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Background: To establish a feasible prediction model for prognoses of esophageal squamous cell 
carcinoma (ESCC) patients undergoing neoadjuvant concomitant chemoradiation (NACCRT).
Methods: Post-chemoradiation computed tomography (CT) radiomics features and clinical parameters 
were investigated. CT images from advanced thoracic ESCC patients treated with NACCRT and 
esophagectomy were extracted for radiomics features. Least absolute shrinkage and selection operator 
regression were used to select features and build signatures. Radiomics signatures and clinical factors were 
integrated into Cox regression analysis for prognosis; the prediction model’s performance was examined via 
receiver-operating characteristic (ROC) curve analysis.
Results: A total of 46 radiomics features and 25 clinical parameters were extracted from 62 cases, 
of which 59 passed image processing and became eligible for model testing. Eight selected radiomics 
features showed good prediction power [area under the curve (AUC) =0.851] and reliability in predicting 
pathological complete response (pCR). The radiomics signature and clinical parameter combination 
model showed increased prediction power of radiomics signature alone for local regional failure (LRF) 
(AUC=0.804) and distant failure (DF) (AUC=0.754). Following were the strongest contributors of 
prediction power for prognostic endpoints: (I) resection status multiplied by long-run emphasis in grey-
level run length matrix (GLRLM_LRE) for progression (hazard ratio=8.776); (II) non-uniformity of the 
grey-levels (GLRLM_GLNU) (hazard ratio=6.888); and (III) sphericity (hazard ratio=0.152) for overall 
survival (OS).
Conclusions: The integrated prediction model for prognosis may aid clinicians in decision making 
regarding post-operative adjuvant therapy for ESCC patients undergoing NACCRT.
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Introduction

Esophageal cancer is the fifth leading cause of male 
cancer mortality in Taiwan, accounting for approximately 
1,600 deaths annually (1). In total, 72% of patients are 

diagnosed at the advance stage. The most common type 

of esophageal cancer in Asia is differentiated esophageal 

squamous cell carcinoma (ESCC), presenting different 

etiology pattern in the occidental world (2). Neoadjuvant 
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concomitant chemoradiation (NACCRT) effectively 
increases the feasibility of complete surgical resection 
and thus, has become the standard treatment modality 
for advanced esophageal cancer in the past 20 years (3,4). 
Clinical studies on NACCRT for esophageal cancer have 
reported that pathological complete response (pCR) 
predicts better disease control and survival outcomes (5). 
Meanwhile, poor responders show poor prognosis despite 
adjuvant treatment for disease control (6). However, the 
decision-making factors for the post-operative adjuvant 
therapy after NACCRT for ESCC remain not well defined. 
Undoubtedly, predictive models of response to NACCRT 
can provide crucial information before surgery.

Computed tomography (CT) is widely used in post-
NACCRT surveillance of esophageal cancer. However, it 
has limitations in terms of distinguishing the residual tumor 
from the post-treatment effect via visual interpretation (7).  
Interpreting clinical images using a combination of 
radiomics and machine learning is a new field in artificial 
intelligence. Radiomics has been proven to be useful in 
cancer staging and clinical evaluation (8,9). Texture-based 
radiomics features are potential robust predictors of clinical 
outcomes of various cancers (10,11).

For establishing a prediction model of response and 
prognosis in patients undergoing chemoradiation, there 
are 2 ways of choosing the objects for extracting radiomics 
features. One way involves the use of pre-treatment images, 
which have already been used in numerous studies in 
recent years. Pre-treatment images are closely correlated 
to individual differences, helpful in identifying high-risk 
patient groups, and often used in establishing constrain 
models following chemoradiation (12-15). The other way 
involves using the image series taken after chemoradiation. 
Post-treatment images more closely reflect the treatment 
effect relationship, such as immune reaction and alteration 
of the tumor microenvironment. However, high rates 
of false-positive signals are the major technical problem 
limiting the application of these images. Radiomics becomes 
valuable in such situations.

The purpose of this study was to establish a prediction 
model of pathological response, failure pattern, and 
survival in advance ESCC patients by calculating texture-
based radiomics features of CT images after NACCRT. 
We hypothesized that radiomics would extract more 
information from post-chemoradiation CT images and 
thus, could reduce the treatment effect and focus on the 
tumor-related factors influencing prognosis.

Methods

Patient demographic data and workup

This retrospective, single-center study evaluated patients 
with locally advanced esophageal cancer who underwent 
NACCRT followed by total esophagectomy and gastric tube 
reconstruction between 2013 and 2018. Those with Eastern 
Cooperative Oncology Group (ECOG) Performance Status 
score >1 or biopsy-proven differentiated adenocarcinoma 
were excluded. Response and outcome were evaluated 
in 62 patients. Cancer staging was performed using CT, 
endoscopic ultrasound, esophagogastroduodenoscopy, and 
whole body 2-deoxy-2-[fluorine-18]-fluoro-D-glucose 
positron emission tomography integrated with CT (FDG 
PET/CT). Post-treatment surveillance was assessed  
5–8 weeks after completion of NACCRT by performing 
CT and whole body FDG-PET/CT (optional). Staging 
was performed according to the TNM classification system 
(seventh edition) of the American Joint Committee on 
Cancer. Grade of toxicity was evaluated according to the 
National Cancer Institute’s Common Terminology Criteria 
for Adverse Events version four.

Radiotherapy delivery and chemotherapy administration

All eligible patients underwent cancer treatment according 
to the standard operating procedures at our institution. 
Supine, contrast-enhanced, alpha cradle® kits (Smithers 
Medical Products) immobilized CT images were performed 
for simulation. Simulation images included the entire neck, 
thorax, and upper abdomen; CT was performed with 3-mm 
slice thickness and OMAR reconstruction (optional) to 
avoid metallic shadows. Target volume delineation was 
performed on the Eclipse platform according to the criteria 
described below:
	 Gross tumor volume (GTV): primary tumor and 

lymphadenopathy observed on CT and/or 18F-FDG-
PET/CT.

	 High-dose clinical target volume (CTVHigh): 
entire GTV with the margins extended 1 cm 
circumferentially and 3–4 cm longitudinally.

	 Low-dose clinical target volume (CTVLow): area 
of the regional lymphatic nodes if suspected of 
involvement; for instance, the supraclavicular fossa 
if the primary tumor or any lymphadenopathy 
were detected in the upper mediastinum or 
the celiac lymphatics if the primary tumor or 
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any lymphadenopathy was present close to the 
esophagogastric junction.

	 High-dose and low-dose planning target volume 
(PTVHigh and PTVLow): addition of CTVHigh and 
CTVLow with a 0.5-cm expanding margin in all 
directions.

We delivered 6-MV or 10-MV photon beams via 
intensity-modulated radiation therapy or volumetric arc 
therapy (VMAT) planning using the Eclipse treatment 
planning system version 13 (Varian Medical Systems Inc., 
Palo Alto, CA, USA) or Pinnacle treatment planning system 
versions 9.2 and 10.1 (Philips Healthcare Inc., Andover, 
MA, USA). The PTVHigh and PTVLow were prescribed 
radiation doses of 48 and 43.2 Gy, respectively, divided into 
24 fractions using a simultaneous integrated boost method. 
The 100% coverage of the prescribed dose volume should 
exceed 95% of the targeted PTV whilst meeting the normal 
organ constraints, including the following: maximum dose 
to the spinal cord should be <45 Gy, volume of the lung 
receiving >20 Gy should be <30% of the whole lung; and 
mean dose to the heart should be <30 Gy.

All patients underwent concomitant chemoradiotherapy 
with the following weekly platinum-based regimens: (I) 
cisplatin 30 mg/m2; (II) carboplatin (AUC =2); or (III) 
paclitaxel 50 mg/m2 plus either cisplatin 30 mg/m2 or 
carboplatin (AUC =2).

Image processing and extraction of radiomics features

Three patients were excluded from image processing: two 
were excluded because of poor quality of post-treatment CT 
images due to metal implant and one was excluded because 
of unfinished radiotherapy. The CT or PET/CT images 
after NACCRT were imported to the Eclipse treatment 
planning system (version 13). Planning CT images from 
59 patients were rigidly co-registered with post-treatment 
images according to the gray level inside clipbox, sized in 
whole chest and centrally aligned in planning center, to 
avoid unwanted deformation of target organs. The planning 
GTV were duplicated to its relative post-treatment CT 
images and defined as regions of interest (ROIs). The ROIs 
of GTV and relative CT series were inserted into the LIFEx 
software (16) (version 4.7) to extract radiomics features as 
follow: 3-dimensional Lagrangian polygon interpolation 
was applied for resampling images into 1×1×3 mm3  
voxels. Hounsfield units (HUs) in all the images were then 
resampled into 400 discrete values (bins) with absolute 

discretization from –1,000 to 3,000 HUs. Grey-level 
matrices were calculated in 3 dimensions to gather 46 
radiomic features.

Statistical analysis and computing prediction model

Statistical analysis was performed using the Statistical 
Package for the Social Sciences for Windows, SPSS® 
software v. 18.0 (IBM Corp., New York, NY, USA; 
formerly SPSS Inc., Chicago, IL, USA) and R computing 
software (version 3.6.0) under the environment of RStudio 
(version 1.2.1335.) The correlation among pathological 
complete remission, recurrence pattern, clinical features, 
and radiomics features were analyzed using the Pearson 
correlation coefficient (PCC). Clinical features showing 
significant correlation with complete remission and 
recurrence patterns were analyzed as predictors using 
logistic regression. Radiomics feature reduction and 
regularization of the regression model was performed using 
the least absolute shrinkage and selection operator (Lasso) 
formula. Correlation coefficients of Lasso-selected features 
were calculated and presented as a correlation matrix for 
reducing collinearity. The predictability of the radiomic 
features model was assessed by area under the curve (AUC) 
analysis of the receiver-operating characteristic (ROC) 
curve. Cut-off points of the expected value in prediction 
models were assessed by the Youden index (sensitivity + 
specificity – 1). The Kaplan-Meier method was used to 
calculate overall survival (OS) and progression-free survival 
(PFS), which were determined from the date of biopsy to 
the date of last follow-up. The association of OS and PFS 
with clinical or radiomics features was analyzed using Cox 
regression.

Results

Patient characteristics

Table 1 shows the characteristics of the 62 advanced thoracic 
ESCC patients treated with NACCRT. Median age at 
diagnosis was 60 years (range, 40–79 years). The majority 
of patients had clinical stage III disease (n=50, 80.6%), cT3 
disease (n=48, 77.4%), lymph node positivity (n=60, 96.8%), 
and histological grade 2 differentiation (n=43, 69.4%). 
Primary tumor at the middle esophagus was observed in 
51.6% of patients (n=32). Median follow-up duration was 
20.6 months (range, 5.2–60.8 months).
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Table 1 Baseline characteristics of patients with advanced thoracic 
esophageal cancer who underwent NACCRT and esophagectomy

Characteristic Case, N (%)

Total 62

Gender (M:F) 60:2

Age 60.8±8.3

Performance status (ECOG score)

0 39 (62.9)

1 21 (33.9)

2 2 (3.2)

Clinical T stage

T1 2 (3.2)

T2 10 (16.1)

T3 48 (77.4)

T4a 2 (3.2)

Clinical N stage

N0 2 (3.2)

N1 27 (43.5)

N2 24 (38.7)

N3 9 (14.5)

Clinical M stage

M0 59 (95.2)

M1 3 (4.8)

Clinical stage

IIB 9 (14.5)

IIIA 22 (35.5)

IIIB 17 (27.4)

IIIC 11 (17.7)

IV 3 (4.8)

Differential grade

NA 10 (16.1)

1 0 (0.0)

2 43 (69.4)

3 9 (14.5)

Esophagus position

Upper 14 (22.6)

Middle 32 (51.6)

Lower 16 (25.8)

Data are presented as mean ± standard deviation for age and 
as case number (percentage) for other variables; NACCRT, 
neoadjuvant concomitant chemoradiation; ECOG score, Eastern 
Cooperative Oncology Group performance status score; NA, no 
assessment of the differential grade owing to the quantity of the 
endoscopy-aided biopsy sample obtained.

Treatment compliance, outcomes, and toxicities

The study cohorts showed favorable tolerance, such that 
60 of 62 (96.8%) patients completed both radiotherapy and 
the entire chemotherapy course. Interruption of NACCRT 
occurred in one patient who developed intolerable fatigue 
during treatment. Concomitant chemotherapy was 
discontinued early in one elderly patient who developed 
severe nausea and weakness after chemotherapy. The 
clinical treatment outcomes are summarized in Table 2. The 
clinical down-staging rate was 77.4%. The pCR rate was 
40.3% (25/62). The 1-, 3-, and 5-year OS rates were 74.7%, 
48.8%, and 39.8%, respectively. The 1-, 3-, and 5-year PFS 
rates were 60.1%, 30.6%, and 18.1%, respectively. The 
local recurrence rate was 19.4% (12/62), and the distant 
recurrence rate was 37.1% (23/62). Kaplan-Meier survival 
curves of OS and PFS are shown in Figure 1A,B. In total, 6 
patients showed hematological toxicities greater than grade 
3. Two patients developed acute radiation pneumonitis ≥ 
grade 3, one of which died from pneumonitis-induced acute 
respiratory distress syndrome. One patient died owing to 
post-surgery infection.

Response and survival predictive capabilities of clinical 
features

Correlation coefficients of all 25 clinical features for 
complete response (CR), local regional failure (LRF), 
and distant failure (DF) were estimated with double-
tail PCC analysis. Clinical T stage and anemia were 
negatively correlated with CR. CR was the only feature 
that was negatively correlated with LRF. Clinical N stage, 
overall clinical stage, pathological T and N stages, clinical 
response, and resection status were correlated with DF. 
In Kaplan-Meier analysis, patients with and without CR 
showed significantly different survival curves (Figure 1C,D). 
Features showed statistical significance of PCC (P<0.05) 
was further established its log risk model to CR, LRF, 
and DF by logistic regression (Table 3). Furthermore, the 
hazard ratios of clinical features predicting PFS and OS 
were calculated using Cox regression (Table 4). Adjuvant 
chemotherapy caused a 2.79-fold reduction in mortality 
risk, whereas an increase in pathology N stage and anemia 
grade caused a 1.8-fold increase in hazard radio of mortality. 
Resection status was the strongest positive predictor of the 
hazard ratio of progression whereas anemia and pT and pN 
stage moderately predicted the hazard ratio of progression. 
Treatment response negatively predicted progression, with 
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an expected hazard ratio of 0.6.

Response- and survival-related predictive capabilities of 
radiomics features

Eight features [1 shape feature, 1 neighborhood grey-
level different matrix (NGLDM) feature, 2 grey-level co-
occurrence matrix (GLCM) features, and 4 grey-level 
zone length matrix (GLZLM) features], including PCC 
(Figure 2A) were selected using the Lasso regularization 
formula (Figure 2B). The regression model comprising the 
abovementioned 8 features showed good capability with 
acceptable representativeness (AUC =0.851, pseudo-R2 
=0.504; ROC curve presented in Figure 2C) for predicting 
CR to NACCRT. The prediction model of LRF and DF 
with features restricted by the Lasso formula (left panel of 
Figure 3) had medium capability but poor representativeness 
(AUC =0.773 and 0.721, pseudo-R2 =0.291 and 0.213, 
respectively; ROC curve presented in the right panel of 
Figure 3). Using K-fold cross validation by the glmnet 
package of R software, radiomics features having unreliable 
coefficients were first excluded (Figure S1A,B). The Cox 
regression model showed that minimal UH, GLRLM_
GLNU, GLZLM_LZE, and GLZLM_LZHGE strongly 
increased the hazard ratio of mortality by 4- to 6-folds, 
whereas sphericity of shape strongly reduced the hazard 
ratio of mortality by 6.6-folds. For PFS, 3 GLRLM family 
and 2 GLZLM family radiomics strongly predicted the 
hazard ratio of progression.

Combining clinical and radiomics features for enhancing 
prediction power and reliability

Individually, clinical and radiomics features had problems 
in terms of prediction power and reliability for predicting 
LRF and DF. We combined both clinical and radiomic 
features to develop a new prediction model. In the LRF 
prediction model that combined the clinical feature 
“complete response” and 3 radiomics features, the AUC 
was 0.804 (Figure 4A) and pseudo-R square was 0.339. 
Contrastingly, in the DF prediction model that combined 
clinical and radiomic features, the AUC and pseudo-R 
square values were 0.754 (Figure 4B) and 0.320, respectively. 
The formula of LRF and DF prediction models using a 
combination of clinical and radiomic features were detail 
in Table 5. Both the LRF and DF prediction models with 
combined clinical and radiomic features had stronger power 
and better reliability than those using each type of feature 

Table 2 Treatment, compliance, and outcome among patients with 
advanced thoracic esophageal cancer who underwent NACCRT 
and esophagectomy.

Characteristic Case, N (%)

Concomitant chemotherapy

Single platinum 34 (54.8)

Platinum-taxol 26 (41.9)

Others 2 (3.2)

Chemotherapy dose adjustment

No 41 (66.1)

Yes 21 (33.9)

Adjuvant chemotherapy

Yes 31 (50.0)

No 31 (50.0)

Treatment compliance

Complete 60 (96.8)

Incomplete CT 1 (1.6)

Incomplete CT and RT 1 (1.6)

Response

CR 24 (38.7)

PR 24 (38.7)

SD 8 (12.9)

PD 6 (9.7)

Excision status

R0 58 (93.5)

R1 2 (3.2)

R2 2 (3.2)

Pathology T stage

T0 24 (38.7)

Tis 1 (1.6)

T1 7 (11.3)

T2 14 (22.6)

T3 15 (24.2)

T4a 1 (1.6)

Pathology N stage

N0 49 (79.0)

N1 5 (8.1)

N2 6 (9.7)

N3 2 (3.2)

Data are presented as mean ± standard deviation for treatment 
duration and case number (percentage) for other variables; 
weekly platinum, patients underwent weekly cisplatin or weekly 
carboplatin treatment; NACCRT, neoadjuvant concomitant 
chemoradiation; CT, chemotherapy; RT, radiotherapy.
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Figure 1 Overall and progression-free survival. Curves depicting overall survival (A) and progression-free survival (B) in the study cohort. 
Subgroup survival curve for overall survival (C) and progression-free survival (D) in patients with and without a complete response, obtained 
using Kaplan-Meier analysis.

individually. Because of the limitation of censored numbers, 
Cox regression could only proceed with one variable in the 
overall prediction model in the present study. Therefore, 
we only tested the combination of one clinical feature and 
one radiomics feature in the prediction model of PFS. The 
combination of resection status and selected radiomics, any 
of the 5 radiomic predictors having significant correlation 
to hazard ratio of progression, mutually enhanced the 
expected hazard ratio value of progression. The strongest 
combination was resection status multiplied by GLRLM_
LRE, which resulted in an expected hazard ratio value of 
progression of 8.776 (95% CI: 1.959–39.320, P=0.005) and 
good model reliability, tested using the chi-square test of 
residuals and the omnibus test.

Discussion

The current esophageal cancer treatment guidelines 

recommend CT or PET/CT as the standard of response 
assessment (4). However, even after 4–6-week recovery 
intervals, residual tumors at the esophagus on contrast-
enhanced CT could be masked by submucosal swelling via 
visual interpretation (12). It is also difficult to differentiate 
residual lymph nodes at the pulmonary hilum with the 
bare human eye (17). Endoscopic ultrasound and biopsy 
can hardly detect submucosal residual tumors, which 
are suggested to be predictors of poor pathological  
outcomes (18). Post-NACCRT surveillance generally 
involves FDG-PET/CT; although FDG-PET/CT is good 
in differentiating residual lymph nodes, they tend to get 
obscured by treatment-induced inflammation (12). A good 
post-treatment surveillance method is yet to be developed.

Radiomics, known as the next generation technology 
of computer-aided diagnosis and detection systems, 
is more capable than answering yes-or-no questions 
in lesion detection. With the combination of texture 
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Table 3 Response and failure patterns and clinical features in the study cohort

Features Beta(x) SE P value Exp. (95% CI)

CR prediction model (logistic regression)

Clinical T stage −1.586 0.685 0.021* 0.205 (0.054–0.783)

Anemia −1.477 0.491 0.003* 0.228 (0.087–0.598)

Constant 5.810 2.257 0.010* –

Pseudo-R2 =0.345

LRF prediction model (logistic regression)

CR −1.349 0.708 0.057 0.259 (0.065–1.038)

Constant −0.496 0.339 0.143 –

Pseudo-R2 =0.277

DF prediction model (logistic regression)

cN stage 0.868 0.427 0.042* 2.381 (1.031–5.501)

pT stage 0.496 0.316 0.117 1.642 (0.884–3.052)

pN stage 0.723 0.520 0.164 2.061 (0.744–5.707)

Response 0.134 0.516 0.795 1.143 (0.416–3.140)

Constant −3.452 2.220 0.120 –

Pseudo-R2 =0.299

The expect value of the features was presented through a log risk ratio obtained using logistic regression, followed by the 95% confidence 
interval. The results of the goodness of fit test were presented as a pseudo-R square value obtained using the Nagelkerke method. *, star 
marked as statistical significance. Beta(x), coefficient of variate X; SE, standard error of coefficient, Exp., expected value; CI, confidence interval; 

Table 4 Survival prediction using clinical, radiomic, and combine features

Features Beta(x) SE P value Exp. (95% CI)

Significant predictors of OS in the logistic regression

Adj. CTx −1.024 0.422 0.015 0.359 (0.157–0.821)

Anemia 0.611 0.268 0.023 1.843 (1.089–3.118)

pN stage 0.605 0.191 0.002 1.831 (1.259–2.661)

UHmin 1.747 0.801 0.029 5.737 (1.195–27.549)

SHAPE_Sphericity −1.881 0.916 0.040 0.152 (0.025–0.917)

GLRLM_GLNU 1.930 0.825 0.019 6.888 (1.368–34.677)

GLZLM_LZE 1.465 0.734 0.046 4.327 (1.026–18.240)

GLZLM_LZHGE 1.454 0.735 0.048 4.281 (1.013–18.095)

PFS prediction model (logistic regression)

Anemia 0.669 0.219 0.002 1.953 (1.270–3.002)

pT stage 0.294 0.111 0.008 1.341 (1.078–1.669)

pN stage 0.468 0.182 0.010 1.597 (1.118–2.282)

Response −0.505 0.168 0.003 0.603 (0.434–0.839)

Resection status 0.865 0.348 0.013 2.376 (1.201–4.700)

GLRLM_SRE −1.585 0.786 0.044 0.205 (0.044–0.955)

GLRLM_LRE 1.688 0.817 0.039 5.410 (1.092–26.810)

GLRLM_RP −1.667 0.804 0.038 0.189 (0.039–0.914)

GLZLM_LZE 1.429 0.696 0.040 4.175 (1.067–16.340)

GLZLM_LZHGE 1.393 0.702 0.047 4.026 (1.018–15.924)

The expected value of the features was presented as the hazard ratio followed by the 95% confidence interval. The goodness of fit test is 
presented using the omnibus test. Beta(x), coefficient of variate X; SE, standard error of coefficient, Exp., expected value; CI, confidence interval.
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Figure 2 Prediction of complete response using radiomics features selected by Lasso regression. (A) Person correlation matrix of selected 
radiomic features presented as a coordinates plot with a trendline and correlation coefficient number; *, weak; **, moderate; ***, strong 
correlation. (B) Radiomic feature selection through Lasso regularization to reduce the interruption of variates with unreasonable coefficients. 
(C) Receiver-operator characteristic curve of the complete response prediction model and the operating point of the expected value with the 
maximum Youden index.
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Figure 3 Prediction of LRF and DF with radiomics. LRF, local regional failure; DF, distant failure. (A,C) Radiomic feature selection 
through Lasso regularization to reduce the interruption of variates with unreasonable coefficients; (B,D) power of the prediction model, 
presented with the receiver-operator characteristic curve and the operating point of the expected value with the maximum Youden index. (A,B) 
Locoregional failure; (C,D) distant failure.

extraction, artificial intelligence, and new algorithms that 
are able to reduce variates, radiomics can not only be 
applied in disease diagnosis but also used to extract more 
information for helping clinical decision making (19). A 
good example is the application of radiomics in treatment 
response evaluation after neoadjuvant treatment for 
nasopharyngeal cancer (NPC) and rectal cancer (20,21); 
with this technique, the surgeon has more information 
before performing the operation. Recent studies have also 
evaluated radiomics characteristics for directly predicting 
cancer prognosis, for instance in lung cancer, NPC, and 
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In 2016, van Rossum reviewed the evidence and potential 

future of applying radiomics in the field of esophageal 
cancer (22). By using pre-treatment contrast-enhanced 
CT, Hou et al.’s study suggested that radiomics could 
predict treatment response to definitive chemoradiation in 
inoperable esophageal cancer patients (23). However, Hou 
et al.’s study had different predictors to PD, SD, PR, and 
CR, indicating that they did not have a unified prediction 
model for treatment response. Jin et al.’ study used a 
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Table 5 Failure pattern prediction using a combination of clinical and radiomic features

Features Beta(x) SE P value Exp. (95% CI)

LRF prediction model (logistic regression)

Complete response −1.274 0.857 0.137 0.280 (0.052–1.499)

SHAPE_Sphericity −3.104 1.829 0.090 0.045 (0.001–1.619)

NGLDM_Busyness 4.017 1.702 0.018* 55.533 (1.977–1.560×10
3
)

GLZLM_LZLGE 2.840 2.264 0.210 17.110 (0.202–1.447×10
3
)

Constant −0.119 1.193 0.921 –

Pseudo-R2 =0.339

DF prediction model (logistic regression)

pN stage 0.954 0.475 0.045* 2.595 (1.022–6.590)

SHAPE_Sphericity −4.387 1.963 0.025* 0.012 (0.000–0.583)

GLRLM_LRE −1.378 3.341 0.680 0.252 (0.000–1.760×10
2
)

GLRLM_GLNU −1.063 2.124 0.617 0.345 (0.005–2.222×10
1
)

GLZLM_LZLGE 3.490 2.485 0.160 32.780 (0.252–4.271×10
3
)

GLZLM_ZP −4.957 3.122 0.112 0.007 (0.000–3.200)

Constant 4.405 2.874 0.125 –

Pseudo-R2 =0.320

The expect value of the features was presented through a log risk ratio obtained using logistic regression, followed by the 95% confidence 
interval. The results of the goodness of fit test were presented as a pseudo-R square value obtained using the Nagelkerke method. *, star 
marked as statistical significance. Beta(x), coefficient of variate X; SE, standard error of coefficient, Exp., expected value; CI, confidence 
interval.

Figure 4 Receiver-operator characteristic curve depicting the power of the clinical-radiomic combination model for prognosis prediction. 
Receiver-operator characteristic curves for (A) locoregional recurrence and (B) distance recurrence and the operating point of the expected 
value with the maximum Youden index.
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to predict chemoradiation treatment response (14) and 
integrated 63 features in one prediction model. However, 
many of these features showed strong linear correlation in 
the Person correlation matrix. More than 2 studies did not 
have good prediction power (AUC =0.6–0.7) and did not 
mention evidence of robustness and reliability. Larue et al.’s 
study focused on esophageal cancer patients who underwent 
NACCRT and directly predicted 3-year OS using a model 
based on radiomics features extracted from pre-treatment 
CT images (15). However, Larue et al.’s model reported an 
AUC of 0.61 in the validation dataset, and the risk group 
predicted by the model showed no significant correlation 
with pathological response, which is not consistent with the 
current clinical consensus.

According to our review of the literature, this is the 
first study in esophageal cancer research that attempted to 
establish a prediction model based on post-NACCRT CT 
images. With regards to prediction models of pCR and 
failure patterns, radiomics showed better capability and 
representativeness than that seen in previous studies based 
on pre-treatment CT images. LIFEx, a widely accepted 
freeware with literature support was used to extract 42 
histogram, textural and shape radiomics features. As the 
result (Figure 1C,D), significantly longer PFS and OS were 
observed in the pCR group than in the non-pCR group. 
Therefore, our high prediction power model showed in 
Figure 2 is useful for deciding between esophagectomy 
and definitive chemoradiation. Furthermore, in the high-
risk patient group, the failure pattern prediction model 
indicated that adjuvant treatment after surgery might have 
prevented local or distant recurrence.

A few clinical and radiomic predictors were common 
to the prediction models of DF pattern, PFS, and OS. 
Residual pathological lymph node significantly affected 
prognosis, as observed in this study and widely discussed 
in other studies (6). In the Cox regression model for 
predicting PFS and OS, radiomics features showed more 
power for predicting hazard ratios than clinical features. 
Moreover, both failure pattern and survival prediction 
models with combined clinical and radiomic predictors 
showed synergistically enhanced prediction powers. 
Interestingly, pathological response was a strong predictor 
of PFS but not OS. This may indicate that, in addition 
to residual tumors, other factors in the surrounding 
environment have an influence on patient survival; the 
adverse effects of chemoradiation as well as immune 
response may influence patient survival.

Interpreting the meaning of radiomics may reveal its role 

in the prediction model. The most important radiomics 
feature in all prediction models was the long-zone high 
gray-level emphasis (GLZLM_LZHGE), defined as the 
distribution of the long homogeneous zones with high grey-
levels, representing poor prognosis with a 4-fold increase in 
hazard ratios of progression and mortality. High sphericity 
was a negative predictor of LRF, DF, and mortality. Long 
homogeneous runs in an image (GLRLM_LRE) seem 
like spiculated extended structures that predict DF and 
progression. Non-uniformity of the grey-levels (GLRLM_
GLNU) is a strong positive predictor of DF and mortality.

The limitation of this study is that the number of 
patients was too small for separation into the training and 
validation datasets. Therefore, we were unable to prove 
the robustness of the prediction model. Furthermore, the 
retrospective and single-center nature of the study may have 
introduced selection bias. The established model is still 
in the preliminary stage. In the future, we aim to test our 
prediction model by validating the images from the public 
patient database. We would also improve the algorithm to 
enhance the accuracy of feature elimination and power of 
prediction.

In conclusion, we established an integrated model 
that combined clinical features and post-treatment CT 
radiomics features for predicting response and survival 
outcomes of esophageal cancer patients undergoing 
neoadjuvant chemoradiation. The integrated prediction 
model may aid clinicians in decision making regarding post-
operative adjuvant therapy for ESCC patients who have 
received neoadjuvant chemoradiation.
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Supplementary

Figure S1 Survival prediction using radiomic features selected by K-fold cross validation. (A) Predicting overall survival using radiomic 
features selected by K-fold cross validation; (B) predicting progression-free survival using radiomic features selected by K-fold cross 
validation.
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