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Introduction

Chronic obstructive pulmonary disease (COPD) is a 
common, progressive, preventable and treatable respiratory 
disorder. It arises in susceptible patients as a result of 
environmental exposures, principally tobacco smoking and 
indoor air pollution. Early life events including those which 

impair lung development contribute to COPD susceptibility 
and pathogenesis (1).  COPD affects an estimated  
328 million people worldwide, is the 2nd commonest reason 
for emergency hospital admissions, and is projected to be the 
leading cause of death globally by 2030 (2). COPD patients 
experience progressive symptoms, accelerated lung function 
decline and an impaired quality of life (3). Exacerbations of 
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COPD—where there are acute deteriorations in symptoms 
which have a variety of triggers including infections—are 
major life events. COPD exacerbations are responsible for 
a large part of the individual disease burden, and adverse 
outcomes of hospital admission, readmission and death. 
Exacerbations are responsible for a large part of the direct 
healthcare and indirect economic costs of COPD (4-6).

The NHS commissioned Topol Report noted that 
advances in mathematics, computing power, cloud 
computing and algorithm design have accelerated the 
development of artificial intelligence (AI) based methods to 
analyse, interpret and make predictions based on healthcare 
data (7). There has been an associated surge in interest in 
these clinical applications of AI including in the respiratory 
medicine field, where there has been a substantial increase 
in publications since 2016 (8). Applications of AI directed 
at the global COPD challenge offers the potential to 
address the noted priority requirements of earlier and 
accurate diagnosis and personalised, predictive, preventative 
management (9). COPD has been identified as an ideal field 
to establish clinical, academic and industrial partnerships 
which resolve variations in care with the development of 
exemplar AI solutions ranging from imaging and lung 
function test interpretation to predictive applications. 

For example, there has been considerable progress in 
our understanding and recognition of COPD at its pre-
symptomatic stages. AI-based evaluation of chest CT 
imaging could identify COPD, and provide call to action 
which would allow interventions to slow or prevent 
disease progression (10), Heterogeneity of COPD is also 
notable, with an emerging role for stratification of acute 
and long term COPD treatment based on biomarkers (3).  
AI tools could integrate the source data and provide 
decision support to ensure optimised care, rationalising 
specialist clinician workload and reducing variations in care. 
COPD use cases have the potential to serve as exemplars 
for clinical validation of AI applications, and to be used as 
accelerators to address some of the generic challenges for AI 
implementation including interoperability, interpretability, 
data governance and patient and clinician readiness. 

The COVID-19 pandemic presents additional challenges 
but also opportunities for clinical AI in general, and for 
its application in COPD management. COPD patients 
have an increased risk of severe disease and mortality 
from COVID-19, which amplifies the potential individual 
and healthcare system burden (11). COVID-19 society 
lockdowns and patient-carer shielding requirements have 
interrupted routine healthcare, particularly diagnostic 

and monitoring lung function testing and pulmonary 
rehabilitation which conventionally requires group 
face-face care sessions. The COVID-19 challenge is 
accelerating adoption of digital technologies within the 
general population, and of remote-management and 
associated digital innovations to re-orientate and continue 
scheduled healthcare (12,13). It seems not just appropriate 
but necessary to seize the opportunity to ‘piggyback’ AI 
validation and implementation on COVID-19 response 
workstreams. This offers the potential to maximise the 
gains from the source data now obtained from enhanced 
remote-monitoring and care model paradigm shifts, and 
from the effort being undertaken to accelerate resolution of 
the connectivity, interoperability, governance and training 
requirements for these re-orientated care systems.

In this review, we will outline the background and current 
state of AI applications for COPD diagnosis, stratification, 
outcome detection and prediction and present our vision for 
the role in the immediate future for AI in COPD, including 
the validation and implementation requirements.

Current state: AI and COPD diagnosis

COPD diagnosis is traditionally based on presence of 
symptoms and risk factors (typically smoking or home air 
pollution) and results of lung function testing. Spirometry 
testing demonstrating fixed airflow obstruction—ratio 
of the forced expiratory volume in 1 second (FEV1) to 
the forced vital capacity (FVC) <0.7—in the appropriate 
clinical context establishes the diagnosis of COPD. 
COPD is then classified and graded by symptom burden, 
exacerbation frequency and the severity of lung function 
impairment based on the FEV1 measured vs predicted. 
Whilst this disease definition and classification informs 
prognosis and treatment stratification, several problems 
including under and over diagnosis and over-simplification 
of disease heterogeneity are noted (14). Performance 
and interpretation of spirometry requires access to 
calibrated equipment and time for test conduct. Accurate 
interpretation requires clinical expertise, with normal 
ranges based on reference datasets which have limitations 
including age and ethnicity biases (15). AI applications 
have the potential to address these shortfalls by optimising 
data interpretation for population based factors, to derive 
maximal value and accuracy from traditional lung function 
testing. AI algorithms also have the potential to extend the 
reach of other diagnostic modalities, to match these with 
clinical outcomes which should equate to a COPD diagnosis 
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and treatment provision.
The use of early rule-based expert system AI techniques 

to interpret pulmonary function test was originally 
explored in the 1980s. The model outputs weren’t 
robust, with computing power at that time limiting their 
development and utility (16). If, however we fast forward 
30 years, modern AI has the ability to find patterns in 
high dimensional feature space and apply these to PFT 
interpretation. For example, Topalovic et al. developed a 
ML framework that incorporates computer-based choice 
of lung function and clinical features to enhance diagnosis 
of COPD and other common respiratory conditions from 
PFT measurements (17). In subsequent validation study 
performed on 50 cases, this AI model outperformed clinician 
diagnosis, with an accuracy of 82% for the model vs. 44% 
with large inter-rater variability for the clinicians (18).  
At face value AI interpretation of lung function testing 
is ready for adoption at scale. The challenge is to define 
the service model within which it would fit: as a trigger 
to refer for expert review within a community-based lung 
function service, or as an interpretable and responsible 
AI model ‘leading’ on lung function test reporting, with 
intermittent expert clinician calibration and model tuning? 
An expansion of the lung function AI training dataset 
to reflect the global population, address varying disease 
prevalence in cohorts, and remove biases is required. Data 
from international COPD projects could be exploited for 
this (19). Digitally connected handheld spirometers with 
patient’s coached through full forced or a more limited 
and repeatable set of slow breathing manoeuvres have 
been validated for testing including community screening 
for COPD (20-22). Innovative approaches to measure 
standard pulmonary function variables using smartphone 
microphone are in advanced development (23). COVID-19 
challenges are accelerating the uptake of these solutions (24).  
Further trials are proposed to evaluate utility of service 
models supported by connected spirometry vs standard 
service models. Datasets from these are in cloud storage, 
and could be accessed to train and validate algorithms 
for measurement quality and variability, diagnosis and 
stratification. The hope would be to aggregate spirometry 
datasets with patient-reported outcome, biosensor, imaging 
and supervised clinical event data to enhance algorithm 
development for detection or prediction of exacerbations 
and other outcomes. Even without these attractive 
additions, AI applications will be necessary to address the 
overwhelming data quantity from connected lung function, 
to ensure comprehensive utilisation and provide actionable 

decision support to clinical teams. 
Lung function testing also can highlight subtler 

abnormalities which are not typically noted or actioned in 
routine clinical practice. These insights can predict subsequent 
development of COPD, with adverse outcomes (25).  
Surfacing these insights is another approach by which AI 
algorithm development can potentially maximise the return 
from lung function testing, contributing to accurate and timely 
diagnosis and preventative management strategy.

Detection and classification of imaging abnormalities has 
been one of the headline applications of clinical AI. Access 
to CT scanners, expanded indications for ‘routine’ imaging 
and progression of imaging technology including increased 
resolution and standardised picture archiving and storage 
have underpinned this.

Initial ML techniques applied to the COPD diagnosis 
challenge employed textural analysis of CT scans, where 
features were extracted by applying algorithms based on 
structure, statistics or binary patterns to discrete regions of 
interest within the lung field (26). The derived model was 
able to identify obstructive patterns within lung parenchyma 
and address issues with airway segmentation demonstrating 
proof of concept, but this ML approach requires significant 
supervision and lacks interoperability which limits its scale-
ability. The development and application of deep learning 
AI techniques, in particular convolutional neural networks 
(CNN) has largely overcome these issues. Deep-learning 
model training and validation however requires large de-
identified data sets with reference labelling, intensive 
computer resource and an infrastructure for subsequent 
model implementation. These requirements are being 
addressed by innovation hubs such as iCAIRD (27). 
Caution is required with model training and supervision 
to mitigate overfitting and convergence issues (16).  
Language processing AI techniques have recently been 
successfully applied to imaging reports, showing potential 
to reduce supervision requirements and accelerate 
derivation of accurate ground truth, mitigating these  
risks (28). As an example of this most current AI applications 
to COPD diagnosis, Gonzales et al have shown how 
CNN can accurately categorize CT images from smokers, 
differentiating presence or absence of COPD (29). A CNN 
model an also accurately classify severity of COPD based 
on GOLD stage, with the ability to detect mild COPD (30).  
The recently described ‘SuStain’ ML model when applied 
to CT thorax images from asymptomatic smokers who 
have been followed up can identify subgroup of 30% of 
patients who have a 2.5x relative risk of developing COPD 
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subsequently (31). These findings highlight the potential 
of AI algorithms to accurately establish early diagnosis of 
COPD at scale, enabling preventative interventions. CT 
images of the thorax are widely obtained in patients at risk 
for COPD in emergency (chest pain, trauma) and screening 
(lung cancer) settings, and clinically acceptable performance 
of an AI model for COPD diagnosis from these scans has 
been confirmed (32). The challenge now is to implement 
the AI models from imaging, lung function and other 
sources, and establish the effectiveness of a service model 
associated with these that can interpret and action the 
enhanced diagnostic information that can be derived 
from repurposing of this existing healthcare data. From 
this, it is anticipated that a new diagnostic paradigm for 
COPD will emerge, supported by validated comprehensive 
AI evaluation of healthcare data which associates with 
outcomes and personalises management (33).

Current state: AI and COPD stratification

Whilst traditionally regarded as a single diagnostic entity, 
with diagnosis still based on threshold criteria (age, 
symptoms, exposures, airflow obstruction on spirometry) 
COPD is better considered a syndrome, with a variety 
of different phenotypes. Basic phenotyping of COPD 
by airflow obstruction severity, symptom burden and 
exacerbation history is well established, and it determines 
patient cohorts with different outcomes and different 
primary treatment strategies (3). The evidence-base for 
range of variables which stratify COPD outcomes and 
treatment strategies has expanded rapidly. Laboratory 
results (serum CRP and eosinophil count) have been shown 
to identify patients with COPD exacerbations who can have 
antibiotics withheld or oral corticosteroid course truncated 
(34,35). Absence of exacerbations, low blood eosinophil 
count, sputum bacterial isolates, previous pneumonia 
episodes and occurrence of oral thrush differentiate COPD 
patients who should potentially have inhaled corticosteroids 
omitted or withdrawn from their treatment package (3). 
Acute hypercapnic respiratory failure is an indication for 
acute non-invasive ventilation; sustained hypoxaemia in 
ex-smokers indicates home oxygen therapy (36); patients 
with sustained hypercapnic respiratory failure benefit from 
home NIV (37); patients with hyperinflation, persisting 
exercise impairment after pulmonary rehabilitation, low 
lung infection risk, stable comorbidities and favourable 
pulmonary anatomy benefit from lung volume reduction 
procedures (38). COPD commonly co-exists or overlaps 

with asthma, cardiovascular disease, obesity, obstructive 
sleep apnoea, spinal degenerative disease, cachexia and 
lung cancer. Each of these combinations result in mutually 
unfavourable aggravated symptom-burden and outcomes. 
COPD exacerbations are a major life event with high 
personal and societal cost. Risk prediction scores such as 
DECAF (39), or newer physiology techniques measuring 
expiratory flow limitation (40) or neural respiratory drive 
index (41) can highlight patients with COPD exacerbations 
at higher risk for early re-admission or other adverse 
outcomes. Evaluation of these stratifying variables and 
detection and management of these comorbidities is 
recommended to optimise COPD management.

It is unclear whether combining some or all of these 
established COPD stratifying variables, or integrating them 
with other accessible clinical data improves the precision of 
phenotyping, allowing stratification of patients to prioritised 
personalised interventions. 

The complexity of this matrix of potential COPD 
stratifications exceeds cognitive capacity for even an expert 
clinician at a single care episode. Despite intensive quality 
improvement work including attempts to develop and 
implement COPD care bundles, providing decision support 
across one axis of care (acute and early post exacerbation 
management without consideration of comorbidities), 
considerable variations in care continue to exist even 
for the apparently simplest binary management points 
(42,43). Multi-disciplinary follow up care of COPD is 
recommended, but this is expensive and global provision is 
unrealistic. 

AI applications offer the tantalising potential to address 
these challenges. If we can integrate the above evidence-
based data points and situational variables in a secure, 
consent-driven data exchange and input these to validated 
models at scale, there is on the immediate horizon the 
potential to provide COPD patients and clinicians with 
prioritised and explainable decision support.

Research reported over the last 3 years suggests that this 
vision for AI-based COPD stratification can be realised. 
Most investigators have focused on exacerbation, admission/
re-admission or mortality predictions, which is appropriate 
as these are priority outcomes for patients and providers. 
The identification of high risk of readmission or mortality 
has potential for immediate change in a patient’s care: 
intensified support and anticipatory care planning. Guerra 
and colleagues noted in 2017 that despite 25 publications 
reporting on COPD exacerbation prediction and risk-
stratification models, methodology had been inconsistent, 
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no published model met clinical requirements and that a 
more harmonised approach to model development and 
validation was required (44). That challenge has been 
partly addressed, with several subsequent publications 
demonstrating that machine-learning techniques can predict 
in-hospital mortality and 30-day readmission risk for COPD 
exacerbations, differentiate high-cost COPD patients (with 
cost as a proxy for hospital admissions), predict likelihood 
of hospital admission from emergency department triage 
and predict emergency care utilisation based on weather and 
environmental variables (45-51). These approaches have 
scale-ability hurdles, requiring data consistency and need for 
validation +/− re-training on other population cohorts. Use 
of a smooth Bayesian network ML technique can potentially 
mitigate data sparsity issues, and also provide quantitative 
relationships which enhances model explainability (52). 
Pikoula and colleagues have also shown that it is feasible to 
obtain clinically important COPD stratification from core 
primary care electronic health record data, which offers 
prospect to reduce the requirement for model data input and 
expert clinical reviews (53).

Most recently, investigators have shown impressive 
performance of an ML model for all-cause mortality, 
superior to previous validated mortality risk scores, using 
training and validation data from the large COPD gene 
epidemiology and ECLIPSE COPD longitudinal study 
datasets (54). This machine-learning mortality prediction 
(MLMP-COPD) model can be accessed online (55). The 
results of this study are encouraging, but not immediately 
scale-able: the feature set for the MLMP-COPD model was 
clinician selected rather than data-driven, and few of the 
model input features are routinely acquired and recorded in 
real world practice. Stratification models which are based 
on more widely accessible consumer health wearable data 
are emerging (56), and combing these with the academic 
approaches which have proven valid for COPD use cases is 
an obvious next step. 

Current state: AI and COPD outcome detection 
and prediction

Reducing COPD exacerbations and hospitalisations is a 
global health priority. AI is likely to have a central role 
tackling this challenge.

Systematic review by Zhang and colleagues has 
established that exacerbations and hospitalisations due 
to exacerbations are the outcomes that COPD patients 
rate as most important (57). Management strategies 

focusing on detecting and preventing exacerbations in the 
community are likely to improve individual outcomes and 
quality of life, and reduce COPD healthcare and society 
costs (58). In addition to the noted background health and 
situational data which can predict risk of hospitalisation 
and re-admission, there is a spectrum of data which has 
the potential to detect and predict COPD exacerbations. 
Patient-reported outcomes (PROs) vary with exacerbations, 
with changes typically occurring days prior to healthcare 
contact (59). The feasibility of capturing these PROs 
via smartphone app, and tracking changes which equate 
to exacerbations has been confirmed (60). Changes in 
symptom relieving short-acting bronchodilator inhaler 
use (61), and in patients with severe disease changes in 
home non-invasive ventilation parameters occur at early 
stages of COPD exacerbations (62,63). Heart rate and 
activity changes from wearable devices can follow trends of 
respiratory infections at a population level and potentially 
detect developing illness and need for hospitalisation 
(64,65). As of 2016, systematic review noted that there was 
promise but insufficient data on monitoring of physiology 
parameters (such as heart rate, activity, respiratory rate or 
oxygen saturation) for remote-monitoring and exacerbation 
prediction at an individual patient level (66). That promise 
is being realised: ML models outperform other approaches 
for exacerbation detection and prediction from datasets of 
PROs and physiology data acquired from digital COPD 
remote-monitoring interfaces (67,68). These are proofs of 
concept: larger datasets with higher volume of events are 
required for further model training and validation.

The rapid expansion of access and uptake of smartphone 
and wearable technology provides the opportunity 
to build on these proofs of concept with much larger 
datasets. Expanding patient ownership of smartphones 
and acceptance of health monitoring and digital self-
management of COPD is notable (69,70). COVID-19 
challenges are further accelerating digital connectivity and 
the uptake of continuous remote-monitoring for health. 
Processing and cleaning of this data will be facilitated 
by cloud computing, but clinical supervision is required 
and consistent methodology and reporting of remote-
monitoring solutions still needs attention (71). That clinical 
supervision importantly includes accurately defining 
exacerbations (a generic priority for the COPD academic 
clinical community) and timings to provide ground truth 
for model training. Based on these developments, the hope 
is that AI algorithms will have a role at an individual patient 
level, predicting adverse outcome such as exacerbation 
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and providing decision support to re-orientate care within 
an end-end remote-monitoring service model. Evidence 
for this needs more time to accrue, and implementation 
and evaluation challenges to scale this are notable. In 
the immediate future, AI models which are trained and 
validated on comprehensive remote monitoring datasets 
will provide key insights into feature set selection. This 
should allow us to prioritise data sources for remote-
monitoring, such as defining which physiology parameters 
and associated hardware are most valuable for measurement 
and data integration. The step beyond this—AI models 
demonstrating need for prioritised patient review and 
escalation of care based on remote-monitoring variables 
with explainable actionable insights—would naturally 
follow. 

Role for AI in improving COPD outcomes 
worldwide: immediate challenges and next steps

AI applications hold great promise to improve healthcare 
outcomes. COPD is an ideal use case for AI solutions given 
the global burden of the disease, the inequalities and care-
quality gaps and its responsibility for a high proportion 
of healthcare spend. Current evidence base confirms 
the potential of a suite of AI applications and models to 
address these issues and demonstrate return on investments 
with accurate and timely COPD diagnosis, stratification 
to realise precision medicine and risk predictions to re-
orientate to proactive preventative care. 

There are immediate challenges and significant barriers 
to implementing AI solutions at scale. These need to be 
addressed if positive research findings obtained are to be 
exploited with extension of the COPD-AI evidence-base 
and conduct of intervention trials with cost-effectiveness 
evaluations. The required data to train, validate and 
monitor AI model performance is in silos, and data 
control requirements are challenging to overcome (72,73). 
Enforcement of GDPR legislation in the EU presents 
challenges around how patient-generated data can be used 
to support service delivery and research. Medical device 
regulatory review and approval of AI solutions requires 
clinical effectiveness evaluations. AI model outputs in 
isolation don’t re-orientate care: an end-end digitally-
enabled service model with clinician expertise to interpret 
and action these is required (7). 

COPD services are well suited to address these 
challenges. Academic, commercial and healthcare 
organisation collaborations—the triple helix—are well 

established in the COPD field. Connected care with 
remote-patient monitoring has been pioneered in COPD 
management, with notable successes (74). These COPD 
multi-disciplinary teams are well placed to utilise existing 
skills and adapt systems and processes to evaluate AI 
solutions. Required infrastructure elements for AI delivery – 
interoperability of health systems and data sources based on 
open standards, data storage aggregating patient-generated 
and background electronic health record data, consent-
assurance with privacy integrated into the architecture and 
de-identified data pipelines with APIs allowing real time 
analyses – are being evaluated in COPD clinical trials (75).

Based on all the positive data now reported, we believe 
that the next step for establishing a role for AI in COPD is 
to undertake a programme of implementation-effectiveness 
evaluations. Exemplar projects should establish clinical 
innovation test beds with collaborations, infrastructure, 
end-end digitally enabled service models and an evaluation 
framework capturing agreed health technology evaluation 
metrics, exploiting the analytic data from the digital 
infrastructure to semi-automate effectiveness testing. 
Within these test beds AI models can be rapidly developed, 
trained, validated and performance monitored, with 
associated regulatory oversight and an established pathway 
to scale-up. 

The approaches required to tackle the COPD global 
healthcare challenge can be leveraged to address healthcare 
AI development needs. In turn, healthcare AI solution’s 
capabilities can be leveraged to address the challenges of 
COPD global care. COPD’s role as a priority use case for 
AI development is apparent, and a role for AI in COPD 
management is established. We expect the breadth and 
depth of that role to continue to expand. If healthcare 
AI’s promise can be confirmed and implemented at scale, 
improvements in COPD outcomes at an individual and 
population level will be realised. 
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