
Page 1 of 14

© Journal of Hospital Management and Health Policy. All rights reserved. J Hosp Manag Health Policy 2023;7:16 | https://dx.doi.org/10.21037/jhmhp-23-97

Original Article

Web-based calculator using machine learning to predict 
intracranial hematoma in geriatric traumatic brain injury

Thara Tunthanathip1^, Nakornchai Phuenpathom1^, Apisorn Jongjit2^

1Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; 2Faculty of Medicine, 

Prince of Songkla University, Songkhla, Thailand

Contributions: (I) Conception and design: T Tunthanathip, N Phuenpathom; (II) Administrative support: T Tunthanathip, A Jongjit; (III) Provision 

of study materials or patients: T Tunthanathip, A Jongjit; (IV) Collection and assembly of data: T Tunthanathip, A Jongjit; (V) Data analysis and 

interpretation: T Tunthanathip, A Jongjit; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Thara Tunthanathip, MD, PhD. Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Prince of Songkla 

University, Songkhla 90110, Thailand. Email: tsus4@hotmail.com.

Background: Traumatic brain injury (TBI) is a significant contributor to mortality and impairment among 
the general population. The elderly are at a higher risk of developing cerebral hematomas following TBI. 
Therefore, there has been an overuse of cranial computed tomography (CT) in this group. The purpose of 
this study was to assess the predictive ability of machine learning (ML) algorithms for traumatic intracranial 
hematoma prediction. The secondary objective was to explore the predictors associated with positive CT 
scans.
Methods: A retrospective cohort study was conducted to examine TBI patients aged 60 years and older. To 
train the ML models, 70% of the data was separated, with the remaining 30% being used for testing. The 
supervised techniques used for training the ML models were naïve Bayes (NB), support vector machines 
(SVM), k-nearest neighbor (KNN), decision trees (DT), random forests (RF), artificial neural networks 
(ANN), and extreme gradient boosting (XGB). Therefore, the testing dataset was used to evaluate the ML 
models’ prediction capabilities.
Results: There were 2,052 patients in the total cohort and 403 (19.6%) of the cohort had positive CT 
scans. Ten clinical predictors were used for building ML models and testing their performance. The NB 
algorithm had acceptable discrimination; the area under the receiver operating characteristic curve (AUC) 
was 0.70. Moreover, the sensitivity and F1 score of NB were 0.97 and 0.91, respectively. 
Conclusions: ML models have the potential to serve as a screening tool for predicting positive cranial CT 
scans in elderly TBI patients since they can assist clinicians in making clinical decisions. In practice, a web 
application would be a simple way to apply the predictive ML model. Furthermore, future studies should 
involve external validation to examine the generalizability of clinical prediction systems.
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Introduction

Traumatic brain injury (TBI) is a leading cause of death and 
disability in the general population, especially in low- and 
middle-income nations (1,2). From the literature review, 
age has been identified as one of the prognostic factors that 
have been documented (3-5). McIntyre et al. conducted a 
systematic review and meta-analysis and reported that the 
overall mortality rate among the elderly was 38.3%, and 
mortality was significantly associated with the patient’s 
advanced age (6). Due to the high mortality associated with 
TBI in elderly patients, cranial computed tomography (CT) 
examinations are typically performed in this population. 
Cranial CT scans have been widely used to detect 
intracranial injury following TBI (7,8); however, the high 
cost and adverse effects, such as leukemia and brain tumors, 
must be weighed against each other in clinical practice (7,9).

A variety of clinical prediction tools have been created 
and are currently being used for outcome prediction in 
a variety of illnesses, including TBI (10), cancer (11), 
and surgical complications (12). In an era of disruptive 
technology, machine learning (ML) is one of the prediction 
techniques that has also been used to predict traumatic 
intracranial injury. Tunthanathip et al. used various ML 
algorithms to predict intracranial hematoma following 
TBI in children and reported that the random forest (RF) 
algorithm had the best predictive performance with an 
area under the curve (AUC) of 0.80 (13). Moreover, Abe  

et al. compared several ML algorithms to predict traumatic 
intracranial hematoma and found that extreme gradient 
boosting (XGB) had the highest AUC of 0.78–0.80 (14).

It has challenged us to strike a balance between excessive 
and optimal investigations in high-risk patients. Because 
under-investigation may result in missed intracranial injury, 
and the high expense of the over-investigation protocol 
imposes an economic burden in a low-resource setting. 
To the best of our knowledge, there is no documented 
method for using ML to predict intracranial hematoma 
in TBI elderly patients. In the face of this gap, the goal of 
the present study was to assess the predictive ability of ML 
algorithms for traumatic intracranial hematoma prediction. 
In addition, the secondary objective was to explore the 
predictors associated with intracranial hematoma in TBI 
elderly. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://jhmhp.
amegroups.com/article/view/10.21037/jhmhp-23-97/rc).

Methods

Study designs and study population

The retrospective cohort study started with a review of 
electronic medical records of TBI patients aged 60 years 
and older who were admitted to an urban trauma center 
hospital in southern Thailand between January 2015 and 
December 2019. Clinical characteristics and imaging 
findings were collected. Patients who did not have a 
preoperative cranial CT scan or whose official CT scan 
reports were unavailable were excluded from the study. 
In addition, the AUC formula was used for sample size 
calculation (15). Based on Abe et al., various parameters 
were calculated as follows: AUC of 0.80, alpha of 0.05, and 
estimation error of 0.05 (14). Therefore, the sample size of 
the study population was at least 368 patients.

Operational definition

Baseline clinical characteristics and cranial CT findings 
were reviewed for analysis. Because hypotension produces 
a misinterpretation of the Glasgow coma scale (GCS) 
score due to inadequate cerebral perfusion, the GCS score 
collected in the current investigation was the patient’s 
GCS score with stable vital signs following emergency 
department resuscitation (16). Based on the GCS score, the 
severity of TBI was classified as follows: mild TBI (GCS 
scores 13–15), moderate TBI (GCS scores 9–12), and severe 
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TBI (GCS scores 3–8).
Two neurosurgeons assessed the cranial CT findings, 

skull fracture, type of intracranial hematoma, midline 
displacement, and obliteration of the basal cistern. As a 
result, the present study’s findings included the following 
intracranial hematomas: epidural hematoma (EDH), 
subdural hematoma (SDH), cerebral contusion, traumatic 
intracerebral hematoma, subarachnoid hemorrhage 
(SAH), intraventricular hemorrhage (IVH), and brainstem 
hematoma. The present study did not include skull fractures 
as an endpoint. Additionally, diffuse axonal injury (DAI) was 
characterized by Vieira et al. as those who showed symptoms 
of DAI on a CT scan or magnetic resonance imaging (17).

Ethical considerations

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the human research ethics committee board 
of the Faculty of Medicine, Prince of Songkla University 
(REC 65-138-10-1). The informed consent of the patients 
was not necessary for the present study because it was a 
retrospective analysis. However, patient identification 
numbers were encoded before analysis.

Statistical analysis

The workflow diagram of the present study is shown in 

Figure 1. Using descriptive analysis, patient characteristics, 
mechanism of injury, and intracranial injury of the total 
dataset were determined and presented as proportions with 
percentage, and mean with standard deviation (SD). In the 
present study, the complete case strategy was employed for 
missing value management prior to training the ML model.

Using a random data split, 70% of the total data was 
utilized to train the ML models, while the remaining 30% 
was used to test the models’ performance. For the feature 
selection, various clinical characteristics were analyzed by 
Chi-square test and independent t-test. The Chi-square 
test was used to examine differences in proportions for 
categorical variables, while the independent t-test was used 
to compare the means of continuous variables between the 
positive CT scans and negative CT scan groups. Therefore, 
clinical variables with P values less than 0.05 were selected 
for training ML models. Additionally, the Hosmer-
Lemeshow test was used to estimate the multivariable 
model for the calibration model utilizing binary classifiers, 
and the P value of the test greater than 0.05 indicated a 
good-fitting model (18,19).

Supervised algorithms with 10-fold cross-validation 
including naïve Bayes (NB), support vector machines 
(SVM), artificial neural networks (ANN), k-nearest 
neighbor (KNN), decision tree (DT), RF, and XGB were 
used for training the models from the training dataset. 
The “caret” package also optimized the parameters of each 
algorithm based on its accuracy score (20). The criterion 

Total dataset N=2,052

Testing dataset N=616Training dataset N=1,436

Univariate and multivariable 
analysis

Model training using various 
machine learning algorithms

Random splitting 70:30

Test predictive performances of models
ROCs with AUCs
Sensitivity
Specificity
PPV
NPV
Accuracy
F1
PR curves with AUCs

Feature selection

Figure 1 Workflow diagram. ROC, receiver operating characteristic; AUC, area under the curve; PPV, positive predictive value; NPV, 
negative predictive value; PR, precision-recall.
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parameter and the maximum depth of the RF and XGB 
algorithms were also fine-tuned. The number of neighbors 
for KNN was tuned, whilst the SVM algorithm parameters 
were altered as follows: C and kernel. Furthermore, the 
activation, hidden layer sizes, learning rate, and solver of 
the ANN algorithm were modified.

Each algorithm’s performance was measured using 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), accuracy, and F1 score. 
The receiver operating characteristic (ROC) curves with 
AUCs were also calculated. An AUC of 0.7 indicated 
acceptable discrimination, 0.8 indicated outstanding 
discrimination, and 0.9 indicated great discrimination (21). 
In addition, the imbalanced number of endpoint outcomes 
is a common problem in clinical research; therefore, 
precision-recall (PR) curves with AUC and F1 scores have 
been reported to resolve imbalanced outcomes (22). The 
AUC of PR curves was used as a comparison metric among 
ML models. There is no standard cutoff value for the 
AUC of PR curves. Clearly, the greater the value of PR’s 
AUC and the closer it is to 1.0, the better. The statistical 
analysis was performed using the R version 4.4.0 software  
(R Foundation, Vienna, Austria). Additionally, we 
constructed web-based applications of various algorithms 
and deployed them via the shiny platform to validate the 
ML models in the future (R studio, Boston, MA, USA).

Results

Clinical characteristics and imaging findings

A total of 2,052 patients were enrolled, and Table 1 
presents the baseline characteristics of the training and 
testing datasets. After splitting the data, 1,436 patients 
were considered suitable for the training dataset and the 
remaining was the testing dataset. The mean age of the TBI 
patients was 75.58 (SD 9.02) years in the training dataset, 
while the average age of the testing dataset was 75.63 (SD 
8.75) years. The most prevalent mechanism of TBI in both 
datasets was a fall to the ground, while traffic injuries were 
observed in 20.5% and 20.8% of the training and testing 
datasets, respectively. The study observed that the GCS 
score ranging from 3 to 8 was present in around 2.3% and 
2.9% of the cohorts, whereas moderate TBI was identified 
in approximately 2.9% and 3.4% of the cohorts.

For underlying disease, diabetes mellitus, hypertension, 
and cerebrovascular disease were common in both cohorts, 
while the use of aspirin was common as a current drug before 

TBI in approximately 8.3–9.4% of cases. The incidence of 
scalp injury after TBI was seen to vary between 52.2% and 
53.6% across instances, while post-traumatic seizure occurred 
in approximately 0.9% to 1.0% of TBI patients.

As a result, cranial CT scans revealed positive findings 
in 19.6% (403/2,052) of the total cohort, and positive CT 
scans in the training dataset and testing dataset were 20.1% 
and 18.5%, respectively. Acute SDH was the most common 
intracranial hematoma, occurring in 8.3% and 11.4% of 
TBI patients, whereas EDH, SAH, IVH, and DAI were 
found in 1.0% and 1.4%, 8.1% and 8.1%, 1.5% and 1.7%, 
and 1.4% and 1.5%, respectively.

Feature selection

Clinical variables were analyzed using the Chi-square 
test and t-test. Therefore, the following 20 variables were 
selected for training ML models as follows: gender, traffic 
injury, aspirin, warfarin, stroke, ischemic heart disease, 
thrombocytopenia, headache, loss of consciousness, 
amnesia, vomiting, scalp injury, seizure, motor weakness, 
hypotension, hypoxia, bradycardia, bleeding per nose/
ear, GCS score, pupillary light reflex, as shown in Table 2. 
Furthermore, the Hosmer-Lemeshow test was run, and the 
P value of the test was 0.7, indicating that the multivariate 
model fit well.

ML

During the training processes, the parameters of the ML 
models were optimized. In detail, the SVM model was 
optimized with a radial kernel and the regularization 
parameter (C parameter) of 0.0889. For the KNN 
algorithm, the model was also optimized with five 
neighbors. The optimized DT model had three nodes, 
while the optimized RF model comprised two maximum 
depths of the tree with 500 trees in the forest. Optimization 
of the ANN model comprised of five hidden layers, a 
logistic activation function, and an alpha of 0.1.

The NB model achieved the highest AUC of ROC 
when testing ML models, at 0.846, while XGB, ANN, and 
RF also had AUCs greater than 0.8, as shown in Figure 2. 
Furthermore, almost all ML models exhibited a notable 
degree of sensitivity, making them well-suited for utilization 
as screening tools. Due to the observed imbalance in 
endpoints in both cohorts, the F1 score and AUC of PR 
curves were utilized to estimate performance models in a 
problem with imbalanced outcomes. As shown in Table 3, 
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Table 1 Baseline characteristics of training and testing datasets 

Characteristics
Training dataset 

(n=1,436)
Testing dataset 

(n=616)

Average age, years 75.58 [9.02] 75.63 [8.75]

Age group, years

60–69 446 (31.1) 175 (28.4)

70–79 482 (33.6) 235 (38.1)

80–89 410 (28.6) 166 (26.9)

≥90 98 (6.8) 40 (6.5)

Male 722 (50.3) 289 (46.9)

Mechanism of injury

Ground-level fall 1,037 (72.2) 441 (71.6)

Fall from height 34 (2.4) 22 (3.6)

Motorcycle crash 253 (17.6) 105 (17.0)

Car crash 29 (2.0) 15 (2.4)

Pedestrian injury 13 (0.9) 8 (1.3)

Object stuck at head 38 (2.6) 11 (1.8)

Penetrating injury 2 (0.1) 1 (0.2)

Body assault 7 (0.5) 5 (0.8)

Bicycle accident 13 (0.9) 5 (0.8)

Other 10 (0.7) 3 (0.5)

Traffic injury 295 (20.5) 128 (20.8)

Medication

Aspirin 119 (8.3) 58 (9.4)

Clopidogrel 27 (1.9) 11 (1.8)

Warfarin 24 (1.7) 3 (0.5)

Underlying disease

Hypertension 107 (7.5) 45 (7.3)

Diabetes mellitus 140 (9.7) 67 (10.9)

Dyslipidemia 88 (6.1) 30 (4.9)

Stroke 139 (9.7) 63 (10.2)

Ischemic heart disease 42 (2.9) 22 (3.6)

Thrombocytopenia 6 (0.4) 1 (0.2)

Renal failure 6 (0.4) 3 (0.5)

Signs and symptoms

Scalp injury 749 (52.2) 330 (53.6)

Headache 349 (24.3) 152 (24.7)

Table 1 (continued)

Table 1 (continued)

Characteristics
Training dataset 

(n=1,436)
Testing dataset 

(n=616)

Loss of consciousness 301 (21.0) 137 (22.2)

Amnesia 272 (18.9) 125 (20.3)

Vomiting 27 (1.9) 10 (1.6)

Seizure 13 (0.9) 6 (1.0)

Motor weakness 51 (3.6) 26 (4.2)

Hypotension 9 (0.6) 4 (0.6)

Hypoxia 8 (0.6) 4 (0.6)

Bradycardia 6 (0.4) 3 (0.5)

Bleeding per nose/ear 39 (2.7) 14 (2.3)

Glasgow coma scale score

13–15 1,361 (94.8) 577 (93.7)

9–12 42 (2.9) 21 (3.4)

3–8 33 (2.3) 18 (2.9)

Pupillary light reflex

Fixed both eyes 11 (0.8) 6 (1.0)

Fixed one eye 14 (1.0) 6 (1.0)

React both eyes 1,411 (98.3) 604 (98.1)

Cranial computed tomography finding

Skull fracture 54 (3.8) 16 (2.6)

Intracerebral hematoma 289 (20.1) 114 (18.5)

Epidural hematoma 20 (1.4) 6 (1.0)

Acute subdural 
hematoma

163 (11.4) 51 (8.3)

Chronic subdural 
hematoma

51 (3.6) 23 (3.7)

Contusion/intracerebral 
hematoma

93 (6.5) 34 (5.5)

Subarachnoid 
hemorrhage

117 (8.1) 50 (8.1)

Intraventricular 
hemorrhage

25 (1.7) 9 (1.5)

Brainstem contusion 1 (0.1) 2 (0.3)

Diffuse axonal injury 20 (1.4) 9 (1.5)

Basal cistern obliteration 52 (3.6) 15 (2.4)

Average midline shift, mm 0.39 [2.15] 0.31 [1.77]

Positive CT scans 289 (20.1) 114 (18.5)

Data were presented as mean [standard deviation] or n (%). CT, 
computed tomography.
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Table 2 Factors associated with intracranial hematoma after cranial CT scans using the training dataset 

Characteristics Negative CT scans (n=1,147) Intracranial hematoma (n=289) P value

Age, years† 75.67 [9.00] 75.22 [8.98] 0.45

Gender‡ <0.001

Male 549 (47.9) 173 (59.9)

Female 598 (52.1) 116 (40.1)

Traffic injury‡ <0.001

No 939 (81.9) 202 (69.9)

Traffic injury 208 (18.1) 87 (30.1)

Aspirin‡ <0.001

No 1,076 (93.8) 241 (83.4)

Yes 71 (6.2) 48 (16.6)

Clopidogrel‡ 0.44

No 1,127 (98.3) 282 (97.6)

Yes 20 (1.7) 7 (2.4)

Warfarin‡ 0.002

No 1,134 (98.9) 278 (96.2)

Yes 13 (1.1) 11 (3.8)

Hypertension‡ 0.90

No 1,062 (92.6) 267 (92.4)

Yes 85 (7.4) 22 (7.6)

Diabetes mellitus‡ 0.25

No 1,030 (89.8) 266 (92.0)

Yes 117 (10.2) 23 (8.0)

Dyslipidemia‡ 0.63

No 1,075 (93.7) 273 (94.5)

Yes 72 (6.3) 16 (5.5)

Stroke‡ <0.001

No 1,056 (92.1) 241 (83.4)

Yes 91 (7.9) 48 (16.6)

Ischemic heart disease‡ 0.01

No 1,120 (97.6) 274 (94.8)

Yes 27 (2.4) 15 (5.2)

Thrombocytopenia‡ 0.004

No 1,145 (99.8) 285 (98.6)

Yes 2 (0.2) 4 (1.4)

Headache‡ <0.001

No 839 (73.1) 248 (85.8)

Yes 308 (26.9) 41 (14.2)

Table 2 (continued)
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Table 2 (continued)

Characteristics Negative CT scans (n=1,147) Intracranial hematoma (n=289) P value

Loss of consciousness‡ <0.001

No 942 (82.1) 193 (66.8)

Yes 205 (17.9) 96 (33.2)

Amnesia‡ <0.001

No 978 (85.3) 186 (64.4)

Yes 169 (14.7) 103 (35.6)

Vomiting‡ <0.001

No 1,143 (99.7) 266 (92.0)

Yes 4 (0.3) 23 (8.0)

Scalp injury‡ <0.001

No 493 (43.0) 194 (67.1)

Yes 654 (57.0) 95 (32.9)

Seizure‡ <0.001

No 1,144 (99.7) 279 (96.5)

Yes 3 (0.3) 10 (3.5)

Motor weakness‡ <0.001

No 1,145 (99.8) 240 (83.0)

Yes 2 (0.2) 49 (17.0)

Hypotension‡ <0.001

No 1,145 (99.8) 282 (97.6)

Yes 2 (0.2) 7 (2.4)

Hypoxia‡ <0.001

No 1,145 (99.8) 283 (97.9)

Yes 2 (0.2) 6 (2.1)

Bradycardia‡ 0.004

No 1,145 (99.8) 285 (98.6)

Yes 2 (0.2) 4 (1.4)

Bleeding per nose/ear‡ <0.001

No 1,143 (99.7) 254 (87.9)

Yes 4 (0.3) 35 (12.1)

Glasgow coma scale score‡ <0.001

13–15 1,127 (98.3) 234 (81.0)

9–12 18 (1.6) 24 (8.3)

3–8 2 (0.2) 31 (10.7)

Pupillary light reflex‡ <0.001

Fixed both eyes 1 (0.1) 10 (3.5)

Fixed one eye 0 14 (4.8)

React both eyes 1,146 (99.9) 265 (91.7)

Data were presented as mean [standard deviation] or n (%). †, independent t-test. ‡ , Chi-square test. CT, computed tomography.
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Figure 2 Receiver operating characteristic curves with area under the curves among various machine learning algorithms. (A) Naïve Bayes;  
(B) support vector machine; (C) k-nearest neighbors; (D) decision tree; (E) random forest; (F) artificial neural network; (G) extreme gradient 
boosting. ROC, receiver operating characteristic; AUC, area under the curve. 
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the NB model had the highest value of F1 score. Moreover, 
NB, XGB, and RF models had AUC of PR curves more 
than 0.6, as shown in Figure 3. Therefore, several ML 
models were launched as web applications to simplify 
implementation in general practice or external validation 
in the future. The web application can be accessed on both 
mobile phones and laptops via https://neurosx.shinyapps.
io/TBI_elderly_ML/ or a quick response code scan. When 
ten clinical predictors of a new patient are entered, the 
prediction and probability of a positive cranial CT scan are 
displayed using several ML models, as shown in Figure 4.

Discussion

The incidence of intracranial hematoma following TBI in 
the elderly was found in 18.5–20.1%, which is consistent 
with prior studies (23,24). According to Paosaree et al., the 
positive rate of cranial CT following TBI in patients older 
than 60 years was 21.6% (23). Moreover, acute SDH was 
the most common intracranial hematoma in the present 
study. These results are in concordance with other research 
reports. Heydari et al. (24). reported SDH in 27.6%, while 
another study reported that acute SDH was the most 
common intracranial injury in TBI patients ranging from 
5.3% to 5.9% (25). Because shearing stain occurs during 
a head injury, a tear of the bridging vein leads to develop 
acute SDH (26).

Following TBI, older age is a risk factor for intracranial 
injury, and cranial CT is generally recommended (27,28). 
Clinical predictors associated with traumatic intracranial 
hematoma in the present study are as follows: antiplatelet 
therapy, anticoagulant therapy, traffic injury, GCS score, 

amnesia, vomiting, seizure, weakness, and bleeding per 
nose/ear. These findings are consistent with those of 
previous studies. Mori et al. (25) reported that GCS score 
less than 13, anticoagulant therapy, focal neurologic 
symptoms, posttraumatic convulsions, penetrating injury, 
and depressed fracture were associated with traumatic 
cerebral hematoma. On the other hand, Paosaree et al. (23) 
found that diabetes mellitus, ischemic heart disease, GCS 
score, amnesia, loss of consciousness, vomiting, seizure, 
decline in GCS score greater than 2 points, and chronic 
alcoholism were significantly related to positive brain CT 
scan results in TBI elderly.

The NB algorithm performed exceptionally well in 
predicting traumatic intracerebral hematoma, as indicated 
by the AUC of ROC. However, imbalance classes of 
endpoints were observed in the present study. AUC of PR 
curves and F1 scores were used to estimate the predictive 
performance. As a result, the NB algorithm still had the 
highest AUC of the PR curve and F1 score among various 
ML algorithms. Since there are currently no established 
criteria for these indicators to indicate good predictive 
performance, greater values are preferable and those 
that are closer to 1.0 are better (29). The present study’s 
predicted performance results are consistent with previous 
research. Abe et al. tested various ML models to predict 
intracerebral hematoma in the prehospital setting and 
discovered that the AUCs of the ROC and PC curves were 
0.78–0.80 and 0.46–0.51, respectively.

Additionally,  various ML algorithms have been 
studied in various neurosurgical conditions from the 
literature review (30-33). Tunthanathip et al. employed 
the NB algorithm to forecast surgical site infection, and 

Table 3 Performances of ML algorithms for predicting intracranial hematoma after cranial CT scans

Algorithms Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) Accuracy (95% CI) F1 score (95% CI)

NB 0.95 (0.93, 0.97) 0.51 (0.42, 0.60) 0.89 (0.86, 0.92) 0.71 (0.61, 0.80) 0.87 (0.84, 0.89) 0.92 (0.90, 0.94)

SVM 0.97 (0.96, 0.98) 0.32 (0.23, 0.40) 0.86 (0.83, 0.89) 0.74 (0.61, 0.86) 0.85 (0.82, 0.88) 0.91 (0.90, 0.92)

KNN 0.95 (0.94, 0.97) 0.40 (0.31, 0.48) 0.87 (0.84, 0.90) 0.68 (0.57, 0.79) 0.85 (0.82, 0.88) 0.91 (0.89, 0.93)

DT 0.97 (0.96, 0.99) 0.31 (0.22, 0.39) 0.86 (0.83, 0.89) 0.76 (0.64, 0.88) 0.85 (0.82, 0.88) 0.91 (0.90, 0.92)

RF 0.96 (0.95, 0.98) 0.39 (0.30, 0.48) 0.87 (0.84, 0.90) 0.73 (0.62, 0.84) 0.86 (0.83, 0.88) 0.91 (0.90, 0.93)

ANN 0.97 (0.95, 0.98) 0.33 (0.25, 0.42) 0.86 (0.83, 0.89) 0.72 (0.60, 0.84) 0.85 (0.82, 0.88) 0.91 (0.90, 0.92)

XGB 0.96 (0.94, 0.97) 0.31 (0.22, 0.39) 0.85 (0.83, 0.88) 0.64 (0.51, 0.76) 0.84 (0.81, 0.86) 0.90 (0.89, 0.92)

ML, machine learning; CT, computed tomography; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; 
NB, naïve Bayes; SVM, support vector machine; KNN, k-nearest neighbors; DT, decision tree; RF, random forest; ANN, artificial neural 
network; XGB, extreme gradient boosting.

https://neurosx.shinyapps.io/TBI_elderly_ML/
https://neurosx.shinyapps.io/TBI_elderly_ML/
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Figure 3 PR curves with area under the curves among various machine learning algorithms. (A) Naïve Bayes; (B) support vector machine;  
(C) k-nearest neighbors; (D) decision tree; (E) random forest; (F) artificial neural network; (G) extreme gradient boosting. PR, precision-
recall; AUC, area under the curve.
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Figure 4 Screenshot of web application using machine learning algorithms for predicting intracranial hematoma in elderly traumatic brain 
injury. 

this approach outperformed other ML algorithms (30). 
However, prior studies reported that the RF algorithm had 
the highest performance of positive cranial CT scans in 
pediatric TBI (13). Additionally, XGB and RF algorithms 
have been used for predicting intracranial pressure in 
hydrocephalus patients (31). From controversial results, the 
predictability of ML models needs to be compared using 
external validation with unseen data in the future.

Because the outstanding performance of ML models was 
high sensitivity, ML may be employed as the screening tool 
in real-world settings (32). A highly sensitive tool implies a 
low rate of false negative outcomes; few positive cranial CT 
scans are missed. This performance may assist physicians in 
determining the need for further investigation. Additionally, 
the present study also deployed various ML models in a 
cloud server as a web application. The online application 
would simplify the predictive ML model for use in general 
practice or external validation by other hospitals as the 
computerized clinical decision support systems (CDSS). A 
previous systematic review found that CCDSS improved the 
care process, including screening and treatment, and had 
an influence on patient outcomes, healthcare expenses, and 
patient safety (33). Moreover, CDSS can propose various 
ML models on the server that will support physicians in 
deciding for investigation by voting approach. The finalized 
predictions from several ML models involve the result of 

the majority.
To the best of the authors’ knowledge, this is the first 

study that demonstrated and compared the predictive 
performance of several ML algorithms for a traumatic 
cerebral hematoma in the elderly. However, there 
were some limitations that should be acknowledged 
that the design of the study was a retrospective cohort 
study, which may have led to bias due to confounding 
variables. We attempted to control bias by adjusting for 
confounding variables using multivariable analysis (34-36).  
In the present study, an imbalance of endpoints was also 
observed; therefore, the F1 score was also calculated to 
assess predictability. As a result, ML models had an F1 
score greater than 0.9 which means good performance (37).  
Due to the small number of positive brain CT scans 
observed in the current cohort, a multicenter study may 
be able to rectify this issue in order to enhance predictive 
performance. Also, future external validation with 
unobserved data is required to confirm the predictability 
of the ML models of the present investigation. Finally, 
several clinical prediction tools have been investigated for 
their ability to predict clinical outcomes. As an alternative, 
a nomogram is one of the clinical tools that has been used 
to forecast the course of many diseases (38,39). Future 
research should focus on comparing the prediction of ML-
based models with nomograms.
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Conclusions

ML models have the potential to serve as a screening 
tool for predicting positive cranial CT scans in elderly 
TBI patients since they can assist clinicians in making 
decisions in clinical practice. In practice, a web application 
would be a simple way to apply the predictive ML model. 
Furthermore, future studies should involve external 
validation to examine the generalizability of clinical 
prediction systems.
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