Efficacy and safety of 1-day versus 3-day dexamethasone for the prophylaxis of chemotherapy-induced nausea and vomiting: a systematic review and meta-analysis of randomized controlled trials

Ronald Chow¹, David G. Warr², Rudolph M. Navari³, May Tsao¹, Milica Milakovic¹, Marko Popovic¹, Leonard Chiu¹, Henry Lam¹, Carlo DeAngelis^{1,4}

¹Odette Cancer Centre, Sunnybrook Health Sciences Centre, ²Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada; ³University of Alabama Birmingham School of Medicine, Birmingham, USA; ⁴Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada

Contributions: (I) Conception and design: R Chow, RM Navari, C DeAngelis; (II) Administrative support: R Chow; (III) Provision of study material or patients: R Chow, H Lam; (IV) Collection and assembly of data: R Chow, M Milakovic, M Popovic; (V) Data analysis and interpretation: R Chow; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Ronald Chow. Care of Dr Carlo DeAngelis, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada. Email: rchow48@uwo.ca.

Background: Dexamethasone is typically administered for multiple days after the start of chemotherapy to prevent delayed chemotherapy-induced nausea and vomiting (CINV). Frequent administration of corticosteroids has been associated with problematic side effects. Reducing the dose and frequency of corticosteroids administered during chemotherapy treatment may be beneficial in reducing the side effects experienced by patients, as long as it is possible to maintain its efficacy in the prophylaxis of CINV. The purpose of the review and meta-analysis is to compare the safety and efficacy of multi-day versus 1-day regimen of dexamethasone.

Methods: A comprehensive literature search was carried out in Ovid MEDLINE, Embase and the Cochrane Central Register of Controlled Trials. The primary endpoints were the proportion of patients achieving complete response and complete control in the acute, delayed and overall phases. Secondary endpoints were the percentage of patients who experienced no nausea, no emesis, no use of rescue medication, no adverse events, no constipation, no headache and no fatigue/insomnia.

Results: Seven randomized controlled trials (RCTs) were included in this meta-analysis, and a total of 659 and 649 patients were randomized to receive dexamethasone on 1 day and 3 days, respectively. The two treatments were equivalent in 16 of 17 endpoints.

Conclusions: Despite the paucity of data in this setting, we find that the 1-day dexamethasone therapy provides a similar efficacy and safety profile as a treatment of 3-day dexamethasone in the prophylaxis of CINV. The similarities in efficacy and safety of the two interventions suggests that 1-day dexamethasone can be administered as an alternative to 3 days.

Keywords: Chemotherapy-induced nausea and vomiting (CINV); efficacy; safety; dexamethasone

Received: 01 April 2018; Accepted: 13 April 2018; Published: 28 May 2018. doi: 10.21037/jhmhp.2018.04.05 **View this article at:** http://dx.doi.org/10.21037/jhmhp.2018.04.05

Page 2 of 13

Introduction

Chemotherapy-induced nausea and vomiting (CINV) can result in deterioration in a patient's quality of life and consequently lead to poorer compliance with further treatment (1-3). It is typically reported as occurring in the acute (0–24 hours post-chemotherapy) or delayed (24–120 hours post-chemotherapy) phases, and is known to cause dehydration and malnutrition (4-6).

To protect against CINV, many different types of antiemetics have been developed to inhibit pathways presumed to be associated with CINV (7). Palonosetron, ondansetron and granisetron are 5-hydroxytrypatmine type 3 receptor antagonists (5-HT₃RAs) that aim to disrupt the process of serotonin from enterochromaffin cells binding to 5-HT₃ receptors (7,8). Other antiemetics such as aprepitant, netupitant and rolapitant are neurokinin-1 receptor antagonists (NK₁RA) that are designed to block substance P from initiating impulses to the vomiting centre in the medulla (9,10).

A meta-analysis by Ioannidis *et al.* found that dexamethasone in conjunction with other antiemetics is superior to placebo with respect to complete protection (11). Combination therapy of antiemetics with dexamethasone has now become the standard of care for preventing CINV in patients receiving moderately emetogenic chemotherapy (MEC) and highly emetogenic chemotherapy (HEC), and the recommended line of therapy by the Multinational Association of Supportive Care in Cancer (MASCC) and European Society of Medical Oncology (ESMO) antiemetic guidelines (12).

Dexamethasone is typically administered for multiple days after the start of chemotherapy to help treat delayed CINV (13). However, frequent administration of corticosteroids has been associated with problematic side effects such as edema, bulimia, weight gain, digestive disorders, hyperglycemia and reactivation of the hepatitis B virus (14-16). Reducing the duration that steroids are administered during chemotherapy treatment may be beneficial in reducing the side effects experienced by patients, while at the same time potentially maintaining efficacy. The aim of our meta-analysis is to compare the safety and efficacy of multi-day versus 1-day regimens of dexamethasone in this setting.

Methods

Search strategy

A comprehensive literature search was carried out in Ovid MEDLINE, Embase and Cochrane Central Register of Controlled Trials. Key words included "neoplasms", "dexamethasone", "nausea", and "vomiting". The search was limited to English-language randomized controlled trials (RCTs) (Appendix 1). Reference lists of articles included in this review were also hand-searched to identify any further relevant literature.

Selection criteria

Studies were screened by title and abstract, and identified for full-text screening if they performed a head-to-head comparison of dexamethasone administered on day 1 relative to days 1–3 of chemotherapy in a RCT full-text articles were eligible for quantitative synthesis if they reported on at least one of the following endpoints in either the acute (0–24 hours post-chemotherapy), delayed (24–120 hours post-chemotherapy) or overall phases for cycle 1:

- (I) Complete response (CR)—no emesis and no use of rescue medication;
- (II) Complete control (CC)—no emesis, no use of rescue medication and no more than mild nausea;
- (III) No nausea;
- (IV) No emesis—no episodes of vomiting or retching;
- (V) No use of rescue medication;
- (VI) No adverse events—no episodes of treatmentrelated adverse events;
- (VII) No constipation;
- (VIII) No headache;
- (IX) No fatigue/insomnia;

Studies were excluded if they were duplicates of other articles, were non-original research reports, or were small trials (<ten patients).

Data extraction and endpoints

The primary endpoints were the proportion of patients achieving CR and CC in the acute, delayed and overall phases, as reported by study authors. Secondary endpoints were the proportion of patients who experienced no nausea,

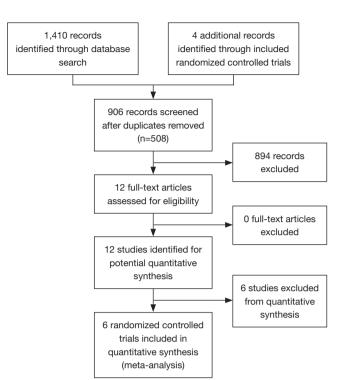


Figure 1 PRISMA flow diagram.

no emesis, no use of rescue medication, no treatment-related adverse events and no constipation. The "nausea" endpoint in the overall phase and "rescue medication" endpoints in the acute phase were not recorded, as only one study reported on each of these endpoints in their respective phase.

Statistical analyses

To perform the meta-analysis, a Mantel-Haenszel method with a random-effects analysis model was used to compute odds ratios (OR) and accompanying 95% confidence intervals (CI). P values less than 0.05 were considered significant with regards to the test for overall effect. All analyses were conducted using Review Manager (RevMan 5.3) by Cochrane IMS.

Results

From the 1,414 records identified from the search, 906 were screened at the title & abstract level after duplicates (n=508) were removed. Of the 12 full-text articles assessed for eligibility, seven RCTs (13,17-22) were included for this meta-analysis (*Figure 1*). For consistency in endpoints, two

studies were excluded because delayed phase was defined as 2 to 6 days following treatment, rather than 2 to 5 days (23,24). A total of 659 and 649 patients were randomized to receive dexamethasone on 1 and 3 days, respectively.

Only two studies recruited patients who were treated with HEC, while the other five contained patients treated with MEC. The number of patients randomized to each intervention arm ranged from 39 to 166. All but two studies recruited exclusively female patients, and all but one only recruited patients who were chemotherapy-naïve. Other characteristics of included RCTs are displayed in *Table 1*.

Efficacy—CR and CC

Six studies documented rates of CR, and five studies reported on CC. CR in the acute phase was approximately equivalent between 1-day and multi-day dexamethasone (OR, 0.90; 95% CI, 0.64–1.26). The two treatment arms were similar in terms of CR in the delayed (OR, 1.18; 95% CI, 0.92–1.51) and overall (OR, 1.07; 95% CI, 0.84–1.37) phases (*Figure 2*). Three-day dexamethasone treatment was not superior to 1-day dexamethasone treatment with respect to CC in the acute (OR, 0.78; 95% CI, 0.51–1.19), delayed (OR, 1.17; 95% CI, 0.89–1.56) and overall (OR, 1.03; 95% CI, 0.78–1.35) phases (*Figure 3*).

Efficacy—no nausea, no emesis and no use of rescue medication

Only three studies recorded nausea in the acute and delayed phases. The analysis revealed that 1-day treatment was equivalent to 3-day treatment (*Figure S1*). The two interventions also yielded similar control of emesis in the acute, delayed and overall phases (*Figure S2*). A noticeably larger proportion of patients receiving 1-day dexamethasone treatment required rescue medication in the delayed phase; no similar finding was reported in the overall phase (*Figure S3*).

Safety

Five six studies reported on adverse events. Patients treated with 1-day and 3-day treatment were equally as likely to develop adverse events (OR, 0.88; 95% CI, 0.66–1.16). One-day dexamethasone was equally as safe as 3-day dexamethasone treatment in terms of constipation (OR, 0.72; 95% CI, 0.45–1.14), headaches (OR, 1.16; 95% CI, 0.69–1.95) and fatigue/insomnia (OR, 1.71;

Page 4 of 13

Journal of Hospital Management and Health Policy, 2018

Trial	Study design	Intervention	Sample size	Chemotherapy emetogenicity	Females (%)	Mean age (years)	Nonusers of alcohol (%)	Chemotherapy- naïve (%)
Aapro et al.,	Double-blind,	DEX 8 mg IV d1	151	MEC	100.0	52.1	57.7	100.0
2010 (17)	multicenter, non- inferiority	DEX 8 mg IV d1 + DEX 4 mg PO BID d2–3	149		100.0	51.2	48.8	100.0
Celio et al.,	Open-label,	DEX 8 mg IV d1	166	MEC	62.0	56.9	60.8	100.0
2011 (18)	parallel- group, active- comparator, non- inferiority	DEX 8 mg IV d1 + DEX 8 mg PO QD d2–3	166		68.0	57.2	59.6	100.0
Vardy et al.,	Double-blind,	DEX 10 mg IV d1	49	HEC	100.0	n/a	n/a	100.0
2012 (19)	placebo- controlled, cross- over	DEX 10 mg IV d1 + DEX 4 mg PO QD d2–3	42		100.0	n/a	n/a	100.0
Furukawa et al.,	Open-label	DEX 8 mg IV d1	44	MEC	100.0	59.0*	n/a	100.0
2015 (20)		DEX 8 mg IV d1 + DEX 8 mg PO QD d2–3	DEX 8 mg PO QD		100.0	62.0*	n/a	100.0
Komatsu et al.,	Open-label,	DEX 9.9 mg IV d1	154	MEC	43.0	64.1	51.0	100.0
2015 (21)	non-inferiority, comparative	DEX 9.9 mg IV d1 + DEX 8 mg PO QD d2–3	154		43.5	64.0	51.9	100.0
Matsuura et al.,	Randomized	DEX 9.9 mg IV d1	56	MEC	100.0	57.7	64.3	n/a
2015 (22)		DEX 9.9 mg IV d1 + DEX 8 mg PO QD d2–3	53		100.0	56.7	64.2	n/a
Kosaka et al.,	Single-blind,	DEX 12 mg IV d1	39	HEC	100.0	52.6	64.1	100.0
2016 (13)	placebo- controlled, parallel	DEX 12 mg IV d1 + DEX 8 mg IV d2–3	41		100.0	53.5	61.0	100.0

Table 1	Characteristics	of randomized	controlled t	trials included in	meta-analysis
---------	-----------------	---------------	--------------	--------------------	---------------

*, median age. BID, bis in die; D, day; DEX, dexamethasone; HEC, highly emetogenic chemotherapy; IV, intravenously; MEC, moderately emetogenic chemotherapy; n/a, data not available or extractable; PO, per os; QD, quaque die.

95% CI, 0.83-3.53) (Figure S4).

Discussion

This is the first meta-analysis to our knowledge to investigate the efficacy and safety of 1-day versus multi-day dexamethasone treatment for the prophylaxis of CINV in combination with antiemetics.

The efficacy of dexamethasone administered on day 1 is equivalent to the efficacy of dexamethasone administered on days 1–3; the efficacy and safety were identical in 16 of 17 endpoints. The suggestion by Roscoe *et al.* (25) that the 3-day regimen is superior with respect to control of delayed nausea was not found in the present analysis—it is important to note that these conclusions are made on the basis of two included trials, and more studies should investigate these conflicting conclusions. The two treatments are also similar with respect to safety, specifically constipation, headache and fatigue/insomnia.

There were only seven studies in this review, of which five were studies recruiting only MEC patients. Future studies should further investigate the two dexamethasone arms in the HEC setting to see whether there are similar conclusions.

The similarities in efficacy and safety of the two

А		Dexamethasone n	nulti-day	Dexamethason	e one-day		Odds Ratio		Odds Ratio	
<i>.</i>	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% (1
	Aapro et al 2010	102	149	105	151	47.3%	0.95 [0.58, 1.55]	2010		
	Celio et al 2011	135	161	144	163	28.0%	0.69 [0.36, 1.29]	2011		
	Matsuura et al 2015	52	53	55	56	1.4%	0.95 [0.06, 15.51]	2015	• •	
	Komatsu et al 2015	142	154	141	151	14.9%	0.84 [0.35, 2.01]	2015		
	Furukawa et al 2015	37	39	41	43	2.8%	0.90 [0.12, 6.73]	2015		
	Kosaka et al 2016	38	41	32	39	5.5%	2.77 [0.66, 11.60]	2016		•
	Total (95% CI)		597		603	100.0%	0.90 [0.64, 1.26]		•	
	Total events	506		518						
	Heterogeneity: Tau ² = 0	0.00; Chi ^z = 3.15, df =	= 5 (P = 0.68	3); I ² = 0%						5 10
	Test for overall effect: Z	= 0.60 (P = 0.55)							0.1 0.2 0.5 1 2 Favours one-day Favours	~ .~
									Tavours one-day Tavours	india-day
В		Dexamethasone n	nulti-dav	Dexamethason	e one-dav		Odds Ratio		Odds Ratio	
Ъ	Study or Subgroup	Events	Total	Events		Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% (1
-	Aapro et al 2010	98	149	94	151	28.0%	1.17 [0.73, 1.87]			_
	Celio et al 2011	124	161	112	163	25.5%	1.53 (0.93, 2.50)			
	Matsuura et al 2015	36	53	34	56	10.1%	1.37 [0.62, 3.01]	2015		
	Furukawa et al 2015	30	39	30	43	6.4%	1.44 [0.54, 3.88]	2015		
	Komatsu et al 2015	100	154	101	151	27.8%	0.92 [0.57, 1.47]	2015		
	Kosaka et al 2016	36	41	37	39	2.2%	0.39 [0.07, 2.14]	2016	·	
	T-4-1/05% CD		607		602	400.0%	4 40 10 02 4 541			
	Total (95% CI)		597	400	603	100.0%	1.18 [0.92, 1.51]			
	Total events	424 0.00: 0.6:3 - 4.06 df-	- E /D - 0 E /	408						
		eity: Tau² = 0.00; Chi² = 4.06, df = 5 (P = 0.54); l² = 0% erall effect: Z = 1.27 (P = 0.21)							0.5 0.7 1 1.5	
	Testion overall ellect. 2	. = 1.27 (F = 0.21)							Favours one-day Favours	multi-day
C		Dexamethasone n	nulti-dav	Dexamethason	e one-dav		Odds Ratio		Odds Ratio	
C	Study or Subgroup	Events	Total	Events	_	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% (1
-	Aapro et al 2010	80	149	81	151	28.0%	1.00 [0.64, 1.58]	2010		
	Celio et al 2011	113	161	109	163	26.2%	1.17 [0.73, 1.87]	2011		
	Furukawa et al 2015	30	39	29	43	6.0%	1.61 [0.60, 4.29]			─── →
	Komatsu et al 2015	98	154	100	151	26.1%	0.89 [0.56, 1.43]	2015		
	Matsuura et al 2015	36	53	34	56	9.3%	1.37 [0.62, 3.01]	2015		
	Kosaka et al 2016	34	41	32	39	4.3%	1.06 [0.34, 3.37]	2016		
	Total (95% CI)		597		603	100.0%	1.07 [0.84, 1.37]		-	
	Total events	391		385						
	Heterogeneity: Tau ² = (= 5 (P = 0.87							<u> </u>
	Test for overall effect: Z								0.5 0.7 1 1.5	
									Favours one-day Favours	muid-day

Figure 2 Efficacy of 1-day versus 3-day dexamethasone for the prophylaxis of chemotherapy-induced nausea and vomiting—complete response: (A) acute phase; (B) delayed phase; (C) overall phase.

interventions suggests that 1-day dexamethasone can achieve similar objectives as 3-day dexamethasone treatment, and can be administered as an alternative to the standard of care. For patients, this does not significantly decrease the cost of the treatment, as dexamethasone is over 22 times cheaper than other antiemetics (i.e., ondansetron, palonosetron) that are co-administered with the corticosteroid (26); the antiemetics will still be the cause of financial burden for CINV treatments. The transition to 1-day over 3-day treatment may also improve patient adherence. In fact, the latest American Society of Clinical Oncology's antiemetic guidelines suggests 1-day dexamethasone instead of 3-day dexamethasone for some patients receiving MEC (27).

There were limitations in this meta-analysis. There exists the possibility of a carry-over effect from acute phase

data to delayed phase results, which is a reported and inherent limitation in the included RCTs (28). Additionally, this review only included seven RCTs in total, and hence some endpoints only have data on a few studies. The results of this review should be interpreted with caution and future RCTs are required to further compare the two dexamethasone treatment regimens.

In conclusion, 1-day dexamethasone seems to provide a similar efficacy and safety profile as 3-day dexamethasone in the prophylaxis of CINV. The similarities in efficacy and safety of the two interventions suggests that 1-day dexamethasone can be administered as an alternative to the standard of care. However, this review only includes six studies, of which five were studies recruiting only MEC patients. Further studies should continue to investigate whether these conclusions remain in the HEC setting.

Page 6 of 13

Journal of Hospital Management and Health Policy, 2018

А		Dexamethasone m	nulti-day	Dexamethasone	e one-day		Odds Ratio		Odds Ratio
<i>.</i>	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
	Celio et al 2011	132	161	142	163	47.8%	0.67 [0.37, 1.24]	2011	
	Matsuura et al 2015	52	53	54	56	3.0%	1.93 [0.17, 21.89]	2015	
	Furukawa et al 2015	37	39	39	43	5.8%	1.90 [0.33, 10.98]	2015	
	Komatsu et al 2015	142	154	141	151	23.4%	0.84 [0.35, 2.01]	2015	
	Kosaka et al 2016	26	41	28	39	20.0%	0.68 [0.27, 1.75]	2016	
	Total (95% CI)		448		452	100.0%	0.78 [0.51, 1.19]		-
	Total events	389		404					
	Heterogeneity: Tau ² = I	0.00; Chi ² = 1.85, df =	4 (P = 0.7)	6); I² = 0%					
	Test for overall effect: 2	Z = 1.16 (P = 0.24)						U.	.1 0.2 0.5 1 2 5 10 Favours one-day Favours multi-day
В		Dexamethasone m	nulti-day	Dexamethasone	e one-day		Odds Ratio		Odds Ratio
Ξ.	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
	Celio et al 2011	122	161	108	163	33.7%	1.59 [0.98, 2.59]	2011	
	Komatsu et al 2015	97	154	99	151	36.1%	0.89 [0.56, 1.43]	2015	
	Matsuura et al 2015	36	53	33	56	12.9%	1.48 [0.67, 3.24]	2015	
	Furukawa et al 2015	28	39	29	43	8.9%	1.23 [0.48, 3.16]	2015	
	Kosaka et al 2016	28	41	29	39	8.4%	0.74 [0.28, 1.97]	2016 -	
	Total (95% CI)		448		452	100.0%	1.17 [0.89, 1.56]		
	Total events	311		298					
	Heterogeneity: Tau ² = I	0.00; Chi ² = 4.00, df =	4 (P = 0.4)	1); I² = 0%				_	
	Test for overall effect: 2	Z = 1.11 (P = 0.27)							Favours one-day Favours multi-day
C		Dexamethasone m	nulti-dav	Dexamethasone	e one-dav		Odds Ratio		Odds Ratio
C	Study or Subgroup	Events	Total	Events		Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
-	Celio et al 2011	109	161	105	163	35.4%	1.16 [0.73, 1.83]	2011	
	Matsuura et al 2015	36	53	33	56				
	Furukawa et al 2015	28	39	28	43	8.5%			
	Komatsu et al 2015	95	154	98	151	34.5%	0.87 [0.55, 1.39]	2015	
	Kosaka et al 2016	20	41	24	39	9.5%	0.60 [0.24, 1.45]	2016 -	
	Total (95% CI)		448		452	100.0%	1.03 [0.78, 1.35]		-
	Total events	288		288					
	Heterogeneity: Tau ² = Test for overall effect: 2		4 (P = 0.5)	0); I² = 0%				-	0.5 0.7 1 1.5 2 Favours one-day Favours multi-day

Figure 3 Efficacy of 1-day versus 3-day dexamethasone for the prophylaxis of chemotherapy-induced nausea and vomiting—complete control: (A) acute phase; (B) delayed phase; (C) overall phase.

Acknowledgments

Funding: None.

Footnote

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi. org/10.21037/jhmhp.2018.04.05). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International

License (CC BY-NC-ND 4.0), which permits the noncommercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Richardson JL, Marks G, Levine A. The influence of symptoms of disease and side effects of treatment on compliance with cancer therapy. J Clin Oncol 1988;6:1746-52.
- Lindley CM, Hirsh JD, O'Neill CV, et al. Quality of life consequences of chemotherapy-induced emesis. Qual Life Res 1992;1:331-40.
- 3. Morita S, Kobayashi K, Eguchi K, et al. Influence of clinical parameters on quality of life during chemotherapy

in patients with advanced non-small cell lung cancer:application of a general linear model. Jpn J Clin Oncol 2003;33:470-6.

- 4. Chiu L, Chow R, Popovic M, et al. Efficacy of olanzapine for the prophylaxis and rescue of chemotherapy-induced nausea and vomiting (CINV): a systematic review and meta-analysis. Support Care Cancer 2016;24:2381-92.
- Osoba D, Zee B, Warr D, et al. Effect of postchemotherapy nausea and vomiting on health-related quality of life. Support Care Cancer 1997;5:307-13.
- Chow R, Chiu L, Navari R, et al. Efficacy and safety of olanzapine for the prophylaxis of chemotherapy-induced nausea and vomiting (CINV) as reported in phase I and II studies:a systematic review. Support Care Cancer 2016;24:1001-8.
- Chow R, Popovic M, Chiu L, et al. The combination of NK1 receptor antagonist, palonosetron, and dexamethasone compared to palonosetron and/or dexamethasone for the prophylaxis of chemotherapyinduced nausea and vomiting: A systematic review and meta-analysis of randomized controlled trials. J Pain Manag 2016;9:11-22.
- Saito M, Aogi K, Sekine I, et al. Palonosetron plus dexamethasone versus granisetron plus dexamethasone for prevention of nausea and vomiting during chemotherapy:a double-blind, double-dummy, randomized, comparative phase III trial. Lancet Oncol 2009;10:115-24.
- 9. Diemunsch P, Grelot L. Potential of substance P antagonists as anti-emetics. Drugs 2000;60:533-46.
- Aapro M, Rugo H, Rossi G, et al. A randomized phase III study evaluating the efficacy and safety of NEPA, a fixeddosed combination of netupitant and palonosetron, for prevention of chemotherapy-induced nausea and vomiting following moderately emetogenic chemotherapy. Ann Oncol 2014;25:1328-33.
- Ioannidis JP, Hesketh PJ, Lau J. Contribution of dexamethasone to control of chemotherapy-induced nausea and vomiting:a meta-analysis of randomized evidence. J Clin Oncol 2000;18:3409-22.
- Roila F, Molassiotis A, Herrstedt J, et al. 2016 MASCC and ESMO guideline update for the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting and of nausea and vomiting in advanced cancer patients. Ann Oncol 2016;27:v119-33.
- 13. Kosaka Y, Tanino H, Sengoku N, et al. Phase II randomized, controlled trial of 1 day versus 3 days of dexamethasone combined with palonosetron and aprepitant to prevent nausea and vomiting in Japanese

breast cancer patients receiving anthracycline-based chemotherapy. Support Care Cancer 2016;24:1405-11.

- Vardy J, Chiew KS, Galica J, et al. Side effects associated with the use of dexamethasone for prophylaxis of delayed emesis after moderately emetogenic chemotherapy. Br J Cancer 2006;94:1011-5.
- 15. Yeo W, Chan PK, Zhong S, et al. Frequency of hepatitis B, virus reactivation in cancer patients undergoing cytotoxic chemotherapy:a prospective study of 626 patients with identification of risk factors. J Med Virol 2000;62:299-307.
- 16. Yeo W, Zee B, Zhong S, et al. Comprehensive analysis of risk factors associated with Hepatitis B virus (HBV) reactivation in cancer patients undergoing cytotoxic chemotherapy. Br J Cancer 2004;90:1306-11.
- 17. Aapro M, Fabi A, Nole F, et al. Double-blind, randomised, controlled study of the efficacy and tolerability of palonosetron plus dexamethasone for 1 day with or without dexamethasone on days 2 and 3 in the prevention of nausea and vomiting induced by moderately emetogenic chemotherapy. Ann Oncol 2010;21:1083-8.
- Celio L, Frustaci S, Denaro A, et al. Palonosetron in combination with 1-day versus 3-day dexamethasone for prevention of nausea and vomiting following moderately emetogenic chemotherapy:a randomized, multicenter, phase III trial. Support Care Cancer 2011;19:1217-25.
- Vardy J, Pond G, Dodd A, et al. A randomized doubleblind, placebo-controlled cross-over trial of the impact on quality of life of continuing dexamethasone beyond 24 h following adjuvant chemotherapy for breast cancer. Breast Cancer Res Treat 2012;136:143-51.
- 20. Furukawa N, Kanayama S, Tanase Y, et al. Palonosetron in combination with 1-day versus 3-day dexamethasone to prevent nausea and vomiting in patients receiving paclitaxel and carboplatin. Support Care Cancer 2015;23:3317-22.
- 21. Komatsu Y, Okita K, Yuki S, et al. Open-label, randomized, comparative, phase III study on effects of reducing steroid use in combination with palonosetron. Cancer Sci 2015;106:891-5.
- 22. Matsuura M, Satohisa S, Teramoto M, et al. Palonosetron in combination with 1-day versus 3-day dexamethasone for prevention of nausea and vomiting following paclitaxel and carboplatin in patients with gynecologic cancers:A randomized, multicenter, phase II trial. J Obstet Gynaecol Res 2015;41:1607-13.
- 23. Olver I, Paska W, Depierre A, et al. A multicenter, doubleblind study comparing placebo, ondansetron and ondansetron plus dexamethasone for the control of cisplatin-induced

Page 8 of 13

delayed emesis. Ann Oncol 1996;7:945-52.

- 24. Inoue A, Yamada Y, Matsumura Y, et al. Randomized study of dexamethasone treatment for delayed emesis, anorexia and fatigue induced by irinotecan. Support Care Cancer 2003;11:528-32.
- Roscoe JA, Heckler CE, Morrow GR, et al. Prevention of delayed nausea:a University of Rochester Cancer Center Community Clinical Oncology Program study of patients receiving chemotherapy. J Clin Oncol 2012;30:3389-95.

doi: 10.21037/jhmhp.2018.04.05

Cite this article as: Chow R, Warr DG, Navari RM, Tsao M, Milakovic M, Popovic M, Chiu L, Lam H, DeAngelis C. Efficacy and safety of 1-day versus 3-day dexamethasone for the prophylaxis of chemotherapy-induced nausea and vomiting: a systematic review and meta-analysis of randomized controlled trials. J Hosp Manag Health Policy 2018;2:25.

- 26. Subramaniam B, Madan R, Sadhasivam S, et al. Dexamethasone is a cost-effective alternative to ondansetron in preventing PONV after pediatric strabismus repair. Br J Anaesth 2001;86:84-9.
- Hesketh PJ, Kris MG, Basch E, et al. Antiemetics: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol 2017;35:3240-61.
- Roila F, Donati D, Tamberi S, et al. Delayed emesis: incidence, pattern, prognostic factors and optimal treatment. Support Care Cancer 2002;10:88-95.

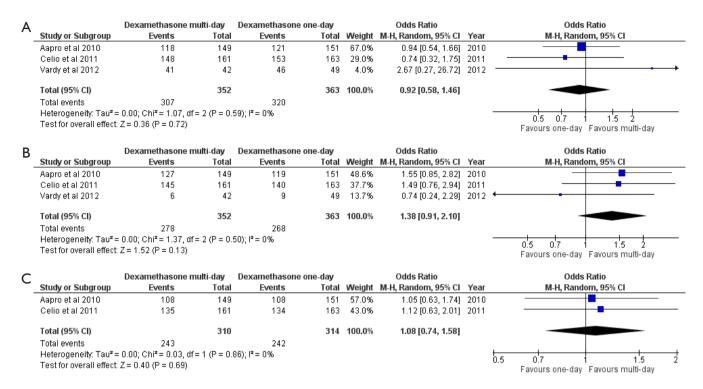
Supplementary

Appendix 1 Search strategy

Database: Ovid MEDLINE(R) epub ahead of print, in-process and other non-indexed citations, Ovid MEDLINE(R) Daily, Ovid MEDLINE and Versions(R) search strategy:

- 1. exp Neoplasms/ or (neoplasm or cancer).mp. [3423821]
- 2. palonosetron.mp. [566]
- 3. exp dexamethasone/ or dexamethasone.mp. [66470]
- 4. day.mp. [934734]
- 5. Comparative Study/ [1820429]
- 6. compar*.mp. [5489611]
- 7. (2 and 3) or (3 and (4 or 5 or 6)) [23252]
- 8. (chemotherapy adj5 induced adj5 nausea adj5 vomiting).mp. [1572]
- 9. CINV.mp. [731]
- 10. exp Nausea/ or (nausea or nauseous or nauseated).mp. [61685]
- 11. exp Vomiting/ or vomit*.mp. [30059]
- 12. or/8-11 [77890]
- 13. 1 and 7 and 12 [659]
- 14. limit 13 to randomized controlled trial [276]
- 15. ((randomized or randomised) adj5 (trial or controlled)).ti. [124122]
- 16. 13 and 15 [76]
- 17. 14 or 16 [281]
- 18. limit 17 to English language [260]
- 19. from 18 keep 1-260 [260]

Database: Embase Classic + Embase <1947 to 2017 Week 28> search strategy:


- 1. exp neoplasm/ [4092608]
- 2. exp palonosetron/ or palonosetron.mp. [1682]
- 3. exp dexamethasone/ or dexamethasone.mp. [146855]
- 4. day.mp. [1351637]
- 5. exp comparative study/ [1226778]
- 6. compar*.mp. [6862254]
- 7. (2 and 3) or (3 and (4 or 5 or 6)) [50891]
- 8. exp "chemotherapy induced nausea and vomiting"/ [2563]
- 9. (chemotherapy adj5 induced adj5 nausea adj5 vomiting).mp. [3882]
- 10. CINV.mp. [1463]
- 11. exp nausea/ or (nausea or nauseous or nauseated).mp. [243227]
- 12. exp vomiting/ or vomit*.mp. [234992]
- 13. or/8-12 [332334]
- 14. 1 and 7 and 13 [4222]
- 15. limit 14 to randomized controlled trial [603]
- 16. ((randomized or randomised) adj5 (trial or controlled)).ti. [146469]
- 17. 14 and 16 [208]
- 18. 15 or 17 [643]
- 19. limit 18 to English language [624]

Database: EBM Reviews - Cochrane Central Register of Controlled Trials < June 2017> search strategy:

- 1 exp Neoplasms/ or (neoplasm or cancer).mp. [103999]
- 2 palonosetron.mp. [305]
- 3 exp dexamethasone/ or dexamethasone.mp. [6812]
- 4 day.mp. [135221]
- 5 Comparative Study/ [8]
- 6 compar*.mp. [483121]
- 7 (2 and 3) or (3 and (4 or 5 or 6)) [4578]
- 8 (chemotherapy adj5 induced adj5 nausea adj5 vomiting).mp. [780]
- 9 CINV.mp. [359]
- 10 exp Nausea/ or (nausea or nauseous or nauseated).mp. [30381]
- 11 exp Vomiting/ or vomit*.mp. [22883]
- 12 or/8-11 [34715]
- 13 1 and 7 and 12 [620]
- 14 limit 13 to English language [526]

Α		Dexamethasone m	ulti-day	Dexamethasone of	one-day		Odds Ratio		Odds Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
	Aapro et al 2010	74	149	71	151	53.4%	1.11 [0.71, 1.75]	2010	
	Celio et al 2011	117	161	128	163	42.1%	0.73 [0.44, 1.21]	2011	
	Vardy et al 2012	38	42	46	49	4.5%	0.62 [0.13, 2.94]	2012 ←	
	Total (95% CI)		352		363	100.0%	0.91 [0.65, 1.26]		
	Total events	229		245					
	Heterogeneity: Tau ² =	= 0.00; Chi ² = 1.73, df =	2 (P = 0.4	2); I ² = 0%					
	Test for overall effect:								0.5 0.7 1 1.5 2
									Favours one-day Favours multi-day
D		Devamethasone m	ulti dav	Devamethasone	ono dav		Odde Ratio		Odds Ratio
В	Study or Subgroup	Dexamethasone m Events	-	Dexamethasone Events	-	Weight	Odds Ratio M.H. Random, 95% Cl	Year	Odds Ratio M.H. Random, 95% Cl
В	Study or Subgroup	Events	Total	Events	Total		M-H, Random, 95% Cl		Odds Ratio M-H, Random, 95% Cl
B	Celio et al 2011	Events 100	Total 161	Events 93	Total 163	71.3%	M-H, Random, 95% Cl 1.23 [0.79, 1.92]	2011	
B		Events	Total	Events	Total		M-H, Random, 95% Cl 1.23 [0.79, 1.92]	2011 2012 ←	
В	Celio et al 2011 Vardy et al 2012	Events 100 6	Total 161 42	Events 93 9	Total 163 49 43	71.3% 11.1%	M-H, Random, 95% Cl 1.23 [0.79, 1.92] 0.74 [0.24, 2.29]	2011 2012 ←	
В	Celio et al 2011 Vardy et al 2012 Furukawa et al 2015	Events 100 6	Total 161 42 39	Events 93 9	Total 163 49 43	71.3% 11.1% 17.6%	M-H, Random, 95% Cl 1.23 [0.79, 1.92] 0.74 [0.24, 2.29] 1.17 [0.48, 2.86]	2011 2012 ←	
В	Celio et al 2011 Vardy et al 2012 Furukawa et al 2015 Total (95% CI) Total events	Events 100 6 25 131	Total 161 42 39 242	Events 93 9 26 128	Total 163 49 43	71.3% 11.1% 17.6%	M-H, Random, 95% Cl 1.23 [0.79, 1.92] 0.74 [0.24, 2.29] 1.17 [0.48, 2.86]	2011 2012 ←	M-H, Random, 95% Cl
В	Celio et al 2011 Vardy et al 2012 Furukawa et al 2015 Total (95% CI) Total events	Events 100 6 25 131 : 0.00; Chi ^z = 0.68, df =	Total 161 42 39 242	Events 93 9 26 128	Total 163 49 43	71.3% 11.1% 17.6%	M-H, Random, 95% Cl 1.23 [0.79, 1.92] 0.74 [0.24, 2.29] 1.17 [0.48, 2.86]	2011 2012 ←	

Figure S1 Efficacy of 1-day versus 3-day dexamethasone for the prophylaxis of chemotherapy-induced nausea and vomiting—no nausea. (A) acute phase; (B) delayed phase.

Figure S2 Efficacy of 1-day versus 3-day dexamethasone for the prophylaxis of chemotherapy-induced nausea and vomiting—no emesis. (A) acute phase; (B) delayed phase; (C) overall phase.

4		Dexamethasone m	nulti-day	Dexamethasone	one-day		Odds Ratio		Odds Ratio
`_	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
	Celio et al 2011	134	161	119	163	81.7%	1.84 [1.07, 3.15]	2011	
	Furukawa et al 2015	33	39	34	43	18.3%	1.46 [0.47, 4.55]	2015	
	Total (95% CI)		200		206	100.0%	1.76 [1.08, 2.86]		
	Total events	167		153					
	Heterogeneity: Tau ² = I	0.00; Chi ² = 0.13, df =	1 (P = 0.7)	2); I² = 0%				_	0.5 0.7 1 1.5 2
	Test for overall effect: 2	Z = 2.27 (P = 0.02)							0.5 0.7 1 1.5 2 Favours one-day Favours multi-day
									ravours one-day ravours multi-day
3		Dexamethasone m	nulti-day	Dexamethasone	one-day		Odds Ratio		Odds Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
	Celio et al 2011	129	161	116	163	83.0%	1.63 [0.98, 2.73]	2011	
	Furukawa et al 2015	33	39	34	43	17.0%	1.46 [0.47, 4.55]	2015	
	Total (95% CI)		200		206	100.0%	1.60 [1.00, 2.56]		
	Total (95% CI) Total events	162	200	150	206	100.0 %	1.60 [1.00, 2.56]		
	Total events				206	100.0 %	1.60 [1.00, 2.56]	_	
		0.00; Chi ² = 0.03, df =			206	100.0 %	1.60 [1.00, 2.56]	_	0.5 0.7 1 1.5 2 Favours one-day Favours multi-day

Figure S3 Efficacy of 1-day versus 3-day dexamethasone for the prophylaxis of chemotherapy-induced nausea and vomiting—no use of rescue medication. (A) delayed phase; (B) overall phase.

А		Dexamethasone m	-	Dexamethasone	-		Odds Ratio		Odds Ratio
_	Study or Subgroup	Events	Total	Events			M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
	Aapro et al 2010	16	149	19	151	15.5%	0.84 [0.41, 1.70]		
	Celio et al 2011	89	166	84		41.9%	1.13 [0.73, 1.74]		
	Matsuura et al 2015	34	53	41		11.7%	0.65 [0.29, 1.48]		
	Komatsu et al 2015	105	150	114	148	28.9%	0.70 [0.41, 1.17]		
	Kosaka et al 2016	39	41	37	39	1.9%	1.05 [0.14, 7.87]	2016	
	Total (95% CI)		559		560	100.0%	0.88 [0.66, 1.16]		-
	Total events	283		295					
	Heterogeneity: Tau² = 1 Test for overall effect: 2		4 (P = 0.6	2); I² = 0%					0.2 0.5 1 2 5 Favours one-day Favours multi-day
В		Dexamethasone m		Dexamethasone			Odds Ratio		Odds Ratio
_	Study or Subgroup	Events	Total	Events			M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
	Aapro et al 2010	138	149	147	151	13.8%	0.34 [0.11, 1.10]	2010	
	Celio et al 2011	148	166	150	166		0.88 [0.43, 1.79]		
	Komatsu et al 2015	129	150	130	148		0.85 [0.43, 1.67]		
	Matsuura et al 2015	46	53	55	56	4.5%	0.12 [0.01, 1.01]		
	Furukawa et al 2015	31	39	35	43		0.89 [0.30, 2.64]		
	Kosaka et al 2016	41	41	38	39	2.0%	3.23 [0.13, 81.79]	2016	
	Total (95% CI)		598		603	100.0%	0.72 [0.45, 1.14]		•
	Total events	533		555					
	Heterogeneity: Tau ² = I		5 (P = 0.3	2); I² = 14%					
	Test for overall effect: 2	L = 1.41 (P = 0.16)							Favours one-day Favours multi-day
С		Dexamethasone mu	ılti-day	Dexamethasone o	ne-day		Odds Ratio		Odds Ratio
Ŭ.	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
	Aapro et al 2010	121	149	127	151	47.8%	0.82 [0.45, 1.49]	2010	- B
	Celio et al 2011	143	166	133	166	49.6%	1.54 [0.86, 2.76]	2011	+=-
	Kosaka et al 2016	41	41	38	39	2.5%	3.23 [0.13, 81.79]	2016	
	Total (95% CI)		356		356	100.0%	1.16 [0.69, 1.95]		+
	Total events	305		298					
	Heterogeneity: Tau ² = I	0.05; Chi ² = 2.62, df =	2 (P = 0.2	7); I² = 24%					0.02 0.1 1 10 50
	Test for overall effect: 2	Z = 0.56 (P = 0.58)							Favours one-day Favours multi-day
		Dexamethasone m	ultidav	Dexamethasone	one dav		Odds Ratio		Odds Ratio
D	Study or Subgroup	Events	Total	Events		Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
-	Celio et al 2011	159	166	151	166				
	Furukawa et al 2015	34	166	36	100	33.9%	2.26 [0.90, 5.69] 1.32 [0.38, 4.57]		
	Furukawa etai 2015 Kosaka etai 2016	34 40	39 41	30	43 39	33.9% 5.0%	0.34 [0.01, 8.64]		
	NUSAKA BLAI ZUI D	40		29	29	0.0%	0.34 [0.01, 8.04]	2010	_
	Total (95% CI)		246		248	100.0 %	1.71 [0.83, 3.53]		-
	Total events	233		226					
	Heterogeneity: Tau ² = 1 Test for overall effect: 2		2 (P = 0.4	8); I*= 0%					0.02 0.1 1 10 50 Favours one-day Favours multi-day

Figure S4 Safety of 1-day versus 3-day dexamethasone for the prophylaxis of chemotherapy-induced nausea and vomiting. (A) no adverse events; (B) no constipation; (C) no headache; (D) no fatigue/insomnia.