  
(15 months old). Representative immunohistochemical staining and quantification for Nae1 and F4/80 inflammatory marker together with 
staining for lipids (Sudan red) and collagen fibers (Sirius Red) in Nae1tm1b(EUCOMM)Wtsi wt and He mice. *, P<0.05 is shown.
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in vitro (75,76) and in a xenograft ectopic mouse model of 
human hepatoma cells as well as in a genetically modified 
mouse model that spontaneously develops HCC (75,76). 
Importantly, we and others have observed that Pevonedistat 
administration in vivo was well-tolerated and displayed 
a significant antitumor effect (75,76). The mechanisms 
of action of Pevonedistat-induced tumor regression and 
associated protein targets in HCC have been an interest of 
our group and others in the last couple of years.

NEDD8 targets in HCC

Even though until recently neddylation modifications have 
been principally characterized in the context of its main 
target, the ubiquitin E3 ligase family of cullin-RING ligases 
(CRLs) (79,80), nowadays, it is well known that NEDD8 
conjugates to a broad range of proteins besides cullins 
with several reports of non-cullin neddylation targets 
in recent years. Additional targets for neddylation have 
been identified and include: transcription factors and co-
regulators (e.g., E2F1, NFκB, and the p53 tumor suppressor 
and its homologue TAp53), signaling receptors [e.g., EGFR 
(epidermal growth factor receptor) and TβRII (transforming 
growth factor β type II receptor)], components of the 
protein synthesis and apoptotic machineries, E-3 ligases 
and histones among others [see (81,82) for Review]. In 
recent years, the putative role for CRLs and other identified 
NEDD8 targets in HCC has been explored.

Cullin-RING ligases

The best-established role for NEDD8 is the activation 
of ubiquitin E3 ligase family of CRLs (79,80), which 
comprise the largest known class of ubiquitin ligases. 
These enzymes require NEDD8 conjugation onto the 
cullin subunit to be active whereas deneddylation by 
CSN and NEDP1 has the opposite effect on CRLs, thus 
inactivating their ubiquitination activity. Therefore, cullin 
neddylation and deneddylation are important to maintain 
the ubiquitination pathway and respective proteasomal 
degradation and cellular protein homeostasis.

Cullins are a family of hydrophobic proteins providing 
a scaffold for ubiquitin ligases (E3). In humans, this family 
is composed of seven cullins (CUL1, 2, 3, 4A, 4B, 5 and 7),  
whereas PARC (CUL9) and APC2 (component of the 
anaphase promoting complex APC) contain a cullin-
homology domain (83-87). Different types of Cullins play 
an essential role in HCC. For example, CUL7 shows a high 

expression in HCC tumor tissues, especially in metastatic 
HCC tumor tissues, and a positive correlation was found 
between CUL7 and poor prognosis. Silencing of CUL7 
in liver cancer cells can significantly reduce the migration, 
invasion, and metastatic abilities. Also, detection of 
epithelial-mesenchymal transition (EMT) marker expression 
showed that CUL7 promotes EMT of cancer cells (88). 
Likewise, it was reported that the CUL4A/B genes show 
amplification together with increased CUL4A/B expressions 
as detected by immunohistochemistry in human primary 
HCC. Statistical analysis disclosed an inverse correlation 
between CUL4A/B expression and tumor differentiation 
grade, and patient survival, but a positive correlation with 
hepatocyte proliferation as well as lymphatic and venous 
invasion. Consistently, CUL4A/B knockdown inhibited the 
proliferation of established HCC cells and ameliorated the 
motility of HCC cell lines with altered expression of EMT-
associated molecules (89,90). Finally, CUL1 expression is 
apparently increased in HCC tissues compared with paired 
adjacent non-tumor tissues and more importantly CUL1 
staining significantly correlates with tumor size, histology 
grade and tumor/node/metastasis (TNM) stage as well as 
with worse 5-year overall and disease-specific survival rates 
in HCC patients (91).

CRLs is a superfamily that controls the stability and 
turnover of a rapidly growing list of proteins with diverse 
functions including cell cycle progression [p21 p27, cyclin 
D/E (83,92)], DNA re-replication [Chromatin licensing 
and DNA replication factor 1 (CDT1) (93)], the oxidative 
response [nuclear factor erythroid 2-related factor 2 
(NRF2) (94)] and the response to hypoxia [HIF1α (95)]. 
In liver cancer, RhoB, a well-known tumor suppressor, 
was identified as a new target for the neddylation-
CRLs pathway. Specifically, CUL2–RBX1 E3 ligase, 
which requires NEDD8 conjugation for its activation, 
interacts with RhoB promoting its ubiquitination and 
degradation (96). By blocking cullins neddylation, the 
small pharmacological neddylation inhibitor, Pevonedistat, 
inactivates CRLs and causes the accumulation of CRLs 
substrates that trigger cell cycle arrest, senescence and/or 
apoptosis to suppress the growth of cancer cells in vitro and 
in vivo.

Paradoxically, Pevonedistat also triggers a pro-survival 
autophagy response, and abrogation of autophagy enhanced 
Pevonedistat-induced apoptosis in cancer cells (76,97,98). 
Autophagy is a highly regulated catabolic process essential 
for the maintenance of intracellular homeostasis. Upon 
autophagy activation, cytosolic components are sequestrated 
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into double membrane organelles called autophagosomes 
that fuse with lysosomes for the hydrolytic degradation of 
their cargo. When the products of autophagy degradation 
(e.g., sugars, amino acids, fatty acids and nucleosides/
nucleotides) are released into the cytosol, they can serve 
as substrates for metabolic processes (99-101). Autophagy 
functionality is tightly regulated by mTOR activity (102). 
Autophagic flux can be stimulated in response to several 
signals, including starvation, hypoxia or drug treatment, 
among others (101). Cancer cells can use autophagy to 
survive under adverse microenvironmental conditions, and 
pro-survival autophagy is normally induced during cancer 
treatment as a mechanism of drug resistance (103,104). 
Supporting this key role for autophagy in cancer cell 
survival after a metabolic or a therapeutic stress, there are 
multiple reports indicating that inhibition of autophagy, 
either genetically (by silencing of key autophagy-related 
genes, including ATG5 and ATG7) or pharmacologically 
(by treatment with chloroquine or hydroxychloroquine 
lysosomal inhibitors), can suppress cancer cell growth and 
impair drug resistance (103-105).

As mentioned above, mTOR is a well-known inhibitor 
of autophagosome formation (102), and mechanistic 
studies in human liver cancer cell lines have shown that the 
Pevonedistat-induced autophagy response was mediated 
by mTOR inactivation. Indeed, Pevonedistat was shown 
to induce inhibition of cullins activity, leading to an 
accumulation of the CRL/SCF E3 substrates DEPTOR 
(DEP domain-containing mTOR-interacting protein) and 
HIF-1α, two negative regulators of mTOR activity. Direct 
interaction of DEPTOR to mTOR and activation of the 
HIF-1α-REDD1 (regulated in development and DNA 
damage responses 1)-TSC1 (tuberous sclerosis protein 1) 
axis leads to the inhibition of mTOR activity and induced 
autophagy (76,97). Another study showed that inhibition 
of autophagy, using the lysosomal inhibitor chloroquine 
enhances the anti-tumour efficacy of Pevonedistat both 
in vitro and in vivo. Importantly, the authors of this study 
observed that the induction of apoptosis after autophagy 
inhibition and Pevonedistat treatment was mediated by the 
up-regulation of NOXA/PMAIP1 protein (phorbol-12-
myristate-13-acetate-induced protein 1) and by the down-
regulation of classical anti-apoptotic proteins [c-inhibitor 
of apoptosis (IAP)1/2, B-cell lymphoma 2 (Bcl-2), X-linked 
inhibitor of apoptosis protein (XIAP), and induced myeloid 
leukemia cell differentiation protein 1 (Mcl-1)]. They 
demonstrated that the induction of NOXA was mediated by 
oxidative stress and enhanced DNA damage (98).

Altogether, these studies suggest that a combinatory 
therapy of autophagy inhibitors and the neddylation 
inhibitor Pevonedistat could be very effective for inducing 
hepatoma cell death without associated drug resistance and 
could be effective to treat liver cancer patients.

Hu antigen R

HuR is a ubiquitously expressed protein belonging to the 
Elav/Hu family of RNA-binding proteins that plays major 
biological roles regulating gene expression by binding to 
and stabilizing mRNAs containing AU-rich elements, or 
even enhancing and repressing their translation (106,107). 
Despite being predominantly nuclear, HuR translocates 
into the cytosol where it stabilizes target mRNAs encoding 
important genes for cell cycle control and proliferation 
like cyclin A1, B1, D1 and E1, thus promoting cell growth 
and survival. Notably, among HuR targets there also exist 
proto-oncogenes like c-Myc and c-Fos. On the other hand, 
under situations like genotoxic stress, HuR may exert 
an anti-proliferative role by targeting pro-apoptotic p53 
and cell cycle inhibitor p21 mRNAs, thus interfering cell 
growth. Regarding the role of HuR in tumorigenesis, it 
has been primarily associated with the main cancer traits: 
proliferation, angiogenesis, enhancement of cell survival, 
evasion of immune recognition, invasiveness and metastasis. 
Indeed, HuR expression is frequently increased in colon, 
breast, pancreatic, ovarian, prostate and many other cancers 
correlating with tumor malignancy (108,109).

In the liver, HuR plays a role in hepatocyte proliferation, 
differentiation and HCC transformation (24). Also, HuR 
has been found highly expressed in HCC-derived cell lines, 
in which it stabilizes HAUSP (Herpesvirus-associated 
ubiquitin-specific protease) mRNA. HAUSP is an ubiquitin 
specific protease that stabilizes p53 in the cytosol inducing 
cell cycle arrest and an apoptotic response (23). Moreover, 
HuR is able to regulate hepatic stellate cell activation 
and to raise the expression of proinflammatory and 
chemoattractant genes in a cholestatic liver injury model 
(bile duct ligation). In this way, HuR increases liver damage, 
oxidative stress, inflammation, macrophage infiltration 
and liver fibrosis development, enhancing the risk of HCC 
development (110). Altogether, these findings support the 
involvement of HuR in liver malignant transformation.

It is well known that (NFκB) can activate HuR 
transcription downstream of the PI3K/Akt signaling 
pathway and also that the ubiquitin-proteasome pathway, 
at the post-transcriptional level, can regulate HuR 



© Translational Gastroenterology and Hepatology. All rights reserved. Transl Gastroenterol Hepatol 2018;3:37tgh.amegroups.com

Page 9 of 16Translational Gastroenterology and Hepatology, 2018

function (111). In 2012, the mechanism underlying HuR 
overexpression in HCC was finally unraveled by our group. 
Neddylation of HuR by the Mdm2 E3 ligase retains it in the 
nucleus and protects it from proteasomal degradation. In 
agreement, HuR lysine mutants (K283, 313, 326R) that are 
incapable of being neddylated or Mdm2 mutants, increase 
the cytoplasmic localization of HuR and its ubiquitination 
leading to proteasomal degradation (112). These data 
suggest that the novel Mdm2/NEDD8/HuR regulatory 
framework is essential for the malignant transformation of 
tumor cells. Finally, the neddylation inhibitor Pevonedistat 
was shown to exert antitumoral effects in vitro and in vivo 
in liver cancer, partially through HuR destabilization. 
Importantly, overexpression of HuR in hepatoma cells 
offers resistance to pharmacological neddylation inhibition 
while low levels of HuR sensitized cells to the treatment, 
suggesting that HuR levels determine the drugability of the 
neddylation pathway in HCC (113).

Liver kinase B1

Liver Kinase B1 [LKB1 or Serine/threonine kinase 11 
(STK11)] is an ubiquitously expressed serine/threonine 
protein kinase originally discovered as a mutation in the 
familial Peutz-Jeghers Syndrome (PJS) (114), characterized 
by the formation of hamartomatous polyps in the 
gastrointestinal tract and hyperpigmented macules in the 
lips, oral mucosa, genitalia or palmar surfaces (115) and 
increased probability of developing cancers especially of 
the lung, ovary, breast, colon and pancreas (116). LKB1 
is an upstream activator of AMP-activated protein kinase 
(AMPK) (117,118), a major cellular energy sensor, and 
the AMPK related kinases (ARKs) that are involved in a 
variety of processes such as cell polarity, migration and gene 
transcription (119,120).

Although considered an oncosuppressor in a variety of 
tissues, in the liver, LKB1 has been previously implicated 
in hepatic regeneration and HCC proliferation (23,75,121). 
During hepatic regeneration, HGF activates the LKB1-
AMPK axis leading to the non-canonical activation of 
endothelial nitric oxide synthase (eNOS) and concomitant 
increase in the second messenger nitric oxide that facilitates 
HGF-induced hepatocyte proliferation (121). Furthermore, 
mouse hepatoma cells (SAMe-D cells) have increased 
phosphorylation of LKB1 as well as increased cytoplasmic 
p53 levels making these cells more resistant to UVC 
exposure-induced apoptosis. Likewise, another type of 
mouse hepatoma cells (OKER cells) also have increased 

phosphorylated LKB1 levels showing an increased RAS 
pathway activation due to increased methylation of RAS 
inhibitor genes [Suppressor Of Cytokine Signaling 1 
(SOCS1) and Ras Association Domain Family Member 1 
(RASSF1A)] (122). Finally, LKB1 expression is augmented 
in livers of HCC patients derived from alcoholic and 
NASH being that patients with bad prognosis have higher 
expression of LKB1 (75).

The mechanisms underlying LKB1 overexpression 
in HCC were further explored. On this basis, the levels 
of LKB1 and NEDD8 are positively correlated in HCC 
patients (75). Furthermore, when liver tumor bearing mice 
were treated with the neddylation inhibitor Pevonedistat 
the levels of LKB1 fell (75). Likewise, when pre-tumoral 
hepatocytes were treated either with Pevonedistat or by 
silencing NEDD8 using molecular approaches, LKB1 levels 
were also reduced (75). Liver tumor cell apoptosis induced 
by Pevonedistat was reduced by overexpressing LKB1 as 
this was able to overcome the loss of stability caused by the 
inhibitor. Additionally, LKB1 was detected after His-tagged 
NEDD8 purification, strongly suggesting that LKB1 is 
directly neddylated and that NEDD8 directly stabilizes 
LKB1 in HCC (75). 

Akt

The PI3K/Akt/mTOR signaling pathway is a key regulator 
of cell survival and proliferation (123) and one of the main 
pathways implicated in liver carcinogenesis (124). It is 
frequently deregulated in HCC and its activation has been 
correlated with advanced and poor prognosis HCC (125). 
Akt, also known as protein kinase B (PKB), is a serine/
threonine kinase and a crucial downstream effector of PI3K 
that regulates the function of a great variety of proteins 
involved in processes that include metabolism, cell growth, 
apoptosis and angiogenesis (126,127). Akt is probably the 
most frequently activated oncoprotein in human cancer (128) 
and is known to play a critical role in the development 
and progression of HCC by promoting proliferation, cell 
survival, tumor growth and metastasis (124). Moreover, 
Akt has also been described as a “Warburg kinase” because 
of its effect on enzymes involved in the switch to aerobic 
glycolysis and metabolic reprogramming, well-known 
hallmarks of cancer (129). On this basis, Akt has been 
found to promote both glycolysis (130) and oxidative 
phosphorylation (131). Despite having a critical role in 
malignant transformation and being a promising anticancer 
target, the mechanisms underlying Akt deregulation have 
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not been fully elucidated.
It had been previously shown that Akt is subjected to post-

translational regulatory events such as ubiquitination (132) and 
SUMOylation (133). In 2015, the mechanism underlying 
Akt overexpression in HCC was finally described by our 
group (75). We have demonstrated that global neddylation 
is highly increased in human HCC, correlating with both 
a poorer prognosis and Akt protein levels. As observed in 
human HCC and supporting the role for neddylation and 
Akt in liver carcinogenesis, neddylation and Akt protein 
levels were also found upregulated in livers and hepatocytes 
from HCC mouse models (134). Using different in vitro 
approaches, it was shown that Akt is a target of NEDD8 
and that this PTM promotes Akt overexpression in the 
liver. Akt was detected by pull-down of histidine-NEDD8 
conjugated proteins in primary hepatocytes transfected 
with a plasmid expressing histidine-tagged NEDD8. In 
addition, it was found that neddylation inhibition with the 
specific pharmacological inhibitor Pevonedistat or a specific 
siRNA against NEDD8 or the deneddylase NEDP1 led 
to the downregulation of Akt protein levels. Finally, a 
cycloheximide assay verified that neddylation stabilizes 
Akt since NEDD8 silencing significantly decreased 
its half-life. In terms of metabolism, it was observed 
that Akt partially mediates the neddylation inhibition-
induced metabolic changes that caused ATP depletion, 
oxidative stress and finally apoptosis in liver cancer cells 
and pre-tumoral hepatocytes, supporting the major role 
of the kinase in liver cancer survival and progression. In 
this regard, Akt overexpression, which enhanced both 
oxidative phosphorylation and glycolysis, counteracted 
the metabolic switch and associated cell death induced 
by Pevonedistat treatment. These results were validated 
in vivo using two different HCC mouse models, the 
Prohibitin (Phb1)-deficient mouse and the HepG2 tumor 
xenograft, where neddylation inhibition with Pevonedistat 
and a NEDD8 siRNA respectively promoted cell death, 
tumor regression and metabolic reprogramming, as well 
as global neddylation and Akt downregulation (75). These 
findings suggest that Akt neddylation is essential for the 
malignant transformation of liver cancer cells and reveal 
that neddylation of Akt is a novel regulatory mechanism 
accounting for Akt stabilization. 

Hypoxia inducible factor (HIF)-2α

A hypoxic microenvironment is believed to contribute to 
cancer progression by numerous mechanisms, including 

activation of angiogenesis, cell survival, motility and 
invasiveness of malignant cells, and increased EMT ability. 
In this scenario, HIF-2α, a master regulator of oxygen 
homeostasis, has been suggested to favour proliferation 
of cancer cells (135). In HCC, it has been reported 
that HIF-2α expression correlates with poor patient  
outcome (136). Interestingly, HIF-2α expression has been 
previously shown to be stabilized by NEDD8 conjugation 
in a reactive oxygen species (ROS)-dependent manner (95). 
In HCC, preliminary findings by Cannito et al. have shown 
that SerpinB3, usually induced by hypoxia, can affect the 
behaviour of liver cancer cells by promoting the direct and 
selective neddylation and stabilization of HIF-2α (137,138). 

Conclusions

Herein, we have reviewed the most recent findings 
regarding the relevance of NEDD8 mediated PTMs in 
HCC pathogenesis, prognosis and reversal. In this regard, 
recent reports both from our group and others have clearly 
shown that first of all neddylation activity is augmented 
in HCC and second, treatment with the neddylation 
inhibitor Pevonedistat accounts for reduced hepatoma 
cell growth and tumor regression in pre-clinical mouse 
models. Under these circumstances, Pevonedistat can 
act as an anti-tumoral drug by either triggering cell cycle 
arrest, senescence and apoptosis to suppress the growth of 
cancer cells in association with a deregulation of the cell 
energetic metabolism. Pevonedistat has currently entered 
several clinical trials to treat both leukemias and advanced 
solid tumors and more details can be found in https://
clinicaltrials.gov/ct2/results?cond=&term=MLN4924&c
ntry=&state=&city=&dist=. Clinical trials addressing the 
effects of Pevonedistat in combination with other systemic 
drugs, such as the multi-kinase inhibitor Sorafenib, the 
only systemic drug currently approved for advanced HCC 
therapy, or clinically-approved autophagy inhibitors 
such as the anti-malarial chloroquine and its derivative 
hydroxychloroquine, in order to overcome Pevonedistat-
induced pro-survival autophagy response and associated 
drug-resistance to Pevonedistat, can provide a potential 
and novel therapeutic strategy to tackle advanced HCC. 
Furthermore, we provide a comprehensive revision of the 
main NEDD8 targets relevant for HCC, such as CRLs, 
HuR, LKB1, Akt and HIF-2α. Currently, there are still 
many open questions concerning some of these neddylation 
targets in HCC, namely the enzymes involved in the 
neddylation and deneddylation pathway of the novel above-
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mentioned NEDD8 substrate proteins together with the 
residues that are relevant for neddylation. Finally, in a near 
future, we believe that the application of very sensitive 
proteomics approaches may lead to the identification of 
novel neddylation targets involved in HCC pathogenesis 
broadening the spectrum of NEDD8 targets and increasing 
our current knowledge of the real importance of NEDD8 
mediated modifications in HCC.
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