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Background: Transmembrane protein 43 (TMEM43), a member of the TMEM subfamily, is encoded by 
a highly conserved gene and widely expressed in most species from bacteria to humans. In previous studies, 
TMEM43 has been found to play an important role in a variety of tumors. However, the role of TMEM43 
in cancer remains unclear. 
Methods: We utilized the RNA sequencing (RNA-seq) and The Cancer Genome Atlas (TGCA) databases 
to explore and identify genes that may play an important role in the occurrence and development of 
hepatocellular carcinoma (HCC), such as TMEM43. The role of TMEM43 in HCC was explored through 
Cell Counting Kit-8 (CCK-8) cloning, flow cytometry, and Transwell experiments. The regulatory 
relationship between TMEM43 and voltage-dependent anion channel 1 (VDAC1) was investigated 
through coimmunoprecipitation (co-IP) and western blot (WB) experiments. WB was used to study the 
deubiquitination effect of ubiquitin-specific protease 7 (USP7) on TMEM43.
Results: In this study, we utilized the RNA-seq and TGCA databases to mine data and found that 
TMEM43 is highly expressed in HCC. The absence of TMEM43 in cancer cells was shown to inhibit 
tumor development. Further research detected an important regulatory relationship between TMEM43 and 
VDAC1. In addition, we found that USP7 affected the progression of HCC by regulating the ubiquitination 
level of TMEM43 through deubiquitination.
Conclusions: Our study demonstrated that USP7 participates in the growth of HCC tumors through 
TMEM43/VDAC1.Our results suggest that USP7/TMEM43/VDAC1 may have predictive value and 
represent a new treatment strategy for HCC.
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Introduction

On a global scale, hepatocellular carcinoma (HCC) is a 
common and deadly malignant tumor. In the United States, 
it ranks fifth in terms of mortality rate. Patients are usually 
diagnosed at an advanced stage, leading to poor prognosis 
(1-3). At present, surgical resection and liver transplantation 
are the most effective treatment methods, and the prognosis 
of cancer is poor. Only 5–15% of early-stage patients are 
eligible for surgical resection (4,5). Although there have 
been many studies on epigenetic changes, the molecular 
mechanism of HCC has not yet been fully understood (6,7). 
Therefore, it is necessary to further explore the potential 
molecular mechanisms of HCC and discover new potential 
targets to inhibit the development of HCC.

Transmembrane protein 43 (TMEM43), a member of 
the TMEM subfamily, is encoded by a highly conserved 
gene and is widely expressed in most species from bacteria 
to humans (8). Systematic genetic analysis has shown that 
TMEM43 is involved in metabolic related pathways (9). A 
previous study showed that TMEM43 regulates ferroptosis 
by reducing the expression of P53 (10). TMEM43 also 
plays an important role in tumors. A study has shown that 
the expression of TMEM43 is closely related to the clinical 
pathological characteristics and adverse survival outcomes 
of pancreatic cancer. In addition, they also found that 

inhibition of TMEM43 can inhibit the growth, migration, 
and invasion of pancreatic cancer in vitro and in vivo (11). 
However, the role of TMEM43 in cancer is not yet clear. 

In this study, we first mined TMEM43 through the 
RNA sequencing (RNA-seq) and The Cancer Genome 
Atlas (TGCA) databases. Further research found that 
TMEM43 is highly expressed in HCC, and TMEM43 
regulates the proliferation, cell cycle, apoptosis, and 
invasion of HCC through voltage-dependent anion channel 
1 (VDAC1). Ubiquitin modification is an important 
post-translational modification process that regulates 
intracellular protein levels by adding ubiquitin molecules. 
This modification involves various cellular processes, 
including cell proliferation, apoptosis, invasion, migration, 
and DNA damage repair, which play crucial roles in tumor 
development and cancer progression (12). In addition, we 
found that ubiquitin-specific protease 7 (USP7) affected 
the progression of HCC by regulating the ubiquitination 
level of TMEM43 through deubiquitination. We present 
this article in accordance with the MDAR reporting 
checklist (available at https://tgh.amegroups.com/article/
view/10.21037/tgh-23-108/rc).

Methods

Clinical samples

Tumor tissue samples were taken from 96 patients with 
primary HCC who underwent surgery in the Affiliated 
Hospital of Nantong University. This study was approved 
by the Institutional Ethics Committee of the Affiliated 
Hospital of Nantong University (ID: 2022-L062). Informed 
consent was provided by each participant. The study was 
conducted in accordance with the Declaration of Helsinki 
(revised in 2013).

Cell culture and transfection

HCC cell lines (Huh7, HCCLM3) were purchased from 
American Type Culture Collection (ATCC; Manassas, VA, 
USA). HCCLM3 cells are a type of hepatoma cells line 
with high metastatic potential (13,14). Hepatoma cells were 
cultured in Dulbecco’s modified Eagle medium (DMEM) 
medium containing 10% fetal bovine serum (FBS). Plasmids 
were transfected into cells using Lipofectamine 3000 
reagent (Invitrogen, Carlsbad, CA, USA) and transfection 
efficiency was evaluated using western blot (WB). The 
sequences of the short hairpin (sh) RNAs are as follows:  
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sh-TMEM43#1, “CCTCAACCTTATGACACGGAT”; sh-
TMEM43#2, “CCTTTGTCCAAATTGGCAGGT”; sh-
TMEM43#3, “GAGATGTACCAATGGGTAGAA”; sh-
USP7, “CGTGGTGTCAAGGTGTACTAA”.

Quantitative real-time polymerase chain reaction (qRT-
PCR)

Total RNA was extracted from cells using Trizol reagent 
(Invitrogen) and complementary DNA (cDNA) was 
obtained using Prime Script RT kit (Takara Bio, Shiga, 
Japan). Using DNA as a template, SYBR Select Master 
Mix kit (Invitrogen) and ABI Prism 7900 detection system 
(Applied Biosystems, Carlsbad, CA, USA) were used 
for qRT-PCR reaction. The primers for MiR-7 were 
designed and synthesized by RiboBio (Shanghai, China). 
The upstream primer article number of MiR-7 was 
SSD809232326 and the downstream primer article number 
was SSD089261711.

Cell Counting Kit-8 (CCK-8) assay

Cell proliferation was detected using the CCK-8 method. 
After inoculating the cell suspension in a 96 well plate, 10 μL  
of CCK-8 solution was added to each well. The culture 
plate was placed into the microplate reader within the 
specified time. Then the absorbance value of the optical 
density (OD) 450 nm pore was measured. Each group had 3 
sets of auxiliary holes.

Colony formation assay

The density of 2,000 cells was evenly inoculated into a 6-well 
plate, and after 14 days of culture in the incubator sink, 
they were fixed with 4% paraformaldehyde for 30 minutes. 
The cells were then dyed with crystal violet for 20 minutes. 
After rinsing, photos were taken and the cell colonies were 
counted.

Flow cytometric analysis

Flow cytometry was used to detect cell apoptosis and cycle. 
At 48 hours after transfection, double staining with an 
Annexin V-fluorescein isothiocyanate (FITC)/propidium 
iodide (PI) Apoptosis Kit (Invitrogen) was performed, and 
the cell percentage was stained using a PI-based cell cycle 
assay kit (Invitrogen).

Transwell assay

After digesting the cells, serum-free culture medium was 
used to blow them evenly and approximately 10,000 cells 
were added to the Transwell’s upper chamber. DMEM 
culture medium was added to the lower chamber. The cells 
were then incubated for 24 hours. After being fixed with 4% 
paraformaldehyde for 30 minutes, the cells were dyed with 
crystal violet for 20 minutes.

WB analysis

After loading the sample, the protein was completely 
separated by constant current electrophoresis. After the 
protein was transferred to the polyvinylidene fluoride 
(PVDF) membrane, it was sealed for 1 hour in sealing 
solution, and finally the antibody was added to continue 
incubation overnight. On the second day, after rinsing in 
tris-buffered saline with Tween 20 (TBST), horseradish 
peroxidase (HRP)-labeled secondary antibodies were 
added and incubated at room temperature for 1 hour. 
Photos were taken with an automatic chemiluminescence 
imaging system. Primary antibodies were generated against 
TMEM43 (diluted 1:500, #ab15379, Abcam, Cambridge, 
UK), VDAC1 (1/5,000, #55259-1-AP, Proteintech, 
Rosemont, IL, USA), USP7 (1/10,000, #66514-1-
Ig, Proteintech), p-PI3K (1/1,000, #AF3242, Affinity, 
Cincinnati, OH, USA), and PI3K (1/1,000, #MA1-74183, 
Thermo Fisher, Waltham, MA, USA), and β-actin (1:10,000, 
#66009-1-Ig, Proteintech) was used as an internal control.

Cellular immunofluorescence

HCC cells were fixed with methanol and washed with 
phosphate-buffered saline (PBS) for 3 days ×5 minutes. 
After the first antibody had been added, they were sealed 
with goat serum overnight. After being washed in PBS, 
the cells continued to incubate with the second antibody 
for 2 hours. After cleaning, 4',6-diamidino-2-phenylindole 
(DAPI) was added and microscopic examination was 
performed.

Coimmunoprecipitation (co-IP) 

The total cell lysate antibody was mixed and incubated 
overnight. Then, 5 μL agarose (A+G) (Absin, Shanghai, 
China) was added and incubated at room temperature for a 
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further 2 hours. The composite was rinsed 3 times with PBS. 
Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) and WB were used to detect proteins.

Statistical analysis

The software SPSS 26.0 (IBM Corp., Armonk, NY, USA) 
was used for statistical analysis, and the data were calculated 
as mean ± standard deviation. Independent sample t-test 
was used to compare the two groups of data, and P<0.05 
was considered statistically significant.

Results

Exploring genes regulating HCC through RNA-seq

MiR-7 has been described as an important factor in cancer 
development as it acts as a tumor suppressor and regulates 
a large number of genes involved in cancer development 
and progression (15). To explore potential genes that 
regulate HCC progression, we first transfected Huh7 
cells with empty lentivirus (NC) and miR-7 overexpressed 
lentivirus (OE), respectively. Detection by qRT-PCR showed 
a significant increase in expression in the OE group (Figure 
1A). Then, we performed RNA-seq on the cells and found 
that compared to the miR-7 overexpression group (E8321-
1, E8321-2, E8321-3), the miR-7 control group (E8320-1, 
E8320-2, E8320-3) had a total of 342 upregulated genes and 
369 downregulated genes. The difference between the two 
groups was visualized through a volcanic map (Figure 1B).

We conducted cluster analysis on long non-coding RNA 
(lncRNA) and messenger RNA (mRNA) in differentially 
expressed genes (DEGs) through bioinformatics analysis. 
We found that compared to the OE group, lncRNA with 
increased expression in the NC group included lncRNAs 
ARID1B-2:1, C15orf48-2:1, OTTHUMT000000473305, 
ENST000000421513 .1 ,  ENST000000472821 .1 , 
ENST000000624858, and MEF2C-3:1 (Figure 1C). The 
mRNA with increased expression in the NC group included 
DPPA3, NPHS1, DGKG, GABRR3, POM121L2, GPR15, 
TRIM43, FAM183A, DLL1, CCDC110, TMEM132C, 
NOX4, A4GNT, and TMEM43, among others (Figure 1D). 
Then, we further analyzed the distribution of DEGs on 
chromosomes (Figure 1E).

Predicting high expression of TMEM43 gene in HCC 

Through RNA-seq, we found that TMEM43 may play 
an important role in HCC. Therefore, we used TGCA 

to explore the expression of TMEM43 in 33 cancers. We 
found that TMEM43 is highly expressed in various tumors, 
including HCC (Figure 2A). We further confirmed through 
the Gene Expression Profiling Interactive Analysis (GEPIA) 
database that TMEM43 is highly expressed in cancer (Figure 
2B). Then, we further explored the prognostic impact of 
TMEM43 in 33 cancers through TGCA and found that 
TMEM43 affects the prognosis of multiple tumors (Figure 
2C). The GEPIA database further confirmed that TMEM43 
is closely related to the poor prognosis of HCC (Figure 2D).

Expression levels of TMEM43 gene in HCC tissues and 
HCC cell lines

In order to determine the expression of TMEM43 in HCC 
tissue, we used WB to analyze the expression of TMEM43 
in HCC tissue. The results showed that compared with 
adjacent tissues, the expression of TMEM43 in HCC tissue 
was significantly increased (Figure 3A). We conducted a 
tissue microarray study on the expression of TMEM43 in 
96 HCC tissues, and found that it was highly expressed in 
68 tissues. TMEM43 was mainly brownish brown in the 
cytoplasm (Figure 3B). Then, we investigated the expression 
and localization of TMEM43 in Huh7 and HCCLM3 cells 
through cellular immunofluorescence. The results showed 
that TMEM43 was mainly expressed in the cytoplasm of 
HCC cells (Figure 3C).

WB was used to detect the transfection effect of TMEM43 
gene in HCC cell lines

To verify the impact of TMTM43 on the biological 
behavior of HCC cell lines, we used LipofectamineTM 
3000 for transfection. We transfected sh-TMEM43#1, sh-
TMEM43#2, and sh-TMEM43#3 into the HCC cell lines 
Huh7 and HCCLM3. WB was used to detect the expression 
of TMEM43. The results showed that compared with the 
control group, Huh7 and HCCLM3 cells transfected with 
sh-TMEM43#1, sh-TMEM43#2, and sh-TMEM43#3 
showed significant downregulation of TMEM43 expression. 
Then, we selected sh-TMEM43#1 and sh-TMEM43#2 
with better transfection effects for subsequent experiments 
(Figure 4A).

The effect of TMEM43 gene on the growth of HCC cells

The colony formation assay and CCK-8 assay were used to 
detect the effect of sh-TMEM43 on growth, respectively. 
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Figure 1 Exploring genes regulating hepatocellular carcinoma through RNA-seq. (A) After transfecting empty lentivirus (NC) and miR-
7 overexpressed lentivirus (OE) into Huh7 cells, the expression of miR-7 was detected by qRT-PCR. (B) Displaying differential genes 
between the miR-7 overexpression group (E8321-1, E8321-2, E8321-3) and the miR-7 control group (E8320-1, E8320-2, E8320-3) 
through volcanic maps. The horizontal axis represents the multiple of differences (logarithmic transformation with a base of 2), the vertical 
axis represents the significance P value of differences (logarithmic transformation with a base of 10), the red dot represents the significant 
difference genes screened based on |fold change| ≥1.5 and P value <0.05 as the standard, and the gray dot represents other genes without 
significant differences. (C) LncRNA in differential genes. Red indicates a relative upregulation of gene expression, green indicates a 
relative downregulation of gene expression, black indicates no significant change in gene expression, and gray indicates that the signal 
intensity of the gene has not been detected. (D) mRNA in differential genes. Red indicates a relative upregulation of gene expression, green 
indicates a relative downregulation of gene expression, black indicates no significant change in gene expression, and gray indicates that the 
signal intensity of the gene has not been detected. (E) The distribution map of differentially expressed genes on chromosomes shows the 
distribution of differentially expressed genes. This figure shows the basic structure of 24 human chromosomes and the specific positions of 
differential genes on each chromosome. The red color in the figure represents the distribution of upregulated genes on chromosomes; the 
green color represents the distribution of downregulated genes on chromosomes. ANOVA, analysis of variance; RNA-seq, RNA-sequencing; 
qRT-PCR, quantitative real-time polymerase chain reaction; lncRNA, long non-coding RNA; mRNA, messenger RNA.
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Figure 2 Predicting high expression of TMEM43 in hepatocellular carcinoma. (A) The expression of TMEM43 in 33 types of tumors was 
analyzed through the TCGA database. (B) The expression of TMEM43 in hepatocellular carcinoma was analyzed through the GEPIA 
database. (C) The prognosis of TMEM43 in 33 types of tumors was analyzed through the TCGA database (D) Prognosis of molecular 
TMEM43 in hepatocellular carcinoma through TCGA database. –, P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001. TMEM43, transmembrane 
protein 43; TPM, transcripts per million; ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive 
carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon 
adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; 
HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney 
renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; 
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LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; 
PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum 
adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; 
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Figure 3 Expression levels of TMEM43 in hepatocellular carcinoma tissues and hepatocellular carcinoma cell lines. (A) Detection of 
TMEM43 expression in seven pairs of hepatocellular carcinoma tissues and adjacent tissues by western blot. (B) Detection of TMEM43 
expression in hepatocellular carcinoma tissue by immunohistochemistry (the original magnification is respectively 5×, 20×, 40×). (C) 
Localization of TMEM43 expression in Huh 7 and HCCLM3 cells through cellular immunofluorescence assay (original magnification, 
×100). TMEM43, transmembrane protein 43; N, normal; T, tumor; DAPI, 4',6-diamidino-2-phenylindole.

The colony formation experiment showed that the cell 
colony of TMEM43 knockdown group was smaller than that 
of the control group (Figure 4B). The CCK-8 experiment 
showed that compared with the control group, TMEM43 

knockdown significantly inhibited the proliferation of Huh7 
and HCCLM3 cells (Figure 4C). Through CCK-8 and 
clone formation experiments, it was revealed that knocking 
down TMEM43 inhibits the growth of HCC cells.
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Figure 4 The effect of TMEM43 on the growth and invasion of hepatocellular carcinoma cells. (A) After transfecting sh-TMEM43#1, sh-
TMEM43#2, and sh-TMEM43#3 into Huh7 and HCCLM3 cells, the expression of TMEM43 in the cells was detected using western 
blotting. Clone formation experiment (B) (stained with crystal violet, taking photos with a camera) and CCK-8 assay (C) were used to detect 
the effect of sh-TMEM43#1 and sh-TMEM43#2 on growth, respectively. (D) The effect of TMEM43 on the migration of hepatocellular 
carcinoma cell invasion was detected by Transwell (stained with crystal violet; original magnification, ×200). **, P<0.01. TMEM43, 
transmembrane protein 43; Ctr, control; CCK-8, Cell Counting Kit-8.

The effect of TMEM43 gene on the invasion of HCC cells

We used Transwell experiments to detect the effect of 
TMEM43 on the invasion ability of HCC cells. The 

Transwell experiment results showed that knocking down 

TMEM43 significantly inhibited the invasion of Huh7 and 

HCCLM3 cells (Figure 4D).
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The effect of TMEM43 gene on cell cycle and apoptosis of 
HCC cells

Flow cytometry was used to detect the effects of TMEM43 
on cell cycle and apoptosis, respectively. Flow cytometry 
experiments showed that the apoptosis rate of Huh7 and 
HCCLM3 cells was significantly higher after knocking 
down TMEM43 compared to the control group (Figure 
5A). Flow cytometry experiments showed that compared 
with the control group, the G1 phase cells of Huh7 
and HCCLM3 cells were significantly increased after 
knocking down TMEM43, whereas the S phase cells were 
significantly reduced (Figure 5B). Through cell cycle and 
apoptosis experiments, it was found that knocking down 
TMEM43 inhibits the growth of HCC cells and promotes 
cell apoptosis.

The protein interaction relationship between TMEM43 
gene and VDAC1 gene 

In Huh7 and HCCLM3 cells, knockdown of TMEM43 
resulted in a decrease in the protein level of VDAC1, 
whereas overexpression of VDAC1 partially restored the 
knockdown effect of sh-TMEM43 (Figure 6A). Meanwhile, 
cellular immunofluorescence revealed that TMEM43 and 
VDAC1 were co localized in the cytoplasm (Figure 6B). The 
results of co-IP indicated the interaction between TMEM43 
and VDAC1 at the protein level (Figure 6C). These results 
indicate that TMEM43 affects the progression of HCC 
through VDAC1.

TMEM43 gene affects the proliferation and invasion of 
HCC cells through VDAC1 gene

To determine whether TMEM43 promotes the proliferation 
and invasion of Huh7 and HCCLM3 cells through VDAC1, 
we restored the expression of VDAC1 inhibited by sh-
TMEM43 through a recovery experiment. Through cloning 
(Figure 7A), CCK-8 (Figure 7B), and Transwell experiments 
(Figure 7C), it was found that overexpression of VDAC1 
partially restored the inhibitory effect of sh-TMEM43 on 
cell proliferation and invasion. The above results indicate 
that TMEM43 promotes the proliferation and invasion of 
Huh7 and HCCLM3 cells by targeting VDAC1. 

To further investigate the mechanism of TMEM43 
inhibiting the proliferation and invasion of HCC cells 
through VDAC1, we investigated the effect of TMEM43 on 
the PI3K signaling pathway through WB. We found that 

sh-TMEM43 inhibited the PI3K signaling pathway in HCC 
cells, whereas VDAC1 partially restored the inhibitory 
effect of sh-TMEM43 on HCC cells (Figure 7D). The above 
results indicate that TMEM43 promotes the proliferation 
and invasion of Huh7 and HCCLM3 cells by targeting 
VDAC1.

USP7 gene promotes the progression of HCC by regulating 
the level of TMEM43 gene through deubiquitination

In Huh7 and HCCLM3 cells, USP7 knockdown resulted 
in a decrease in the protein level of TMEM43 (Figure 8A). 
The interaction between TMEM43 and USP7 at the protein 
level was found through immunoprecipitation experiments 
(Figure 8B). Further, immunoprecipitation revealed that 
after USP7 knockdown, the level of TMEM43 increased 
(Figure 8C). The above results indicate that USP7 affects 
the progression of HCC by regulating the ubiquitination 
level of TMEM43 through deubiquitination (Figure 8D).

Discussion

In recent years, molecular targeted therapy for HCC has 
remained a research hotspot (16,17). Therefore, finding 
effective key therapeutic targets is of great significance for 
the treatment of HCC. In the occurrence and progression 
of HCC, multiple oncogenes and tumor suppressor genes 
all play a role (18,19). Compared with normal control 
samples and low-grade glioma samples, the expression level 
of TMEM43 is upregulated in high-grade glioma malignant 
samples. The higher the expression of TMEM43, the lower 
the survival rate. In vitro and in vivo experiments showed 
that knockdown of TMEM43 could inhibit the proliferation 
and metastasis of glioma (20). However, the role of 
TMEM43 has not been reported in HCC. In this study, we 
discovered through the TCGA database that TMEM43 
is highly expressed in HCC tissues. TMEM43 is closely 
related to the prognosis of HCC, and high expression of 
TMEM43 can lead to poor prognosis. We found that the 
expression level of TMEM43 in HCC tissue was higher 
than that in adjacent tissues by WB. Through experiments 
such as CCK-8, clone formation assay, flow cytometry, and 
Transwell, we found that overexpression of TMEM43 was 
associated with HCC cell viability, proliferation ability, 
migration, and increased apoptosis ability of HCC cells. 
Therefore, TMEM43 can affect the growth, proliferation, 
and invasion of HCC cells, thereby affecting the occurrence 
and development of HCC, which undoubtedly provides 
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Figure 5 The effect of TMEM43 on cell cycle and apoptosis of hepatocellular carcinoma cells. (A) Analyzing the effect of TMEM43 gene 
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Figure 6 The protein interaction relationship between TMEM43 and VDAC1. (A) After transfection of Ctr, sh-TMEM43#1, and Ov-
VDAC1 in Huh7 and HCCLM3 cells, the protein expression effects of TMEM43 and VDAC1 were detected by western blotting. (B) 
Co-localization of TMEM43 and VDAC1 in hepatocellular carcinoma cells (immunofluorescence assay; original magnification, ×100). 
(C) Detection of the interaction between TMEM43 and VDAC1 at the protein level through coimmunoprecipitation. TMEM43, 
transmembrane protein 43; VDAC1, voltage-dependent anion channel 1; Ctr, control; sh, short hairpin; Ov, overexpression; DAPI, 
4',6-diamidino-2-phenylindole; IB, immunoblot; IP, immunoprecipitation; IgG, immunoglobulin G.

new therapeutic targets for HCC treatment. 
However, the mechanism of TMEM43 in HCC cells is 

still unclear. In this study, we found that TMEM43 regulates 
the proliferation, apoptosis, and invasion of HCC through 
VDAC1. VDAC protein is the most abundant porogen 
located in the outer mitochondrial membrane (OMM) 
of eukaryotic cells. As the gatekeeper of mitochondria, it 
regulates the entry and exit of metabolites, Ca2+, fatty acid 
ions, and reactive oxygen species in OMM (21,22). VDAC 
protein has been identified as three isoforms encoded by three 
homeotic genes: VDAC1, VDAC2, and VDAC3. VDAC1 
has the most abundant expression level among them (23).  
A study has found that VDAC1 is overexpressed in HCC 
and can serve as a new diagnostic biomarker. VDAC1 is 
an independent factor in predicting poor prognosis (24). 
According to reports, overexpression of VDAC1 is closely 
related to different types of cancer (25-28). VDAC1 may serve 
as a new pharmacological target for anticancer therapy (29).  
This study found that overexpression of VDAC1 can 
partially counteract the proliferation and invasion of sh-
TMEM43 on HCC cells. In addition, we found that 
overexpression of VDAC1 can partially counteract the 
inhibitory effect of sh-TMEM43 on the PI3K signaling 
pathway in HCC cells. These results further confirm the 
inseparable relationship between VDAC1 and TMEM43 in 

the occurrence and development of HCC. 
Through the action of deubiquitinating enzymes (DUBs), 

deubiquitination is responsible for removing ubiquitin/
polyubiquitin chains from protein substrates and reversing 
the function of ubiquitination (30,31). The post-translational 
modification of proteins known as ubiquitination is a key 
process that has been observed to be dysregulated in several 
types of cancer, including HCC (32). DUBs play an important 
role in tumor development by removing ubiquitin from 
substrate proteins through the deubiquitination process (33).  
Several families of DUBs exist in the human proteome, 
including ubiquitin C-terminal hydrolase (UCH), ubiquitin-
specific proteases (USPs), ovarian tumour proteases (OTUs) 
and motif interacting with ubiquitin-containing novel DUB 
family proteases (MINDYs) (34). The diversity of these 
DUB families highlights the complexity of deubiquitination 
and its potential involvement in cancer progression. Not 
unlike most post-translational modification, ubiquitination is 
also associated with many cell functions, including cell cycle 
progression, apoptosis, gene transcription, DNA repair, 
and signal transduction, which regulate cell development 
and differentiation and tumorigenesis (35,36). Therefore, 
components in the ubiquitin pathway have been proposed 
as potential targets for treatment strategies for diseases 
and cancer (37,38). USP7 is one of the most abundant 
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Figure 7 Effects of TMEM43 on proliferation and invasion of hepatocellular carcinoma cell migration and PI3K signaling pathways. (A) 
The overexpression of VDAC1 partially eliminated the inhibitory effects of sh-TMEM43 on cell proliferation through clone formation 
experiment (stained with crystal violet, taking photos with a camera). (B) The overexpression of VDAC1 partially eliminated the inhibitory 
effects of sh-TMEM43 on cell proliferation through CCK-8. **, P<0.01. (C) The overexpression of VDAC1 partially eliminated the 
inhibitory effects of sh-TMEM43 on cell invasion through Transwell experiments (stained with crystal violet; original magnification, ×200). 
(D) Overexpression of VDAC1 can partially restore the inhibitory effect of TMEM43 on p-PI3K, as shown by WB. **, compared with sh-
Ctr group, P<0.01; ##, compared with sh-TMEM43#1 group, P<0.01. sh, short hairpin; Ctr, control; TMEM43, transmembrane protein 43; 
VDAC1, voltage-dependent anion channel 1; Ov, overexpression; WB, western blot; CCK-8, Cell Counting Kit-8.
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Figure 8 USP7 promotes the progression of hepatocellular carcinoma by regulating the ubiquitination level of TMEM43 through ubiquitin. 
(A) Detection of the effect of USP7 knockdown on the protein expression of TMEM43 in Huh7 and HCCLM3 cells by western blotting. 
(B) Detection of the interaction between TMEM43 and USP7 at the protein level through coimmunoprecipitation. (C) After knocking down 
USP7, the ubiquitination level of TMEM43 was detected by immunoprecipitation. (D) The schematic diagram shows that USP7 promotes 
tumor progression through VDAC1 by de ubiquitination of TMEM43 in hepatocellular carcinoma. sh, short hairpin; Ctr, control; USP7, 
ubiquitin-specific protease 7; TMEM43, transmembrane protein 43; IgG, immunoglobulin G; IB, immunoblot; IP, immunoprecipitation; 
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USPs and plays a multifaceted role in many cellular events, 
including carcinogenic pathways (39-42). A study has 
found that USP7 is a promising target for cancer treatment 

by regulating the MDM2/MDX-p53 pathway (43). We 
found that USP7 can affect the expression of TMEM43 
in HCC by deubiquitination of TMEM43. This study 
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provides experimental and theoretical basis for studying the 
development and mechanism of TMEM43 in cancer, as well 
as for subsequent treatment of cancer.

Conclusions

TMEM43 plays a crucial role in HCC. Further analysis 
indicates that TMEM43 affects the proliferation, invasion, 
and apoptosis of HCC cells through VDAC1. To our 
knowledge, this study is the first to explore the role of 
TMEM43 in HCC. TMEM43 can serve as a promising 
biomarker for HCC, laying the foundation for further 
understanding the mechanism of its occurrence and 
development. These findings provide a new understanding 
of the pathology and treatment of HCC, and demonstrate 
the potential of USP7/TMEM43/VDAC1 axis as a new 
biomarker for monitoring and treating the disease, laying a 
solid foundation for the development of targeted therapies 
for invasive cancer.
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