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Introduction 

Genetic tests (including genomic tests) detect changes in 
chromosomes, genes, or proteins (1). With the current 
increasing availability of laboratory technology and 
techniques, the use of and total expenditures for genetic 
tests have grown rapidly worldwide. It was reported that 
there are approximately 75,000 genetic tests on the market 
and about 10 new tests enter the market each day in the 
United States (2). These tests are often used in prenatal 
screening, carrier testing, prognostic testing, and diagnostic 
testing (1-3). Compared with traditional diagnostic tests, 
genetic tests have new features that bring additional 
challenges to health technology assessments (HTAs). 
Consequently, standard methods for meta-analysis of 
diagnostic test accuracy and economic evaluations may need 

adaptation for HTAs of genetic tests. This review provides 
some considerations relevant to the evaluation of genetic 
tests. While these issues are especially relevant to HTAs 
of genetic tests, they may also apply to non-genetic health 
technologies.

In our review, first, we briefly describe the Bayesian 
approach for a meta-analysis of diagnostic test accuracy and 
present an example related to the synthesis of published data 
for a very rare genetic condition. Next, we present a meta-
analysis and suggest an economic model for combined tests 
in the absence of a perfect reference standard. Then we 
share some considerations for defining the prevalence of 
genetic conditions for economic models, given that the true 
prevalence is often unknown. We also discuss issues related to 
choosing appropriate health outcomes and time horizons in 
economic modelling of genetic tests. Finally, we outline some 
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important issues associated with the costing of genetic tests.

Bayesian meta-analysis of diagnostic test 
accuracy for a rare genetic condition: a case of 
trisomy 13 in prenatal screening

Any pregnancy has a small chance of having a baby with 
a chromosomal anomaly (4). Anomalies can include 
an incorrect number of chromosome copies (called 
chromosomal aneuploidies, and includes trisomies 13, 
18, and 21) and small missing pieces from chromosomes 
(called microdeletions). Prenatal screening can detect some 
chromosomal anomalies in a pregnancy. Traditionally, 
either first-trimester screening or maternal serum screening 
is used to screen for trisomy 21 and 18. More recently, 
noninvasive prenatal testing (NIPT) has been introduced 
to prenatal screening. NIPT is a maternal blood test 
that examines cell-free fetal DNA to screen for common 
chromosomal anomalies (4). NIPT is more accurate than 
traditional prenatal screening and can also detect additional 
chromosomal anomalies such as trisomy 13, sex chromosome 
aneuploidies, and microdeletion syndromes (5).

We previously conducted an HTA on NIPT for select 
chromosomal anomalies (4). We identified 7 studies 
reporting the accuracy (sensitivity and specificity) of trisomy 
13 (6-12). The results of these studies were presented as 
counts of true positives, false positives, false negatives, and 
true negatives in Table 1. Six of the 7 included studies had at 
least one zero cell in their 2×2 table and three studies had 
two zero cells. To overcome the computational problems 
of zero counts, some software packages add a small fixed 
value to all cells (i.e., continuity corrections). However, 
this approach is not well accepted. When multiple cells 

in a 2×2 table are zero or small in number, adding a fixed 
value (e.g., 0.5) may impact parameter estimates. More 
recently, software packages [e.g., SAS macro: MetaDAS; 
and R package: lme4 from Cochrane (13,14)] have been 
developed to estimate the pooled estimates of sensitivity and 
specificity. The statistical models (e.g., generalized linear 
mixed models) in these software packages allow for zero 
cells and therefore do not apply continuity corrections (14). 
The concept of these models can be simply understood in 
the following way: if a random variable X (e.g., the number 
of people with false negative results) follows a binomial 
distribution, X ~ Binomial (n, p) (e.g., n: the total number of 
true disease cases; and p: 1 − sensitivity), X has a chance to 
be 0, especially when n is small (i.e., low disease prevalence) 
or p is small (e.g., high test sensitivity).

Frequentist  methods general ly  use the normal 
approximation approach but may have issues with 
convergence due to sparse data. In our HTA on NIPT, we 
were unable to obtain summary estimates of the pooled 
sensitivity and specificity using the SAS Macro “MetaDAS” 
and R package “lme4” because the models did not converge. 
We instead applied a Bayesian bivariate meta-analysis model 
for diagnostic test accuracy that uses a beta distribution 
for the prior probability distribution of disease prevalence, 
which is appropriate for cases of low disease prevalence. 
The Bayesian model was computed using WinBUGS 1.4.3 
to avoid issues of non-convergence (15,16) and we found 
that the median of the pooled sensitivity and specificity 
for trisomy 13 were 76.0% [95% credible interval (CrI), 
46.2% to 94.1%] and 99.9% (95% CrI, 99.9% to 100.0%), 
respectively. The WinBUGS code used in this section 
and the section below is available by request from the 
corresponding author.

Table 1 Non-invasive prenatal testing results for trisomy 13 

Author, year True positive False positive False negative True negative

Bianchi et al., 2014, (6) 1 1 0 897

del Mar Gil, 2014, (7) 1 0 0 191

Langlois et al., 2017, (8) 0 1 0 1,151

Norton et al., 2015, (9) 2 2 0 11,181

Palomaki et al., 2017, (10) 2 2 0 2,527

Quezada et al., 2015, (11) 2 2 3 2,778

Song et al., 2013, (12) 1 0 0 1,740
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Meta-analysis of diagnostic test accuracy and 
economic models in the absence of a perfect 
reference test: the case of non-small cell lung 
cancer 

Genetic diagnostic tests commonly lack a perfect standard 
(i.e., the inability to definitively determine disease status), 
for example when the comparator quantifies a biomarker 
such as enzyme activity where the cut-point varies, or if 
the comparator is a genetic test that includes different  
variants (17). We illustrate this challenge in the context of a 
genetic test for non-small cell lung cancer (NSCLC).

Lung cancer is characterized by cancer cells forming 
in the tissue of one or both lungs (18). NSCLC includes 
several types of lung cancer except for small-cell lung cancer 
and accounts for 75% to 85% of all lung cancers. Some 
lung cancers will progress and the tumour cells develop a 
DNA resistance mutation in the epidermal growth factor 
receptor (EGFR) T790M gene. Identifying this resistance 
mutation can help physicians choose appropriate treatment 
(i.e., osimertinib if positive and alternate chemotherapy if 
negative). Traditionally, at the stage of disease progression, 
EGFR resistance mutation testing is done on DNA 
extracted from a tumour sample obtained by tissue biopsy; 
however, this is an invasive test for people with advanced 
NSCLC and is also costly. Consequently, cell-free 
circulating tumour DNA (ctDNA) blood testing (i.e., “liquid 
biopsy”) was developed to enable detection of the resistance 
mutation EGFR T790M in people with advanced NSCLC 
noninvasively.

Tissue biopsy is an imperfect reference standard (i.e., 
the sensitivity and specificity are not 100%) because it is a 
sample of tumour cells and the mutation is not necessarily 
found in all sections of the tumour. Lack of a perfect 
reference standard complicates the evaluation of diagnostic 
test accuracy and the cost-effectiveness of tests like liquid 
biopsy for NSCLC. If the test being evaluated has higher 
sensitivity and specificity than the reference standard, and 
the reference standard is assumed to be perfect, then the 
additional patients correctly classified by the new test would 
be erroneously treated as false positives or false negatives. 
Dendukuri et al. (19) extended the Bayesian hierarchical 
summary receiver operating characteristic (HSROC) 
model (20) for meta-analysis of diagnostic test accuracy to 
the case where one or more imperfect reference standards 
are used in individual studies. Within each study, both the 
index test (liquid biopsy) and reference standard (e.g., tissue 
biopsy) are assumed to be imperfect measures of a common 

underlying dichotomous latent variable D, the true 
disease status. The model provides estimates of the pooled 
sensitivity and specificity of the index test across studies, 
and the sensitivity and specificity for the reference standard. 
The model can adjust for possible conditional dependence 
between the index test and the reference standard within 
each latent class through the covariance of the sensitivities 
and specificities. Additionally, historical information or 
subjective knowledge about some test parameters (e.g., the 
sensitivity and specificity of the reference standard) may be 
incorporated though informative prior distributions.

We conducted Bayesian meta-analysis of diagnostic 
test accuracy for liquid biopsy for NSCLC using three 
different models: (I) perfect reference standard model; (II) 
imperfect reference standard model, assuming conditional 
independence; and (III) imperfect reference standard model, 
adjusting for conditional dependence (18). We used the 
deviance information criterion (DIC) to compare the three 
models. The DIC incorporates the goodness-of-fit and 
complexity of a model and a lower DIC is indicative of a 
better model. The imperfect reference standard model that 
adjusted for conditional dependence had the lowest DIC. 
The pooled sensitivity of liquid biopsy was 0.68 (95% CrI, 
0.46 to 0.88) and the pooled specificity was 0.86 (95% CrI, 
0.62 to 0.98). The sensitivity and specificity of tissue biopsy 
for NSCLC (reference standard) in this model were 0.86 
(95% CrI, 0.75 to 0.98) and 0.93 (95% CrI, 0.85 to 0.99), 
respectively. 

In clinical practice, patients may also receive a 
combination of tests. In the above NSCLC example, 
patients who have a negative result after liquid biopsy may 
go on to receive a tissue biopsy to confirm the results. 
When modelling two sequential or simultaneous tests, it 
is important to consider the potential correlation between 
tests. We summarize the probability of obtaining each 
possible test result from two combined tests in Table 2. 
Estimates can be derived from the meta-analysis model by 
sampling the posterior distribution of these parameters: 
the pooled estimates of sensitivity (S2) and specificity (C2) 
of the reference standard (T2; e.g., tissue biopsy), the 
sensitivity (S1) and specificity (C1) of the index test (T1; 
e.g., liquid biopsy), and the disease prevalence (Pi). Let 
Cov_S and Cov_C denote the covariance of the sensitivities 
and specificities for the two tests. Therefore, the maximum 
Cov_S is [min (S1, S2) − S1 × S2] and the maximum Cov_C 
is [min (C1, C2) − C1 × C2], based on a previous proof (21). 
The meta-analysis models above can be used to determine 
the magnitude of conditional dependence (i.e., a proportion 
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of the maximum Cov_S and Cov_C) based on the minimal 
DIC.

In an economic analysis, we may compare combined tests 
with a single test, such as the reference standard alone. When 
the Cov_S and Cov_C are ignored, the cost-effectiveness 
results of combined tests may be overestimated (22). Two 
commonly used criteria to define a composite decision rule 
based on two tests are the conjunctive positivity criterion 
(composite test result is positive only if both tests are 
positive) or the disjunctive positivity criterion (composite 
test result is positive when either test is positive) (23). If we 
apply the conjunctive positivity criterion, the composite test 
gains specificity but loses sensitivity compared with either 
test alone, whereas if we apply the disjunctive positivity 
criterion, the composite test gains sensitivity but loses 
specificity. The composite test strategy may be advantageous 
in specific situations, such as when high test sensitivity is 
preferred to maximize case detection (23). Based on how 
patients are managed after test results, we can further model 
health outcomes that reflect the clinical utility of the test.

Defining the true disease prevalence: cases of 
sex chromosome aneuploidy and trisomy 21

Disease prevalence is often one of the key parameters to 
determine the cost-effectiveness of a test (24). However, 
in many cases the true prevalence of a genetic condition is 
unknown. For example, patients with negative screening 
test results (including false negatives) are often not 
investigated further. When the observed prevalence may 
not reflect the true prevalence, researchers should estimate 
the expected true prevalence under some assumptions. For 
example, the expected prevalence of the sex chromosome 
aneuploidy XXY syndrome (47,XXY) from the literature 
is as high as 15.3 per 10,000 male fetuses (25), while the 

observed prevalence is 1.94 per 10,000 male fetuses from 
registry data (26). Because phenotypes may vary widely 
for sex chromosome aneuploidies, cases are likely to be 
underdiagnosed or underreported. In addition, people with 
sex chromosome aneuploidies may be identified gradually 
as they age and not immediately at the time of birth, so 
additional cases may not be fully captured in registry data. 
The expected prevalence can be thought of as the “true” 
prevalence based on screening and subsequent confirmatory 
diagnostic testing (25).

We present an example of estimating the true prevalence 
of trisomy 21 (Down syndrome) among fetuses at 12 weeks 
of pregnancy (the typical time that prenatal screening for 
trisomy 21 occurs in Canada). The prevalence of trisomy 
21 from a population of live births may differ from that 
at 12 weeks of pregnancy because of the spontaneous loss 
of pregnancies affected with trisomy 21 (27) or voluntary 
termination of pregnancy (28). Thus, when estimating the 
prevalence of trisomy 21 in viable fetuses at 12 weeks of 
pregnancy (first trimester) to evaluate the cost-effectiveness 
of prenatal screening, researchers need to adjust the 
observed live birth prevalence for spontaneous pregnancy 
loss (29). Live birth prevalence (excluding voluntary 
termination of pregnancy due to prenatal detection) is 
approximately equal to the prevalence of viable fetuses at 
a given time minus the spontaneous pregnancy loss at the 
same time point (4):

( )12 1Birth w SponP P L= × −  [1]

where PBirth is the live birth prevalence of a chromosomal 
anomaly in the absence of a prenatal diagnosis and 
voluntary termination of pregnancy, P12W is the prevalence 
of a chromosomal anomaly in viable fetuses at 12 weeks 
of pregnancy, and LSpon is the spontaneous pregnancy loss 

Table 2 Probabilities of diagnostic test results by true disease status 

Test result Disease-positive group (D+) Disease-negative group (D−)

T1+ and T2+ Pi × (S1 × S2 + Cov_S) (1 − Pi) × ((1 − C1) × (1-C2) + Cov_C)

T1+ and T2− Pi × (S1 × (1 − S2) − Cov_S) (1 − Pi) × ((1 − C1) × C2 − Cov_C)

T1− and T2+ Pi × ((1 − S1) × S2 − Cov_S) (1 − Pi) × (C1 × (1 − C2) − Cov_C)

T1− and T2− Pi × ((1 − S1) × (1 − S2) + Cov_S) (1 − Pi) × (C1 × C2 + Cov_C)

D, dichotomous latent variable of the true disease status; D+, people with disease; D−, people without disease; T1, index test; T2,  
reference standard(s); S1, sensitivity of the index test; S2, sensitivity of the reference standard; C1: specificity of the index test; C2,  
specificity of the reference standard; Cov_S, covariance between sensitivities; Cov_C, covariance between specificities; Pi, disease  
prevalence. Note: Setting Cov_S = 0 and Cov_C = 0 will imply the tests are conditionally independent. 



Journal of Hospital Management and Health Policy, 2020 Page 5 of 10

© Journal of Hospital Management and Health Policy. All rights reserved. J Hosp Manag Health Policy 2020;4:27 | http://dx.doi.org/10.21037/jhmhp-20-47

rate from 12 weeks (first trimester) to term for a given 
chromosomal anomaly.

Then, ( )12 = 1w Birth SponP P L÷ −  [2]

The live birth prevalence of trisomy 21 in the absence of 
prenatal screening and voluntary termination of pregnancy 
was 8.8 per 10,000 births for women aged 30 years old in 
the UK (PBirth=0.00088) and the spontaneous pregnancy 
loss between 12 weeks (first trimester) and term was 43% 
(LSpon=0.43) (27,29). Then, the prevalence of trisomy 21 at 
12 weeks of pregnancy (i.e., the time of prenatal screening) 
is approximately 0.0015 (P12w=0.0015), assuming that the 
risk of spontaneous pregnancy loss is low for fetuses without 
chromosomal anomalies. It is important to accurately 
estimate prevalence in cost-effectiveness analyses, and if 
possible, approaches like the one above should be used. In 
situations where prevalence remains uncertain, sensitivity 
analyses should be used to explore the impact of this 
uncertainty on results.

Health outcomes and time horizons used in the 
economic modelling of genetic tests

The effectiveness of a health technology and the time 
horizon over which its benefits and adverse effects are 
assessed are two closely related elements. Often evidence on 
the long-term effectiveness of a health technology is scarce. 
Consequently, researchers must make assumptions about 
the long-term health outcomes (often not studied) to model 
lifetime cost-effectiveness. Economic evaluation guidelines 
often recommend using quality-adjusted life-years (QALYs) 
as the primary measure of effectiveness along with long-
term time horizons (30-33). According to US guidelines, 
the time horizon of a cost-effectiveness analysis should be 
as long as possible to incorporate the differences in the 
intended and unintended consequences of the compared 
alternatives (32). However, long-term time horizons for 
genetic tests may not always be appropriate or feasible. For 
instance, Edlin et al. indicate that a shorter time horizon for 
health technologies is acceptable for decision-makers when 
the costs and benefits are incurred only over a short-term 
period, or when the long-term evidence is limited such that 
extrapolation would lead to an unreliable decision (33). A 
recent simulation study demonstrated that when longer time 
horizons were applied in cases of weak evidence, there was 
a substantial increase in bias that led to an overestimation of 
beneficial health outcomes (e.g., life-years or QALYs) (34).

Challenges associated with the long-term economic 
modelling of genetic tests are typically related to the 
values assigned to modelled health states, which includes 
assumptions regarding utilities (preference weights), 
other outcomes of people affected by the genetic test, and 
the potential positive and negative short- and long-term 
consequences of secondary findings for the person or their 
family (32). Thus, the following potential methodological 
issues require careful consideration:
 Prognostic value of the genetic test: if the genetic test 

has prognostic value, a lifetime cost-effectiveness 
model may be warranted for the reference case 
analysis. However, since long-term economic 
models need to include all relevant outcomes, 
issues may arise with the availability and quality of 
model inputs related to the short- and long-term 
effectiveness of the genetic test and assumptions 
regarding the treatment and management 
choices prompted by the test results. All relevant 
assumptions should be transparent, justified, and 
tested in sensitivity analyses. Guidelines also 
recommend exploring the influence of the time 
horizon in sensitivity analysis (32). Noninvasive 
fetal RhD blood group genotyping for identifying 
RhD-blood type incompatibility in managing RhD-
negative pregnancies without existing antibodies 
(i.e., nonalloimmunized RhD-negative pregnancies) 
is an example of a genetic test that may change 
only the short-term course of clinical care for this 
specific population (35). Incompatibility occurs 
when the fetus’s blood type is RhD-positive and 
the mother’s is RhD-negative. This genetic test is 
a type of cell-free fetal DNA test and is performed 
at an early stage of pregnancy to determine 
incompatibility in the RhD blood group between 
the fetus and the mother. If incompatibility is 
present, the mother receives a treatment (Rh 
immunoglobulin injection) during the pregnancy 
to prevent anti-D antibodies from developing and 
attacking future incompatible fetuses (35). This 
technology is less likely to impact clinical outcomes 
and QALYs substantially after the pregnancy; thus, 
a long-term time horizon for this subpopulation 
of nonalloimmunized RhD-negative women may 
result in overestimation of the benefit and a biased 
(favourable) estimate of the incremental cost-
effectiveness ratio (ICER). Lastly, short- or long-
term cost-effectiveness modelling of all relevant 
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health outcomes (e.g., probability of having a live 
baby) rather than QALYs alone may be of value to 
inform decision-makers. 

 Secondary findings of genetic testing: secondary 
findings that are unrelated to the primary purpose 
of a genetic test may arise. Secondary findings are 
not associated with symptoms, but may have an 
impact on present or future health, as they indicate 
people with a specified genetic condition may be at 
higher risk of developing a disease in the future that 
is unrelated to the original indication for testing (1).  
The American College of Medical Genetics and 
Genomics recommends that in addition to the 
primary findings of a test, laboratories performing 
whole exome and whole genome sequencing 
include reports of certain secondary variants (1,36) 
for which earlier diagnosis (or risk detection) and 
earlier intervention can improve health outcomes. 
However, there is uncertainty around the economic 
consequences of secondary findings and their 
appropriate incorporation in economic analyses is 
challenging (37,38). This increases the complexity 
of economic evaluations of genetic tests. The 
interpretation of health benefits is challenging 
and weighing and joint modelling of the benefits 
associated with both primary and secondary 
findings is necessary. Furthermore, because 
secondary findings are not the primary outcome of 
interest, it may be challenging to define a proper 
comparator (e.g., traditional tests may be unable 
to capture secondary findings) (38). Modelling 
secondary findings of genetic tests is rarely 
considered due to limited evidence and the inability 
to propose reasonable assumptions about relevant 
health effects and costs accrued over the long term.

 Availability and validity of utility data (valuing 
health preferences): for the most reliable estimate of 
incremental cost per QALY of a technology, health 
preferences measured by recommended elicitation 
methods need to accurately reflect the decision 
problem and the health states modelled (32).  
In economic evaluations of genetic tests, especially 
in children, there is often no source of utilities 
that fully matches the target population and the 
use of a proxy measure or adult utility is necessary. 
Furthermore, only a few multi-attribute generic 
preference measures [e.g., Health Utilities Index 
(HUI)] have been validated. As HTA researchers, 

we need to understand and interpret if a change 
(difference) in the utility score over time is 
minimally important, clinically important, and 
important to patients. More importantly, the 
magnitude of change in QALYs in a model-based 
cost-effectiveness analysis should be carefully 
analyzed, given that a number of health states are 
combined to estimate a change in QALYs over the 
specified time horizon (32). Another issue is whose 
health preferences (utilities) should be used in cost-
effectiveness analyses of genetic tests. Although 
most economic guidelines suggest the use of 
community preferences, target populations of these 
analyses often include children for whom patient 
preferences rather than community preferences 
would be more appropriate, but they are difficult 
to obtain due to age limitations (32,39). Also, in 
economic evaluations of genetic tests, it may be 
important to consider utilities associated with 
diagnostic testing; if possible, we need to account 
for preferences for false positive and false negative 
test results. For example, a RhD-negative mother 
with developed anti-D antibodies carrying a RhD-
negative fetus (i.e., lack of RhD incompatibility) 
may be negatively impacted by concerns for fetal 
health and the need for intensive monitoring 
during pregnancy due to a false positive RhD 
result. This disutility could be jointly modelled 
with other disutilities associated with the adverse 
effects of various monitoring procedures over 
this misclassified “at risk” pregnancy. Lastly, 
methodological issues could arise if  health 
preferences of both the mother and baby are 
considered throughout the pregnancy and followed 
into childhood and throughout life. Joint modelling 
of multiple effectiveness outcomes including 
the utilities of both the mother and child are 
challenging because of the inherent features of an 
ordinary Markov (state transition) approach as well 
as the specific challenges of ascertaining a child’s 
(let alone an infant’s) health state preferences. If a 
Markov model is used, we need to decide which or 
whose utilities (health preferences) and outcomes 
are the most important for the cost-effectiveness 
analysis. In this case, limitations related to the 
simplification of the model structure and the 
uncertainty in estimation of QALYs should be 
recognized. Otherwise, more complex agent-based 
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or dynamic cohort models could be considered 
to adequately address disease management at 
the time of diagnosis and any long-term health 
consequences for both the mother and the affected 
baby.

 Inclusion of caregiver and familial spill-over effects 
of the genetic test: many genetic conditions are 
associated with negative impacts on the quality 
of life and the physical health of family members 
or caregivers of an affected person, but data may 
be limited on how the genetic test affects the 
outcomes of individuals other than the patient in 
economic evaluation. Recognition of spill-over 
effects is suggested (32) and their inclusion in the 
analysis requires reliably measured data inputs and 
joint modelling of outcomes (e.g., the loss of utility 
for patients and caregivers affected by the disease). 
Also, we ought to consider time-dependent 
changes in the outcomes (e.g., utilities) due to 
dilution of the spill-over effects over time resulting 
from possible adaptations to the disease and 
circumstances. Furthermore, there are potential 
family spill-over effects arising from knowledge 
of a genetic risk that may introduce some benefit 
or harm to family members. When a person is 
positive for a pathogenic variant in an autosomal 
dominant inherited condition, their first-degree 
relatives (parents, siblings, children) and extended 
family members may be eligible for testing of 
the familial pathogenic variant (termed “cascade 
testing”) (40). Cascade testing is an efficient way to 
track familial pathogenic variants, such as familial 
hypercholesterolemia (40). For relatives who have 
an inherited risk factor and are currently disease-
free, disease prevention, close follow-up and 
monitoring may lead to health benefits and reduced 
health care use if the disease is prevented and 
costly to treat (41). At the same time, knowledge 
of an inherited risk factor may lead to anxiety. 
Researchers ought to consider incorporating 
these spill-over effects in economic analyses to 
gain a full understanding of a test’s impact on 
health. However, when evaluating cascade testing, 
researchers also need to consider contextual factors 
such as legal issues (e.g., privacy regulations in 
the US do not allow patients’ doctors to directly 
contact their relatives) and the accessibility of 
cascade testing (e.g., preventive genetic testing 

in family members may not be covered by some 
payers) (41).

Costing of genetic tests and the analytic 
perspectives used in economic modelling

Costing of genetic tests can be complex. In addition to 
the cost of the genetic test itself, there are often other 
associated cost components, such as sampling, laboratory 
preparation, bioinformatic analysis, data management 
and storage (e.g., linking genetic test results with other 
data from reference libraries of genetic results and 
administrative health datasets), and interpretation and 
reporting of genetic test results (42-44). Also, the teams that 
manage data from genetic tests may vary and can consist 
of a clinician, a molecular biologist, a genetic counsellor, 
and data scientists (2). Compared with other types of tests, 
clinical interpretation of genetic results can be much longer 
and more costly (42). For example, in addition to regular 
physician visits for testing, some genetic tests (e.g., NIPT 
for chromosomal anomalies) may also require pre-test and/
or post-test genetic counselling to discuss the detectable 
genetic conditions of interest, the test’s detection limitations 
and its role in detecting other conditions, family or personal 
history of the conditions tested, or appropriate further 
testing options (4). Genetic counselling also incorporates 
ethical and legal components. In summary, the full cost 
associated with genetic tests are generally greater than the 
cost of the test alone.

Adding to the complexity, genetic tests may be performed 
in commercial, hospital, or community laboratories. For 
commercial tests, industry often sets a list price based on 
the cost of labour, infrastructure, equipment, predicted 
test volume, equipment maintenance, potential test 
transportation, and validation and certification of testing. 
However, price negotiations may be possible between public 
payers and manufacturers for commercial tests. For hospital-
based tests, it can be challenging to estimate the cost 
incurred by the hospital’s laboratory. Costing of hospital-
based genetic tests must include the costs of disposables 
and laboratory operating costs. When we consider whether 
the infrastructure, equipment, and setup costs should be 
incorporated, we need to understand whether existing 
facilities will be used or new facilities need to be developed. 
In economic evaluations, we are generally only interested 
in opportunity costs incurred in the future. Thus, we may 
assume the costs of existing infrastructure and equipment 
have already been incurred and cannot be recovered. 
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These costs are sunk costs (i.e., retrospective costs) and are 
generally not considered by decision-makers. If an existing 
facility requires upgrades or a new facility needs to be 
developed, these new costs should be included. We also need 
to understand whether the hospital needs to hire additional 
employees for the genetic test and appropriately allocate 
these new staffing costs to the genetic test.

Lastly, guidelines suggest that an economic evaluation 
explores, assesses, and presents the outcomes from both the 
health care sector and societal perspectives as two separate 
reference case analyses (32). The societal perspective is 
particularly relevant for genetic tests since spill-over effects 
may often occur.

Conclusions

When conducting HTAs of genetic tests, researchers need 
to understand the features of the genetic test and select 
the appropriate methods. Standard literature review and 
economic HTA methods may require adaptation. The 
following considerations may be relevant when embarking 
on an HTA for genetic tests:
 Bayesian meta-analysis of diagnostic test accuracy 

is particularly useful for rare genetic conditions and 
in the absence of a perfect reference standard;

 When developing economic models of combined 
tests, researchers need to consider adjusting for 
conditional dependence between tests;

 When evaluating the cost-effectiveness of genetic 
tests, researchers should pursue the unobserved 
“true” prevalence of the genetic condition of 
interest;

 Long-term time horizons and QALYs may not 
always be suitable in cost-effectiveness analyses of 
genetic tests;

 In addition to the cost of the genetic test itself, 
there are often other cost components associated 
with testing that should be explored.
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