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Background: Serine/threonine kinase 1 (PIM1) plays a crucial role in cell growth, differentiation, and 
apoptosis. However, its role in the pathogenesis of concanavalin A (ConA)-induced acute hepatitis is not well 
understood. PIM1 kinase inhibitor can reduce the expression of PIM1. This study aims to investigate the 
effects of PIM1 kinase inhibitor and its protective mechanism in ConA-induced acute hepatitis.
Methods: C57/BL six mice were injected with ConA (20, 15, and 12 mg/kg) to induce acute hepatitis, and 
PIM1 kinase inhibitor SMI-4a (60 mg/kg) was administered orally 24 h before ConA injection. The survival 
rate of the mice was observed after ConA injection. The levels of serum aspartate aminotransferase (AST) 
and alanine aminotransferase (ALT) were measured. Serum inflammatory factors were detected by enzyme-
linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was performed on liver tissue 
collected at different time points. The major cytokines expression in liver tissue was detected by quantitative 
real-time polymerase chain reaction (qRT-PCR). The number of macrophages, T-cell and neutrophils in 
liver tissue were detected by flow cytometry (FCM). PIM1 in liver tissue was detected by western blot (WB) 
and qRT-PCR. SMI-4a (80 µM) was pretreated for 24 h and ConA (400 µg/mL) was stimulated for 12 h in 
RAW264.7 cell model. Phosphorylated p65 (p-p65) and cleaved caspase-3 (c-caspase-3) in liver tissue and 
macrophages were detected by WB.
Results: Different concentrations of ConA caused different acute hepatitis mortality, 12 mg/kg 
concentration within 24 h of the mortality showed a gradient increase. The levels of AST and ALT increased 
significantly at 12 h after ConA injection. PIM1 expression was upregulated at 12 h. SMI-4a can suppress the 
PIM1 expression. SMI-4a suppressed cytokines production, AST, and ALT in ConA-treated serum. SMI-4a 
suppressed the major cytokines in liver tissue. Tests in liver tissue showed that SMI-4a reduced the number 
of T cells, neutrophils, and macrophages. SMI-4a inhibited the inflammatory response by downregulating 
the expression of p-p65. Meanwhile, apoptosis was decreased by decreasing the expression of c-caspase-3.
Conclusions: In conclusion, the protective effect of SMI-4a against acute hepatitis is by reducing the 
inflammatory response and apoptosis. These findings suggest that SMI-4a may have therapeutic potential in 
the treatment of autoimmune hepatitis.
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Introduction

Hepatitis, a condition marked by liver inflammation, has 
shown a concerning increase worldwide over the past few 
decades, posing a significant risk to human health. Despite 
extensive research into the underlying mechanisms and the 
development of various treatments, a definitive cure for the 
disease remains elusive. Acute hepatitis cases often involve 
severe innate inflammation, leading to cell death and the 
potential development of liver failure. A crucial factor in this 
process is the involvement of activated macrophages, which 
infiltrate the liver parenchyma and contribute to its damage.

Serine/threonine kinase 1 (PIM1) is a type of serine 
or threonine kinase that plays a significant role in diverse 
cellular processes, such as proliferation, differentiation, 
and apoptosis (1,2). Although PIM1 was initially identified 
as a proto-oncogene in hematologic neoplasms, it has 
been shown to be involved in inflammation-related 
signaling pathways (3-5). In recent studies, inhibition of 
PIM1 has been observed to exhibit protective impacts 
on the progression of airway hyperresponsiveness and 
inflammation in mice that have been sensitized and 
challenged with allergens (6,7). Moreover, PIM1 kinase has 
been shown to play a crucial role in the regulation of pro-
inflammatory mediators in fetal membranes, indicating its 
potential as an anti-inflammatory target (8-10).

Based on the preceding literature review and research 
outcomes, our hypothesis is that PIM1 potentially plays 
a role in the pathogenic progression of acute hepatitis 
induced by concanavalin A (ConA) (11). The purpose of this 
study is through studying PIM1 kinase of ConA-induced 

acute hepatitis to explore the influence of the potential 
mechanism of in vivo. We present this article in accordance 
with the ARRIVE reporting checklist (available at https://
tgh.amegroups.com/article/view/10.21037/tgh-23-93/rc).

Methods

Regents

ConA was purchased from Sigma-Aldrich (Sigma-
Aldrich Corporation, St. Louis; MO, USA). Selleck 
Corporation provided the PIM1 targeted inhibitor SMI-4a  
(CAS:438190-29-5, purity 100%, chemical formula 
C11H6F3NO2S). For mouse treatment, SMI-4a was 
dissolved in vegetable oil, while dimethyl sulfoxide (DMSO) 
was used for cell culture purposes. The antibodies used in 
this study include phosphorylated p65 (p-p65; from CST 
#3033, Cell Signaling Technology, Danvers, MA, USA) 
and cleaved caspase-3 (c-caspase-3; from CST #9961, Cell 
Signaling Technology).

Animals

Male C57/BL six mice (8 weeks old, 23±2 g) were 
purchased from Shanghai SLAC Laboratory Animal Co., 
Ltd. (Shanghai, China). Mice were housed in a clean room 
at 24±2 ℃ with a 12-h light/dark cycle and had free access 
to food and water. Animal experiments were approved by 
the Clinical Center Laboratory Animal Welfare & Ethics 
Committee of Shanghai General Hospital, Shanghai Jiao 
Tong University (Ethical Batch No. 2020AWS0032). The 
national guideline GB/T 34791-2017 was followed for the 
care and use of animals.

Drug administration

Acute mouse hepatitis model was established by caudal vein 
method ConA with 20, 15, or 12 mg/kg (12). The mortality 
rate varies with different concentrations. We selected the 
appropriate concentration ConA (12 mg/kg). SMI-4a was 
given 60 mg/kg before injection.

Survival experiment

In survival experiments, 30 mice were then randomly 
assigned to one of four groups, the sham group (n=6), the 
ConA (20 mg/kg) group (n=8), the ConA (15 mg/kg) group 
(n=8) and the ConA (12 mg/kg) group (n=8). The survival 
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was recorded every 3 h for 24 h.
In the SMI-4a inhibitor survival trial, we choose ConA 

with 12 mg/kg. Thirty mice were then randomly assigned 
to one of four groups: the sham group (n=6), the ConA12h 
group (n=8), the DMSO-ConA12h group (n=8), the SMI-
4a (60 mg/kg)-ConA12h group (n=8). Then the survival was 
also recorded every 3 h for 24 h.

Experimental group design

Twenty-four mice were then randomly assigned to one of 
four groups: the sham group (n=6), the ConA3h group (n=6), 
the ConA12h group (n=6), and the ConA24h group (n=6). 
Liver tissues and serum were collected at different time 
points (0, 3, 12, and 24 h).

Twenty-four mice were then randomly assigned to one 
of four groups: the sham group (n=6), the ConA12h group 
(n=6), the DMSO-ConA12h group (n=6), and the SMI-
4a-ConA12h group (n=6). The administration of SMI-4a 
(60 mg/kg) dissolved in vegetable oil was performed via 
intragastric delivery, 24 h prior to the caudal intravenous 
injection treatment of ConA. Phosphate-buffered saline 
(PBS) was used as control in two groups and DMSO was 
used as control in one group. Mice were euthanized by 
carbon dioxide inhalation at designated intervals.

Cells experimental design

Macrophage (RAW 264.7) models were given ConA  
(400 µg/mL) 12 h and SMI-4a was given 80 µM 24 h before 
ConA given to establish cell models, the dosage about SMI-
4a was directly referred to the experiment (13). Cells are 
collected after 12 h. The cells are divided into four groups: 
the control group, the ConA12h group, the DMSO-
ConA12h group, and the SMI-4a-ConA12h group.

Biochemical analysis

At each time point (0, 3, 12, and 24 h) following ConA 
injection, we euthanized six mice randomly chosen from 
each group. We obtained liver tissues from the mice, which 
were subsequently stored at −80 ℃, and collected cardiac 
puncture blood samples after centrifugation, which were 
stored at 4 ℃.

Histology evaluation

Liver tissue samples were collected at 0, 3, 12, and 24 h 

after ConA caudal vein injection. Afterwards, the upper 
right lobe was immersed in 4% paraformaldehyde for 
fixation, followed by dehydration using ethanol, and finally 
embedded in paraffin. The liver tissue was sliced into 
sections measuring 4–5 µm in thickness and subsequently 
underwent staining with hematoxylin-eosin (HE). An 
optical microscope was employed to analyze and evaluate 
the pathological variations within the four groups. The 
scoring procedure was carried out independently by two 
skilled pathologists, following the previously established 
protocol. Pathological score: 1, inactivity; 2, mild active, 
punctate necrosis; 3, mild activity, mild lobular necrosis; 
4, moderate activity, moderate lobular necrosis; 5, severe 
activity, severe lobular necrosis.

Serum aminotransferase assessment

Following a 4–5 h storage at 4 ℃, separation of sera 
from cardiac puncture blood collection was carried out 
through centrifugation at 2,000 rpm for 10 minutes. 
To assess hepatocellular injury, measurement of serum 
levels for alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) was performed using microplate 
test kits specific for ALT and AST, following the guidelines 
provided by the manufacturer. The ALT and AST 
microplate test kits were purchased from Nanjing Jiancheng 
Bioengineering Institute (Jiancheng Biotech, Nanjing, 
China).

Serum cytokine assays

To measure serum proinflammatory cytokines tumor 
necrosis  factor (TNF)-α ,  interleukin (IL)-6,  and  
IL-1β, enzyme-linked immunosorbent assay (ELISA) 
kits (R&D Systems, Minneapolis, MN, USA) were 
utilized in accordance with the protocols provided by the 
manufacturers.

Flow cytometry (FCM)

The infiltration of neutrophils, T cells, and macrophages 
was detected by FCM. FITC-CD11b (eBioscienc, 11-0112-
82; San Diego, CA, USA) and PE-Ly-6G (BD, 551461; 
Franklin Lakes, NJ, USA) were used to label neutrophils, 
FITC and F4/80 (BioLegend, MF48005; San Diego, 
CA, USA) antibodies were used to label macrophages. 
CD4-APC (eBioscience, 17-0041-81) and CD8-FITC 
(eBioscienc, 11-0086-42) were used to T cells.
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Western blotting analysis

Fol lowing the freezing of  l iver  t i s sues  in  l iquid 
nitrogen, the tissues were quickly disrupted using radio-
immunoprecipitation assay (RIPA) lysis buffer that contained 
various components such as phenylmethanesulfonyl fluoride 
(PMSF), aprotinin, sodium orthovanadate, and sodium 
fluoride (purchased from Sigma-Aldrich). To determine the 
protein concentration, the bicinchoninic acid (BCA) method 
was employed. To prepare the samples for analysis, equivalent 
quantities of total protein (30–120 g) were subjected to 
boiling with 5× sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) sample loading buffer. The 
treated samples were then examined using SDS-PAGE as per 
the standardized protocols. In order to prevent nonspecific 
binding, 5% nonfat milk dissolved in PBS was applied for 
a period of 2 h. The blots were subsequently incubated 
overnight at 4 ℃ with rabbit antibodies that targeted either 
mouse α-tubulin (1:1,000), mouse p-p65 (1:1,000), or 
rabbit c-caspase-3 (1:1,000), all prepared in 5% milk. The 
cytoplasmic proteins were normalized using α-tubulin as an 
internal reference, while nuclear proteins were normalized 
using lamin-A. After washing the membranes three times 
with PBS with Tween 20 (PBST), a secondary antibody (either 
goat anti-mouse or anti-rabbit) was applied at a dilution 
of 1:2,000 in PBST for incubation at 37 ℃ for 60 minutes. 
Lastly, the membranes were washed three times with PBST 
for 5 minutes each, and the proteins were detected using 
the Odyssey two-color infrared laser imaging system, which 

utilizes fluorescence detection. The antibodies employed 
in this research include p-p65 (from CST #3033) and 
c-caspase-3 (from CST #9961).

Quantitative real-time polymerase chain reaction (qRT-PCR) 
assay

Using a commercial kit (miRNeasy Mini Kit, Qiagen, 
Hilden, Germany), liver tissue was subjected to various time 
intervals after ConA administration in order to extract total 
RNA. The RNA quality was assessed by analyzing the A260/
A280 ratio, followed by the synthesis of complementary 
DNA (cDNA) using reverse transcriptase (Takara, Kusatsu, 
Japan). For each sample, triplicate preparations were made, 
resulting in a total reaction volume of 20 µL. The reaction 
consisted of 250 nM forward and reverse primers, 10 µL 
SYBR Green (Takara), ROX Reference Dye II, and 20 ng 
cDNA. RT-PCR was performed using the QuantStudio 
3 system. To account for variability in expression levels, 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
served as the internal control for normalization (14). The 
PCR primers used in the experiment are shown in Table 1.

Statistical analysis

Data were represented as the average ± standard deviation. 
Analyzing the statistical data was conducted with the 
assistance of the SPSS Statistics version 17.0 Program (SPSS 
Inc., Chicago, IL, USA). Prism 7.0 (GraphPad Software, 
San Diego, CA, USA) was employed for creating graphical 
representations. The survival data were assessed through 
the utilization of Kaplan-Meier plots and log-rank tests. 
Comparisons among the groups were performed via one-way 
analysis of variance (ANOVA), followed by Tukey’s multiple 
comparison test. Statistical significance was defined as P<0.05.

Results

The severity of acute hepatitis is related to the 
concentration and duration of ConA

The study found that the most severe liver injury occurred 
at 3 and 12 h after ConA injection, as observed by HE 
staining of liver tissue in Figure 1A and pathological scoring 
in Figure 1B. The inflammation of liver tissue was increased 
significantly, accompanied by massive necrosis of hepatic 
lobules in 3 and 12 h. Serum AST and ALT levels were 
highest at 12 h after ConA injection in Figure 1C,1D. The 

Table 1 PCR primers of PIM1, GAPDH, IL-6, IL-1β, and TNF-α

Primer Sequence

PIM1 primer Forward GCTCGGTCTACTCTGGCATC

Reverse CCGAGCTCACCTTCTTCAAC

GAPDH primer Forward AACTTTGGCATTGTGGAAGG

Reverse GGATGCAGGGATGATGTTCT

TNF-α primer Forward CACCACCATCAAGGACTCAAAT

Reverse TCAGGGAAGAATCTGGAAAGGT

IL-6 primer Forward GGCCCTTGCTTTCTCTTCG

Reverse ATAATAAAGTTTTGATTATGT

IL-1β primer Forward GAAAGCTCTCCACCTCAATG

Reverse GCCGTCTTTCATTACACAGG

PCR, polymerase chain reaction; PIM1, serine/threonine kinase 
1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IL, 
interleukin; TNF, tumor necrosis factor.
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Figure 1 Changes of hepatic inflammation index and liver tissue induced by ConA. (A) HE staining of liver tissues after caudal intravenous 
injection of ConA (12 mg/kg) at different time points (200 µm). (B) Liver pathological score (n=6). (C,D) Serum AST and ALT levels at 
different time points (n=6). (E) Survival rate of mice with different ConA concentrations (n=6). (F-H) Serum IL-6, IL-1β, and TNF-α 
levels at different time points (n=6). *, P<0.05 vs. sham group. ConA, concanavalin A; AST, aspartate aminotransferase; ALT, alanine 
aminotransferase; IL, interleukin; TNF, tumor necrosis factor; HE, hematoxylin-eosin.

survival rate of mice significantly decreased with increasing 
concentrations of ConA in Figure 1E. Therefore, ConA 
12 mg/kg is the most appropriate experimental dose. In 
addition, the expression of serum inflammatory cytokines 
(IL-6, IL-1β, and TNF-α) significantly increased at 3 and 
12 h after ConA injection in Figure 1F-H.

PIM1 inhibitor SMI-4a can inhibit PIM1 expression in 
acute hepatitis

In the acute hepatitis model, the expression of PIM1 
increased significantly at 3 and 12 h, while PIM1 protein 
expression was highest at 12 h after ConA injection, as 
shown in Figure 2A,2B. PIM1 messenger RNA (mRNA) 
expression also increased significantly at 3 and 12 h, then 

at 12 h the increase of PIM1 mRNA expression was the 
most obvious after ConA injection, as shown in Figure 2C. 
When treated with the PIM1 inhibitor, SMI-4a, PIM1 
protein expression was significantly inhibited at 12 h, as 
shown in Figure 2D,2E. Similarly, PIM1 mRNA expression 
was also inhibited by SMI-4a treatment at 12 h, as shown in  
Figure 2F. These results suggest that the ConA model can 
cause PIM1 to rise, and the inhibitor SMI-4a can effectively 
inhibit PIM1 expression in the acute hepatitis model.

PIM1 inhibitor SMI-4a improves liver injury in ConA-
induced acute hepatitis

In the acute hepatitis model, treatment with PIM1 inhibitor 
SMI-4a improved liver injury observed 12 h after caudal 
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Figure 2 Expression of PIM1 in ConA-induced hepatitis. (A,B) PIM1 protein expression was detected by WB at different time points and 
gray value analysis, n=3. (C) mRNA changes of PIM1 level were detected by qRT-PCR at different time points, n=6. (D,E) The effects 
of SMI-4a on PIM1 expression and gray value analysis, n=3. (F) mRNA changes of PIM1 level were detected by qRT-PCR after SMI-4a 
conducted, n=6. *, P<0.05 vs. sham group; #, P<0.05 vs. ConA12h group. PIM1, serine/threonine kinase 1; ConA, concanavalin A; mRNA, 
messenger RNA; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; DMSO, dimethyl sulfoxide; WB, western blot; qRT-PCR, 
quantitative real-time polymerase chain reaction.

intravenous injection of ConA (12 mg/kg) as shown in 
HE staining in Figure 3A. After the addition of SMI-4a 
inhibitors, the inflammatory response of liver tissue was 
obviously limited, and the necrosis of liver lobular structure 
was significantly reduced. Pathological score also indicated 
improvement in liver injury after PIM1 inhibitor treatment 
as shown in Figure 3B. Serum AST and ALT levels were 
reduced after treatment with PIM1 inhibitor at 12 h as 
shown in Figure 3C,3D. The survival rate of mice treated 
with ConA (12 mg/kg) and PIM1 inhibitor was significantly 
increased compared to the ConA group in Figure 3E.

PIM1 inhibitor SMI-4a improves inflammation in ConA-
induced acute hepatitis

In this study, we found that SMI-4a can inhibit the count 
of macrophages in liver tissue as shown in Figure 4A,4B. 
Then, we observed that treatment with SMI-4a can 
restrain the count of neutrophils in liver tissue as shown in  

Figure 4C,4D. We found that SMI-4a can inhibit the count 
of CD4+T cells in liver tissue after SMI-4a treatment 12 h 
as shown in Figure 4E,4F. IL-6, IL-1β, and TNF-α mRNA 
expression were also inhibited by SMI-4a treatment at 12 h, 
as shown in Figure 4G-4I. Furthermore, the expression of 
inflammatory cytokines (IL-6, IL-1β, and TNF-α) in serum 
was significantly decreased comparison with ConA injection 
after PIM1 inhibitor treatment in Figure 4J-4L. Therefore, 
SMI-4a can inhibit the production of immune cells and 
inhibit inflammatory factors in liver tissues and serum.

SMI-4a protects against liver damage through inhibiting 
p65 nuclear factor (NF)-κB phosphorylation and caspase-3 
cleaving

In this investigation, we initially validated that the 
molecule SMI-4a possesses the capability to suppress 
the manifestation of the PIM1 protein. Subsequently, we 
observed that treatment with SMI-4a down-regulated 
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Figure 3 SMI-4a inhibited ConA-induced hepatic tissue changes. (A) HE staining of liver tissues after caudal intravenous injection of ConA 
(12 mg/kg) after SMI-4a conducted (200 µm). (B) Liver pathological score, n=6. (C,D) Serum AST and ALT levels after SMI-4a conducted. 
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the levels of p-p65 and c-caspase-3 in the acute hepatitis 
model in Figure 5A-5C. Similarly, in the RAW 264.7 model, 
treatment with SMI-4a also down-regulated the levels of 
p-p65 and c-caspase-3, as shown in Figure 5D-5F.

Discussion

In this study, we used ConA to induce acute liver 
injury (15,16). There is no special treatment for acute 
autoimmune hepatitis in clinical practice, and it is treated 
by immunosuppressants and hormones. Our study could 
provide a drug that could be considered for autoimmune 
acute hepatitis. In order to provide new treatment ideas, 
we found that different concentrations of ConA not only 
showed different survival rates, but also had different severity 
of liver damage and inflammatory response at different time 
points. Meanwhile, PIM1 expression was the most significant 
at 12 h time point. We found that SMI-4a can reduce the 
number of macrophages, neutrophils, and T cells, and it 
is very noticeable in macrophages. The PIM1 inhibitor 
SMI-4a inhibits the expression of PIM1 and also inhibits 
liver damage and inflammatory responses, while acting on 
macrophages (17,18). ConA-induced liver injury after SMI-

4a pretreatment has been shown to reduce inflammatory 
response and liver injury through reduced expression of p-p65 
and c-caspase-3, both in vivo and in vitro.

Previous literature found that different concentrations 
of ConA had different effects on liver injury (19,20). 
Therefore, we observed the survival rate of mice through 
different ConA concentration gradients, and selected 
the most appropriate concentration of 12 mg/kg for the 
experiment (21). It was found in the experiment that the 
onset of acute hepatitis reaction was acute at 3 h. AST and 
ALT had increased significantly, and reached a peak at 12 h. 
HE staining showed that the liver damage at 12 h was very 
serious. At the same time, we found that the expression level 
of PIM1 increased most significantly at 12 h. Therefore, 
we believe that inhibition of PIM1 expression is needed 
to alleviate acute liver injury (22-24). In vivo experiments, 
we found that the pro-inflammatory factors TNF-α, IL-6, 
and IL-1β showed an increasing trend at 3 and 12 h while 
a decreasing trend at 24 h. At the same time, we found that 
oral SMI-4a preconditioning can reduce PIM1 levels in 
liver tissue in vivo. These findings suggest that a number 
of complex pathway inflammatory and compensatory 
mechanisms are involved, which rely on PIM1 activation in 
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Figure 4 SMI-4a inhibited immune cells and inflammatory factors. (A) The percentage of macrophages was detected by FCM. (B) Statistics 
of the percentage of macrophages in the liver, n=4. (C) The percentage of neutrophils was detected by FCM. (D) Statistics of the percentage 
of neutrophils in the liver, n=4. (E) The percentage of CD4+T cells was detected by FCM. (F) Statistics of the percentage of CD4+T cells in 
the liver, n=4. (G-I) mRNA changes of IL-6, IL-1β, and TNF-α level were detected by qRT-PCR after SMI-4a conducted, n=4. (J-L) Serum 
IL-6, IL-1β, and TNF-α levels after SMI-4a conducted, n=4. *, P<0.05 vs. sham group; #, P<0.05 vs. ConA12h group. ConA, concanavalin 
A; DMSO, dimethyl sulfoxide; FITC, fluorescein isothiocyanate; APC, allophycocyanin; PE, phycoerythrin; mRNA, messenger RNA; 
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IL, interleukin; TNF, tumor necrosis factor; FCM, flow cytometry; qRT-PCR, 
quantitative real-time polymerase chain reaction.

response to inflammatory stimuli in the body.
As a kind of serine/threonine kinase, PIM1 role in 

different types of tumor infiltrating has attracted much 
attention (25,26). Interestingly, recent studies have reported 
an association between PIM1 and inflammatory diseases  
(27-29). In our study, we found that PIM1 mRNA and 
protein in the liver tissue of acute hepatitis induced by 
ConA. PIM1 may participate in the development of 
ConA-induced acute hepatitis process (30). In addition, 
preconditioning with PIM1-specific inhibitor SMI-

4a improved the prognosis of ConA-induced acute 
hepatitis (31). In vivo experiments, we found that the pro-
inflammatory factors TNF-α, IL-6, and IL-1β can be 
inhibited by SMI-4a.

The NF-κB is an inducible transcription factor that 
plays a role in regulating the expression level of various 
proteins involved in cell survival and immune response 
(31,32). We detected the role of SMI-4a in phosphorylation 
of p65 and changes in phosphorylation of p65 in liver 
tissue or macrophage cell lines. The expression of p65 
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Figure 5 Effects of SMI-4a inhibitors on inflammatory pathways and apoptosis pathways. (A) p-p65 and c-caspase-3 protein expression was 
detected by WB after SMI-4a conducted in mice. (B,C) Gray value analysis of p-p65 and c-caspase-3 after SMI-4a conducted in mice, n=6. 
(D) p-p65 and c-caspase-3 protein expression was detected by WB after SMI-4a conducted in RAW 264.7. (E,F) Gray value analysis of p-p65 
and c-caspase-3 after SMI-4a conducted in RAW 264.7. n=6. *, P<0.05 vs. sham group; #, P<0.05 vs. ConA12h group. ConA, concanavalin A; 
DMSO, dimethyl sulfoxide; p-p65, phosphorylated p65; NF, nuclear factor; c-caspase-3, cleaved caspase-3; WB, western blot.

phosphorylation was up-regulated by ConA. SMI-4a 
treatment reduced the phosphorylation level of p65. At the 
same time, the role of SMI-4a in caspase-3 shearing and the 
change of caspase-3 shearing in liver tissue or macrophage 
cell line. The expression of caspase-3 splicing was up-
regulated by ConA. SMI-4a treatment reduced caspase-3 
shear levels. These findings may explain the decrease in 
cytokine production.

In summary, we found that macrophages are involved in 
ConA-induced acute hepatitis. SMI-4a significantly inhibits 
PIM1 and the release of inflammatory cytokines, acting 
by inhibiting the phosphorylation of p65 and the shear of 
caspase-3. Our experimental results show that inhibiting PIM1 
expression is of great significance to relieve acute hepatitis.

Conclusions

The PIM1 inhibitor SMI-4a inhibited the release of 

inflammatory cytokines by inhibiting p-p65 activation and 
c-caspase-3 activity. The PIM1 inhibitor SMI-4a developed 
a good protective effect on the experimental mouse model 
of ConA-induced acute hepatitis.
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