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Introduction

Worldwide, lung cancer is a malignant tumor with a high 
morbidity and mortality (1). Computed tomography (CT) 
screening, diagnosis and treatment in the early stage of 
lung cancer are one of the important means to reduce its 
mortality (2,3). Lung cancer screening with low-dose CT 

(LDCT) allows diagnosis and treatment of early stage lung 
cancer. For diagnosed early stage lung cancer, surgical 
resection is the preferred treatment, but even after complete 
resection, there is still considerable heterogeneity in the 
survival rates. The prediction accuracy of the TNM staging 
and other traditional prognostic assessment models still 
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need to be improved. Importantly, an accurate assessment 
of the nature of early stage lung cancer and the prognosis 
of those patients provide a basis for decision making with 
respect to the clinical treatment, thus improving the survival 
of lung cancer patients. 

CT images contain important clinical image data that 
is helpful throughout the diagnosis, treatment and in 
the prognosis assessment of early stage lung cancer. For 
example, the National Lung Screening Trial (NLST) 
found that Screening with the use of low-dose CT reduces 
mortality from lung cancer(4); The Dutch–Belgian lung-
cancer screening trial [Nederlands-Leuvens Longkanker 
Screenings Onderzoek (NELSON)] reported that lung-
cancer mortality was significantly lower among those 
who underwent volume CT screening than among those 
who underwent no screening (5). CT imaging analysis 
has evolved from the Mayo model, which was determined 
using the classical pulmonary nodules (6), to the current 
radiomics analysis model (7), and now CT image analysis 
for early stage lung cancer has gradually entered the field 
of artificial intelligence area. Among these, radiomics refers 
to the comprehensive analysis of the tumor characteristics 
by mining a large number of high-dimensional quantitative 
characteristics of medical images and combining this with 
statistical models, which is the bridge between medical 
image analysis and the realization of precision medicine 
(8-10). The traditional radiomics analysis process mainly 
includes image acquisition, lesion segmentation, feature 
extraction, statistical modeling, and the CT radiomics 
analysis involves a lung cancer property analysis, a lung 
cancer gene expression prediction, prognosis assessment, 
and treatment decision guidance (11-13).

Recently, combined with the advantages of artificial 
intelligence deep learning (DL), researchers have proposed 
a new radiomics analysis technology (14,15), namely 
convolutional neural network (CNN). Because of CNN’s 
strong image processing capability, it has been successfully 
applied in the analysis of chest X-ray, CT, MRI and digital 
pathological images and has assisted clinicians in the diagnosis 
of diseases, tumor recognition, gene mutation analyses, 
immunotherapy evaluation, etc. (16). The application of 
CNN improves the ability of CT radiomics analyses and 
provides a technical basis for further evaluating the nature 
and prognosis of early stage lung cancer. Currently, for 
the assessment of the nature of early stage lung cancer, the 
detection of pulmonary nodules, the determination of benign 
and malignant diseases, and the assessment of invasiveness 
have all been reported in the literature and show advantages 

over traditional radiomics analyses, which is expected to 
reach the level of clinicians. However, the results of these 
nodule characterization studies have not been fully evaluated 
in clinical practice, and whether DL technology can be 
applied to the prognosis assessment and treatment decision 
of early stage lung cancer remains to be explored.

Knowledge of the progress of CT in management of 
detected lung nodules, as well as the potential developing 
implication, is essential for thoracic surgeons. This article will 
describe the research in determining the nature of pulmonary 
nodule, the prognosis assessment of early stage lung cancer, 
challenges of CT radiomics analyses in early stage lung 
cancer and DL and CNN. We present the following article 
in accordance with the Narrative Review Checklist (available 
at: http://dx.doi.org/10.21037/shc-20-81).

Research in determining the nature of incidental 
pulmonary nodules

Development of benign and malignant pulmonary nodules 
prediction model

The the Fleischner Radiology Society of America published 
its first edition of advice on the diagnosis and treatment 
of pulmonary nodules in 2005 (17). As early as 1997, the 
Mayo Clinic in the United States established the first 
model for the analysis of benign and malignant solid 
pulmonary nodules (6). This model established a logistic 
regression prediction model that was based on age, smoking 
status, individual tumor history, nodule diameter, burrs, 
and location in the upper lobe, which is still used today. 
Meanwhile, Herder et al. (18) validated the Mayo model 
and pointed out that there was a risk of the model being 
underestimated in patients judged to be less malignant. 
However, when combined with PET-CT results, the 
accuracy of the malignant determination of the nodules 
(VA model) was improved. Gould et al. (19) developed a 
new model that incorporated the quantification of smoking 
history and an assessment of the cessation time. Meanwhile, 
Schultz et al. verified the Mayo and VA models and proved 
that the prediction accuracy of Mayo model was better 
than the VA model (20). During this period, scholars at 
home and abroad also established and verified new models 
based on different population characteristics (21-23). 
Among these, based on domestic multicentre data, we also 
established and verified a nomogram model for determining 
isolated solid nodules (SNs) (24).

With the improvement in the sub-solid nodule (SSN) 
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detection rate, McWilliams et al. first divided pulmonary 
nodules into SN, SSN and pure ground glass nodule 
(PGGN) to establish a prediction model (Brock model) (25), 
and two lung cancer screening test cohorts, with a total of  
2,961 people and 12,029 nodules, were included. The model 
indicated that part-solid nodule (PSN) was a risk factor for 
lung cancer, with an early stage lung cancer incidence of 6.6% 
and an SN incidence of 1.1%. This study still underestimated 
the possibility of SSN malignancy, and thus, the criterion 
for the benign SSN was a stable follow-up for 2 years, but 
the malignant SSN needed a longer follow-up due to its 
inertia (26). The team built different malignant models 
based on whether the proportion of ground glass opacity 
(GGO) was greater than 50% in SSNs (27). Similarly, based 
on the previous multicentre database, we also established 
and verified a nomogram model that predicted PGGN as a 
precancerous lesion [including benign and adenocarcinoma 
in situ (AIS)] (28).

The above studies indicate that the benign and malignant 
determination of pulmonary nodules is an important 
focus of the clinical work in thoracic surgery. In addition, 
with changes in the pulmonary nodule disease spectrum, 
the simple differentiation of benign and malignant has 
been unable to meet the needs of clinical work, including 
resection extension, Lymph node dissection range and 
adjuvant treatment modality. Especially for the assessment 
of the properties of persistent SSNs, the CT image 
features of SSNs are different from those of SNs. Typical 
features, such as aeration of bronchi, average CT value, 
and proportion of GGO components, also have important 
clinical significance. At the same time, in addition to the 
differentiation of benign and malignant, the degree of 
infiltration also affects the clinical decision. Therefore, the 
establishment of a new property evaluation model based on 
CT image features is the key to an accurate SSN diagnosis 
and treatment.

Application of radiomics in the analysis of pulmonary 
nodules

Over the past 10 years, scholars have proposed that a 
large number of high-dimensional quantitative features 
can be mined and combined with statistical models to 
comprehensively classify medical tumor images, namely, 
radiomics (29,30). This method analyzes the features 
contained in the image that cannot be observed by clinicians 
visually, further quantifying the heterogeneity within the 
tumor, analyzing the clinical characteristics of the tumor, 

and finally providing guidance for clinical decision-making. 
The information quantification process of traditional 
radiomics analysis mainly includes four steps: (I) image 
acquisition and accurate segmentation of the target lesions; 
(II) reconstructing the three-dimensional structure of the 
target lesion and extracting a large number of radiomics 
quantitative characteristics; (III) feature screening, model 
establishment and verification with different methods; and 
(IV) evaluation combined with clinical application.

Radiomics not only realizes the analysis of the nodule 
properties, but also achieves a higher accuracy compared to 
traditional imaging diagnosis methods (31). Wu et al. (32) 
extracted 12 traditional imaging features and 13 imaging 
features of pulmonary nodules from the CT images of 
202 patients. The area under the curve (AUC) of the  
12 traditional imaging features was 0.84, and the AUC of 
the 10 imaging features selected by the logistic regression 
was increased to 0.91. Moreover, Hawkins et al. analyzed the 
national lung cancer screening tests in the CT image data 
and revealed that omics characteristics from images can be 
used for benign and malignant lung nodules. For this model, 
its predictions showed that the AUC reached 0.75 (followed 
up for 2 years) and 0.83 (1 year follow-up), and this method 
was superior to the traditional image evaluation and CAD-
aided analysis (33). In addition, radiomics analyses are also 
used to differentiate lung cancer from benign diseases, 
such as nodular granuloma and infectious nodules, in order 
to improve the diagnostic accuracy of pulmonary nodules  
(34-36). These studies further confirm the application value 
of radiomics analyses in the determination of pulmonary 
nodules' benign and malignant properties and also lay 
the foundation for the subsequent clinical analysis of the 
pulmonary nodules’ properties.

The SSN properties can also be analyzed accurately 
using image omics analyses. For example, Yuan et al. (37). 
extracted 300 imaging features from the CT images of 
431 patients with lung adenocarcinoma presenting with 
SSN, and 20 features were further screened to distinguish 
AIS, minimally invasive adenocarcinoma (MIA), and 
invasive adenocarcinoma (IA), proving that the accuracy 
and predictive ability of the radiomics methods were 
significantly higher than those of traditional methods. Even 
in sub-centimeter SSNs, the image omics analysis improved 
the diagnosis of IA (38). At the same time, the combination 
of radiomics analysis and intraoperative freezing is shown 
to improve the accuracy of predicting the final pathological 
diagnosis (39,40). In our study (41), by analyzing the image 
omics features and using the prediction model established 
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by the LASSO classifier, the AUC in the verification set 
reached 0.890.

In addition to the analysis of benign, malignant and invasive 
nodules, radiomics analysis also predicts occult lymph node 
metastasis via the CT images (42,43). In our previous study, 
our team further analyzed the value of radiomics for the 
prediction of N2 lymph node metastasis (44). This series of 
studies confirmed that CT radiomics provides a noninvasive 
and accurate comprehensive assessment of pulmonary 
tuberculous properties.

Research progress in the study of the prognosis 
assessment of early stage lung cancer

Significance of CT images in the prognosis assessment of 
early stage lung cancer

CT image feature analyses not only reflect the nature 
of the pulmonary nodules, but also provide important 
information regarding the prognosis assessment of early 
stage lung cancer. First of all, the nature of pulmonary 
nodules is an important prognostic feature. Compared 
with early stage lung cancer with pure solid lesions by CT, 
the long-term prognosis after complete resection of GGN 
lesions is excellent. In a study by Fu et al. (45), the 5-year 
relapse-free survival (RFS) for PGGN reached 100%, the 
5-year RFS for PSN was 87.6%, and the 5-year RFS for 
pure solid lesions was 73.2%. At the same time, invasive 
evaluation features, such as consolidation-to-tumor ratio 
(CTR) and tumor disappearance ratio (TDR), can also be 
used to evaluate the prognosis of early stage lung cancer. 
For example, the overall survival (OS) at 5 years can reach 
96.7% for non-invasive lesions when defined as lesions 
with a CTR ≤0.5. However, some studies point out that 
the prognostic value of CTR or TDR can be corrected 
by existing clinical T staging, and only clinical staging is 
a prognostic factor (46). Therefore, CT images provide 
important data for analyzing the prognosis of early stage 
lung cancer, but the prognostic assessment methods based 
on traditional imaging features are very limited or the 
prognostic assessment effect of traditional imaging features 
is very limited.

The application of CT radiomics in lung cancer prognosis 
assessment and treatment decision making

In terms of survival assessment, Huang et al. analyzed 
CT images from 282 patients with early non-small cell 

lung cancer (NSCLC) that were surgically resected, 
established a predictive model of radiomics features, and 
further established a radiomics nomogram for prognosis 
assessment in combination with clinical features. In the 
validation set, the predictive ability (C-index) of this model 
reached 0.72 and was shown to improve the predictive 
ability of TNM staging (47). At the same time, the team 
of Chinese Academy of Sciences Professor Jie Tian (48) 
further confirmed that both two-dimensional and three-
dimensional radiomics features could be used to evaluate 
the prognosis of NSCLC, and a nomogram model was 
established to predict the prognosis, showing a better 
predictive ability than the clinical model in the validation 
set. For adenocarcinoma, Lee et al. (49) extracted 161 CT 
imaging features from 339 patients, and LASSO was used 
as the feature screening and model-building classifier. 
Ultimately, a nomogram model for prognosis prediction 
was established in combination with the clinical features, 
and the AUC was predicted to reach a maximum of 0.864 in 
the verification set.

Meanwhile, Coroller’s team not only demonstrated 
the value of radiomics for the prognosis assessment, but 
also provided a new auxiliary decision-making method 
for clinical neoadjuvant chemoradiotherapy. The team 
utilized 127 patients with locally advanced NSCLC (stage 
II or III) before and after neoadjuvant therapy. Using 
the CT images from the patients, 1,603 features are 
extracted, and the 15 most predictive value characteristics 
were screened and compared with three traditional image 
features, demonstrating that predicting lesions after 
concurrent chemoradiation image group characteristics 
significantly alleviated the pathological efficiency and 
further showed that the seven characteristics effectively 
predicted the gross residual disease [gross residual diseases 
(GRD)]. Importantly, one feature effectively predicted 
the pathological complete response (pCR) (50). Again at 
the same time, the team utilized the CT images from 85 
patients with resectable stage II and III NSCLC. The 
extraction of 85 and 178 lymph nodes from the primary 
lesion of 10 each image set of characteristics predicted an 
AUC pCR that reached 0.51 to 0.75, and a GRD AUC that 
reached 0.50 to 0.67. Compared with the characteristics 
from the primary lesion, the lymph node is characteristic of 
its source and has a higher predictive value. In addition, the 
team analyzed of 187 patients with lung adenocarcinoma 
that had preoperative CT images and extracted 635 features. 
They sorted out the 35 images with distant metastasis 12 for 
survival using the predictive omics characteristics and set up 
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an independent predicting distant metastasis model of lung 
adenocarcinoma patients that was carried out in accordance 
with the transfer of high and low risk.

In addition, by analyzing the CT images of 117 stage  
IV NSCLC patients with the EGFR mutation, Song 
et al. (51) extracted 1,032 imaging group features and 
selected 12 features using the LASSO regression model 
to establish markers that would benefit from EGFR-
TKIS, which effectively screened out patients who 
benefited from the treatment and assisted in the decision-
making for the clinical treatment. Moreover, to evaluate 
immunotherapy, Sun et al. (52) established a model to 
predict CD8 expression, which predicted an AUC of 
0.67 and was used to identify patients with different types 
of immune responses, with an AUC of 0.76, ultimately 
providing a non-invasive assessment tool for immune 
efficacy. Meanwhile, Trebeschi et al. (53). analyzed 
1,055 primary or metastatic lesions of 203 melanoma or 
NSCLC cases, and image markers were established to 
predict the immune efficacy by machine learning. For the 
lung cancer patients, the predictive AUC of this marker 
reached 0.83, and for the melanoma patients, the predicted 
AUC of this marker reached 0.64. In addition, Khorrami 
et al. (54) retrospectively analyzed CT images from  
50 NSCLC patients. They screened 8 radiomics features 
and established the radiomics score known as DelRADx. 
In two independent validation sets, DelRADx showed 
predicted AUC values of 0.81 and 0.85. At the same 
time, DelRADx was associated with lymphocyte density 
in tumor invasion in 35 diagnosed specimens. Finally, 
DelRADx was shown to predict the OS of the patients 
receiving treatment, with a C-index of 0.72. Our team 
further investigated the correlation between DL radiomic 
biomarker and tumor mutational burden. By combining 
DL technology and CT images, we developed an individual 
non-invasive biomarker that could distinguish high-
tumor mutational burden from low-tumor mutational 
burden, which might inform decisions on the use of 
immune checkpoint inhibitors in patients with advanced  
NSCLC (55).

Therefore, CT radiomics analyses are widely used in 
the prognosis assessment of lung cancer and show a great 
clinical application value. Image analyses can accurately 
assess the prognosis of patients and predict tumor 
recurrence, thus assisting clinicians to utilize targeted 
treatments in order to reduce the risk of recurrence and 
improve outcome. At the same time, radiomics analyses can 
be used to assist decision making for adjuvant treatment.

Challenges of CT radiomics analyses in early 
stage lung cancer

Although radiomics has shown great potential in CT image 
analyses, traditional analysis methods still have the following 
problems: (I) the value of radiomics in lung cancer patient 
care was still at research stage; (II) a large number of image 
omics features are extracted, and there is instability, and the 
application features of each model are not uniform; and (III) 
the features require a dimensionality reduction, and there is 
no unified model selection standard. Specifically, in the above 
studies, the radiomics feature extraction of lung cancer is 
related to its segmentation, while for the SSN class of lesions, 
due to its low density characteristics, the boundary is not easy 
to determine, and the error range of the volume and mass 
segmentation changes by about 30% (56). At the same time, 
in addition to the imaging features of the lesions themselves, 
recent studies indicated that the peripheral imaging features 
of the lesions reflect the characteristics of the tumor micro-
environment and also play an important role in the diagnosis 
and prognosis of the pulmonary nodules (34). Specifically, 
when evaluating immunotherapy patients (52), the quesiton 
of how to determine the region of intertest (ROI) in the 
tumor images and obtain accurate features is controversial. 
There are a large number of radiomics features that can be 
extracted from chest CT images. During the establishment 
of the model, artifical intellengence (AI) technology is 
required to repeatedly verify its accuracy, but there is no 
uniform standard. In addition, how to efficiently diagnose 
pulmonary nodules in CT images is a difficult clinical 
dilemma for traditional radiomics analyses (57). Such studies 
still have the following limitations: (I) the use of lung cancer 
screening test data showed regional bias; (II) fail to conduct 
adequate clinical comparison and practical application value 
assessment; (III) less assessment of the survival and prognosis 
of patients was carried out. The above problems have caused 
great resistance to CT radiomics analyses in the early stage 
of lung cancer (58). After all, there are much more challenges 
than the ones mentioned. A lot of research and validation still 
needs to be performed.

DL and CNN

Recently, with the leap in the development of computer 
hardware and the arrival of the era of big data, DL has 
become the most potential radiomics analysis technology. 
The working principle of DL is the artificial neural network 
(ANN) (59). The structure of ANN includes the input layer, 
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hidden layer, and output layer, among which the hidden 
layer can be increased and decreased according to the 
different purposes. Thus, DL can be trained end-to-end by 
representing more and more abstract concepts level by level. 
In contrast, the DL algorithm can be used to extract a large 
number of high-dimensional features in a fully automated 
manner, enabling researchers to extract and utilize features of 
predictive value with minimal labor. DL has been successfully 
applied to computer vision, speech recognition, natural 
language processing, machine translation, data mining, 
automatic driving, and other fields (60).

CNN

According to the different DL network structures, they can 
be divided into CNN, recursive neural network, cyclic neural 
network, deep neural network, etc. Among these, CNN 
processes each specified pixel area in the image to enhance 
the information continuity of the image (61). At the same 
time, CNN has the feature of weight sharing, such a network 
structure cannot only significantly reduce the complexity of 
the model, but it also reduces the number of weights (62). In 
addition, the CNN can directly take the image as the input 
of the network, automatically extract the image features, 
and automatically train and adjust the model results (63). 
Therefore, CNN advocates a strong image data processing 
capability in the field of image recognition. With regard to 
the basic ANN, the hidden layer of CNN can be divided 
into the convolution layer and the pooling layer (64). The 
convolutional layer extracts features through the translation 
of the convolution kernel on the original image. The pooling 
layer is used to select the features, reduce the number of 
features, compress the number of data and parameters, 
reduce the over-fitting, and improve the fault tolerance of the 
model (15).

Several classical CNNs

In order to promote the development of the CNN 
technology, since 2007, Li Feifei, a professor of Stanford 
University, has led her team to establish an Image Net Image 
dataset using various methods, such as manual annotation, 
network capture, and a crowdsourcing platform (65). Based 
on this data set, an ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC) for CNN classification effects is held 
annually. The competition includes image classification, 
target positioning, target detection, video target detection, 
and scene classification (66).

Krizhevsky et al. (67) proposed the first modern deep 
CNN model, namely Alex Net, in 2012, which consists of  
5 convolutional layers, 3 pooling layers, and 3 full 
connection layers (the last layer USES softmax function 
output). It first adopted many of the modern deep 
convolution network technology methods, such as using 
the image Processing Unit (Graphic Processing Unit, the 
GPU) running and training, and adopted the ReLU as a 
nonlinear activation function, using the Dropout prevention 
fitting, and it also used the data to enhance the accuracy of 
the models. Alex net won the 2012 ILSVRC localization 
and classification race champion.

Moreover, researchers in Oxford University’s Visual 
Geometry  Group (VGG) and Google  deep  b lue 
developed VGG Net together (67). By repeatedly adding 
a convolutional layer and a classification layer, VGG Net 
successfully constructed a CNN model with a depth of 
16–19 layers, and the model won 2nd place in the ILSVRC 
classification competition and 1st place in the positioning 
competition in 2014. The 1st place winner in the same year 
was Google’s Inception Net. The network is 22 layers deep 
and has only 5 million parameters, which is only 1/12 of the 
number of Alex Net (60 million). However, the accuracy 
rate is much higher than Alex Net. Inception v2-v4 was 
launched by the Google team in 2015–2016.

In the design of CNNs, as the number of network layers 
increases, more deep features can be provided. However, 
as the network layer continues to increase, it will generate 
a fitting. Such problems are solved by a regularization 
method, but this also causes network degradation, namely 
the network model training data accuracy, after saturation, 
begins to decline. To this end, a team from Microsoft 
Research proposed to solve the problem by using a residual 
unit (RU). Based on the unit’s design of the 152-story 
ResNet (68), the team won the classification and positioning 
competitions at the ILSVRC in 2015.

Advantages of DL artificial intelligence technology

DL neural networks can process more data to improve 
their prediction abilities. Traditional AI algorithms usually 
achieve a certain amount of data, while the prediction 
accuracy will not continue to improve with the increased 
data volume. For example, with increased image data, CNN 
captures deeper features to improve the accuracy of the 
classification (69). Therefore, for a massive dataset of chest 
CT images, the accuracy can approach the level of clinicians 
after training the CNN model. This enabled us to hand 
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over the tedious and repeated clinical work to the machine 
for processing. Combined with the review of clinicians, the 
pre-processing of chest CT images and the detection of 
pulmonary nodules can be completed efficiently (70).

What is more important, the DL neural network does 
not require complex feature engineering, such as the pre-
defined feature extraction in the traditional image grouping 
analysis. In the DL neural network, end-to-end model 
training can be used to directly take the image as the input 
and automatically adjust the parameters to obtain the 
best prediction results. Therefore, DL neural networks 
can solve the process of image segmentation and feature 
screening in traditional radiomics analyses (71). It also can 
include the information reflecting the characteristics of the 
tumor microenvironment into the analysis according to the 
expansion of the input image, so as to improve the accuracy 
of the CT image analysis of the nature of early stage lung 
cancer (72).

In addition, DL neural networks have a strong 
adaptability and are easy to transform. They can adapt to 
different fields and applications more easily. For example, 
transfer learning enables pre-trained DL neural networks to 
be adapted for different purposes in different fields. In the 
study by Kermany et al. (73), after pre-training a dataset of 
up to 1,000 image classifications in Image Net, the model 
can be transferred to the diagnosis of clinical diseases, so as 
to achieve an accurate classification of diabetic retinopathy 
and pediatric pneumonia. Furthermore, the basic techniques 
and ideas of DL used are often convertible even in different 
domains, such as speech recognition, where the baseline 
knowledge of the DL theory is highly similar to that of the 
basic DL theory in natural language processing.

Conclusions

To sum up, accurate assessment of the nature of early stage 
lung cancer and prognosis of patients is currently the focus 
of thoracic surgery research. From Mayo model to the 
current CT image omics, early lung CT image analysis has 
experienced the process from quality to quantity (Figure 1).  
Although the traditional radiomics has shown a strong 
analysis ability, its limitations in practical application have 
been gradually highlighted. CNN, as a new radiomics 
analysis technology, has been applied to the CT image 
study of early stage lung cancer. We hope that many 
promising and potential multidisciplinary researches on 
functional imaging could be carried out to raise the clinical 
applications as well as to increase benefits of NSCLC 
patients.
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the characteristics 
of the tumor 
microenvironment

The development of non-invasive strategies
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Figure 1 The development history of functional imaging for screening detected lung nodule management with CT. SSN, sub-solid nodule.
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