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Background: Stereotactic body radiotherapy (SBRT) is an effective and non-invasive alternative for 
treatment of hepatocellular carcinoma (HCC). To date, a personalized model for predicting therapeutic 
response is lacking. Here we propose a radiomics-based machine learning (ML) strategy for local response 
(LR) prediction. 
Methods: One hundred seventy-two HCC patients in our hospital were retrospectively analyzed between 
January 2007 and December 2016. For radiomic analysis, patients who underwent locoregional ablative 
treatments in the past were excluded. Enrolled patients had undergone dynamic CT before radiotherapy and 
follow-up CT to evaluate responses. 
Results: The 1-year local control was 85.4% in our patient cohort. After excluding unsuitable tumors for 
imaging analysis, 41 tumors remained. The Support Vector Machine (SVM) classifier, based on computed 
tomography (CT) scans in the A phase processed by equal probability (Ep) quantization with 8 gray levels, 
showed the highest mean F1 score (0.7995) for favorable LR within 1 year (W1R), at the end of follow-up 
(EndR), and condition of in-field failure-free (IFFF). The area under the curve (AUC) for this model was 
92.1%, 96.3%, and 99.2% for W1R, EndR, and IFFF, respectively. 
Discussion: SBRT has high 1-year local control and our study sets the basis for constructing predictive 
models for HCC patients receiving SBRT.
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Introduction

In recent decades, stereotactic body radiotherapy (SBRT) 
has emerged as an attractive option for tumor ablation, 
including in hepatocellular carcinoma (HCC) (1,2). 
However, SBRT is still usually reserved for salvage 
therapy in patients who are unsuitable or refractory to 
other locoregional therapies, probably due to the lack of 
randomized controlled trials and reliable predictors for 
evaluating therapeutic efficacy.

Radiomics is a burgeoning research field that focuses on 
the extraction of large-scale image data and their analysis 
via high-throughput mining of quantitative imaging 
features (3-6). The field has gradually gained importance 
in oncology for its value in diagnostic, prognostic, and 
predictive accuracy (7). Using medical imaging data for 
diagnosis and prognostication stems from the notion 
that tumors of a specific genotype display heterogeneous 
phenotypes and anatomic variations (8). The application 
of radiomics involves the use of personalized image data 
that can be incorporated within the clinical decision-
support system, enabling the construction of models that 
predict therapeutic outcomes (9). As sophisticated tools for 
image analysis generate large amounts of data, machine 
learning (ML) has emerged as a powerful methodology 
for constructing precise predictive models, thus improving 
predictive performance (10).

In HCC, radiomics is particularly valuable because this 
cancer is most often diagnosed via dynamic three-phase 
computed tomography (CT) scans, thus potentiating the 
use of image features to predict therapeutic responses. 
To the best of our knowledge, there have been no studies 
using CT-based radiomics to predict the effect of SBRT on 
HCC. Therefore, we aimed to propose a radiomics-based 
ML strategy for the prediction of local response (LR) after 
SBRT. We present the following article in accordance with 
the PRISMA reporting checklist (available at https://dx.doi.
org/10.21037/tro-21-8).

Methods 

Patients for clinical evaluation and radiomic analysis

Clinical data of patients with HCC who received SBRT at 
our institution between 2007 and 2016 were retrospectively 
reviewed. For radiomic analysis, patients who underwent 
locoregional ablative treatments in the past were excluded. 
Enrolled patients had undergone dynamic CT before 
radiotherapy and follow-up CT to evaluate responses. 

Follow-up time was obtained from the date of treatment to 
the last outpatient visit, with a median follow-up time of 26.6 
months. Because of the retrospective nature of this study, 
we obtained approval from our Institutional Review Board 
for a waiver of informed consent (IRB number: 1-107-05-
016, analysis of treatment outcome of patients with hepatic 
tumors). This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). 

SBRT and clinical endpoints

All patients were treated with SBRT using the Cyberknife 
image-guided radiosurgery system (Accuray, Sunnyvale, CA) 
as described previously (11-13). The modified Response 
Evaluation Criteria in Solid Tumors (mRECIST) system 
was used to assess therapeutic responses (14). Tumors 
achieving complete and partial responses, as per mRECIST 
criteria, were considered as having local control (LC). The 
LC that occurred during the first year after treatment was 
considered as a 1-year LC or within 1-year response (W1R) 
in our study. End response was defined as a complete/
partial response achieved by the end of the follow-up period 
(EndR). Tumors within the radiotherapy field that did not 
show increase in size at the end of the follow-up period 
were considered to have attained in-field failure-free (IFFF). 
EndR and IFFF were used to evaluate two different aspects 
of clinical response, with the former aiming to identify the 
final responders and the latter to address progressive events.

Extraction of radiomic features

Complete dynamic, multiphasic CT scans with contrast 
were retrieved individually in the Digital Imaging and 
Communications in Medicine (DICOM) format. All 
scans were performed with a tube voltage of 120 kVp and 
a pitch of 0.984. The images were then imported to the 
Computational Environment for Radiotherapy Research 
(CERR) platform based on MATLAB (MathWorks, 
Naticks, MA, 2017b) for radiation planning analysis. For 
each contrast-phase CT scan [arterial (A), portovenous 
(E), and delayed (D)], tumor regions were contoured by 
two experienced radiation oncologists (WYH and CHL) 
and modified by another experienced radiologist (WCC) 
to minimize delineation uncertainty (Figure 1). Each slice 
was resized to 128×128 voxels using bicubic interpolation 
(0.8301×0.8301×3 mm3 for each voxel). The intensity 
distribution was standardized by histogram equalization. To 
reduce image noise and increase the sensitivity of radiomic 
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Figure 1 Tumor contouring and radiomic feature analysis.

analyses, a bin width of 25 Hounsfield units was used for 
discretization prior to global texture analysis (15). Radiomic 
features were subsequently extracted and divided into  
4 categories: first-order statistics, shape, global, and texture. 
For matrix-based texture features, different combinations 
of quantization [equal probability (Ep) and uniform 
quantization (U)] of gray levels (8, 16, 32, and 64) were 
performed (16). Incorporating CT scans from each phase, 
the training datasets combined features from different CT 
phases, quantization methods, and gray levels, and were 
termed AEp (8, 16, 32, and 64), AU (8, 16, 32, and 64), EEp 
(8, 16, 32, and 64), EU (8, 16, 32, and 64), DEp (8, 16, 32, 
and 64), and DU (8, 16, 32, and 64). Altogether, there were 
41 tumors identified and 46 radiomic features prior further 
processing. 

Machine learning characterization

Data augmentation and adjustment of imbalanced data
Oversampling with bootstrapping was used to expand our 
data population to over 5,000 samples. Synthetic Minority 
Oversampling Technique (SMOTE) was then used to adjust 
the imbalanced data. For the minority class, SMOTE is 
advantageous for making the decision region more general 
and improving the classifier performance (17). 

All 41 identified tumors were used for radiomic analyses. 
78% (32/41) of the initial samples were extracted randomly 
and oversampled for training. The remaining 22% (9/41) 
was oversampled in a similar way for subsequent testing. 
The oversampled data set consisted of 6,502 samples, with 
5,201 training (80%) and 1,301 testing (20%) samples. Both 

of the training and testing cohorts were then balanced by 
SMOTE for positive and negative LRs.

Feature selection
The radiomic features extracted from the contoured 
region of each tumor were averaged and subsequently 
normalized across the cohort. To select the radiomic 
features, a regression method used to improve prediction 
accuracy by incorporating penalized estimation functions 
known as Least Absolute Shrinkage and Selection Operator 
(LASSO) was used (18). LASSO started feature selection by 
tuning a parameter (λ). During this process, most covariate 
coefficients were shrunk to zero, and the remaining 
features with non-zero coefficients were selected. For each 
training set, which included the training features with the 
corresponding training responses (i.e., W1R, ENdR, and 
IFFF), the features selected by LASSO were used to build 
the classifiers. 

Support vector machine (SVM) and logistic regression 
(LRG) classifiers
With high prediction accuracy in various clinical settings 
(19,20), SVM and LRG were adopted in our study to 
construct classifiers for LR. The SVM classifier deals with 
non-linear interaction and was used to discriminate whether 
a LR was achieved or not (21). The penalty parameter C 
was set to 1 to determine the tradeoff between fitting error 
and model complexity. Radial basis function was used as the 
kernel function in our SVM classifier. The LRG was used 
to predict the likelihood of positive LR, and a probability 
equal to 0.5 was set as the minimum threshold to determine 

Contouring Feature analyses
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the predicted class. 

Evaluation of model performance 
The model performance of SVM and LRG classifiers were 
evaluated for accuracy, sensitivity, and specificity after 10-
fold cross-validation in the training cohorts. F1 score was 
used to evaluate the model robustness in the testing cohorts. 
The classifier with the highest mean F1 scores for the three 
LRs was chosen as the candidate model. Receiver operating 
characteristic (ROC) curves were then used to assess the 
output quality with area under curve (AUC) and 5-fold 
cross-validation. All the functions used in our analyses were 
based on Python. 

Statistical analysis

For the evaluation of radiomic data processing methods, the 
50th percentile of accuracy was used as the threshold. The 
numbers of processing methods with an accuracy above the 
50th percentile were identified and used for comparison of 
parameter robustness. Kaplan-Meier (KM) analysis with 
log-rank test was used to evaluate the effect of therapeutic 
response on survival. P value <0.05 was considered 
significant. All statistical analyses and survival calculation 
were performed in R. 

Results

In-patient demographics 

Overall, 172 patients receiving SBRT for HCC were 

retrospectively reviewed in our institution. Patient 
information and therapeutic outcomes are summarized in 
Table 1. The median tumor size was 5.4 cm, ranging from 
0.8 cm to as large as 20.1 cm. There were 76.7% CP class 
A patients and 23.3% CP class B patients in the overall 
cohort. In this cohort, 36.6% patients presented with 
portal vein thrombosis (PVT). Patients in the radiomic 
cohort showed similar characteristics with those in the 
overall cohort. The median tumor size was 5 cm, with the 
largest treated tumor being 13 cm. There were 84.8% CP 
class A patients and 15.2% CP class B patients. Out of the  
33 patients, 21.2 % showed PVT. The radiation dose ranges 
were also similar between the two cohorts (25–65 Gy in 4– 
6 fractions in the overall cohort; 32–60 Gy in 4–6 fractions 
in the radiomic cohort).

Construction and evaluation of the predictive models

Accounting for the three types of LR, a total of 72 datasets 
were analyzed. Using SVM, classifiers with the highest 
accuracy (98.7%) were built from features processed in 
A phase with Ep quantization and 32 gray levels (AEp32) 
for W1R (Figure 2A). For EndR, features processed in E 
phase with Ep quantization and 8 gray levels (EEp8) had 
the highest accuracy [99.3%, 95% confidence interval 
(CI): 91.2–99.5%]; and for IFFFR, features processed in 
A phase with Ep quantization and 16 gray levels (AEp16) 
corresponded to the highest accuracy (99.7%, 95% CI: 
99.5–99.8%). When we looked at sensitivity and specificity, 
CT scans in the A and D phases generally presented 

Table 1 Patient demographics for overall and radiomic cohorts

Baseline features Overall cohort Radiomic cohort

Patient number 172 33

Tumor size (median) 5.4 cm (0.8–20.1 cm) 5 cm (1.8–13 cm)

Age (SD) 63±13 68.5±12

Sex Male (76.7%), Female (23.3%) Male (63.6%), Female (36.4%)

CP class A (76.7%), B (23.3 %) A (84.8%), B (15.2%)

ECOG 0 (47.7%), 1 (38.4%), 2 (13.9%) 0 (42.4%), 1 (39.3%), 2 (18.3%)

PVT 36.6% 21.2%

Dose 25–65 Gy/4–6 fx 32–60 Gy/4–6 fx

Median F/u (month) 32.8 26.6

SD, standard deviation; CP class, Child-Pugh class; ECOG, Eastern Cooperative Oncology Group; PVT, portal vein thrombosis; Gy, Gray; 
fx, fractions; F/u, follow-up.
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with higher sensitivity and specificity than in the E phase 
(Figure S1A,S1B). Interestingly, AEp8 exhibited the highest 
sensitivity (98.2%, 95% CI: 97.9–99.0%) for W1R and the 
highest specificity (76.5%, 95% CI: 72.1–77.3%) for EndR. 
However, the specificity was generally low for IFFF in all 
datasets. 

When examining the processing sources and methods, 
we identified roughly similar distribution of three phases for 
the three LRs in the 50th percentile of accuracy (Figure 2B).  
Moreover, classifiers with higher accuracy were mostly 
constructed by features with 8, 16, or 32 gray levels, not 
64 gray levels. For the quantization methods, features 
processed with Ep quantization corresponded to higher 
accuracy for W1R (n=9), compared with those processed 

with U quantization (n=3). In the testing cohort, dataset 
processed in the A phase with Ep quantization and 8 gray 
levels (AEp8) exhibited the highest mean F1 scores for the 
three LRs (0.7995) (Figure 2C). In separate conditions, 
Ep quantization and 8 gray levels in the A phase had the 
highest cumulative F1 scores compared to other parameters 
(Figure 2D). Based on the above findings, AEp8 was chosen 
as the candidate model. ROC curve was plotted, and we 
observed the AUC for IFFF was the highest (AUC =99.2%, 
95% CI: 99.0–93.2%), followed by EndR (AUC =96.3%, 
95% CI: 96.0–96.9%) and W1R in AEp8 (AUC =92.1%, 
95% CI: 91.8–93.4%) (Figure 2E). For AEp8, the optimal λ 
for LASSO was 0.00045 and the most potential feature for 
W1R was Long Run High Gray-Level Emphasis (LRHGE, 

Figure 2 Model performance of Support Vector Machine (SVM) classifiers for different datasets. (A) Model accuracy in training cohort. (B) 
50th percentile of accuracy for radiomic parameters. (C) F1 score in testing cohort. (D) Cumulative F1 score across 72 datasets for different 
phases, quantization methods and gray levels (E) Receiver operating characteristic (ROC) curve for AEp8. A, arterial phase; D, delayed 
phase; E, porto-venous phase; Ep, equal probability quantization; U, uniform quantization; W1R, within 1-year response; EndR, end 
response; IFFF, in-field failure free.
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coefficient =−5.135). For EndR and IFFF, Long Zone High 
Gray-Level Emphasis (LZLGE, λ =0.00039, coefficient 
=7.207) and Long Run Low Gray-Level Emphasis (LRLGE, 
λ =0.00035, coefficient =−3.587) were the most predictive 
features, respectively.

For LRG, the classifiers with the highest accuracy for 
W1R, EndR, and IFFF were built from DU32 (98.2%, 95% 
CI: 97.6–98.5%), DEp64 (98.1%, 95% CI: 97.6–99.0%) 
and EU64 (99.5%, 95% CI: 99.1–99.7%) (Figure 3A). We 
found no datasets presented with both high sensitivity 
and specificity for the three LRs (Figure S1C,S1D). Like 
SVM, more E phases were noted in the 50th percentile of 
accuracy for EndR (n=7); and the distribution of accuracy 

for Ep and U quantization methods demonstrated greater 
discrepancy, as compared to SVM (Figure 3B). In the testing 
cohort, AEp64 was found to outperform other datasets in 
terms of LR prediction (mean F1 score for the three LRs 
=0.7783), even though the Ep quantization or 8 gray levels 
had higher cumulative F1 scores (Figure 3C,D). The ROC 
curve for AEp64 revealed that IFFF had the highest AUC 
(99.2%, 95% CI: 98.7–99.6%), whereas EndR exhibited the 
lowest AUC (86.1%, 95% CI: 85.4–88.2%) (Figure 3E). In 
AEp64, the most predictive feature were Gray-Level Non-
Uniformity (GLN, λ =0.00046, coefficient =12.566), Long 
Gray-Level Run Emphasis (LGRE, λ =0.000395, coefficient 
=7.019), and LRHGE (λ =0.00036, coefficient =−7.294) for 

Figure 3 Model performance of logistic regression (LRG) classifiers for different datasets. (A) Model accuracy in training cohort. (B) 50th 
percentile of accuracy for radiomic parameters. (C) F1 score in testing cohort. (D) Cumulative F1 score across 72 datasets for different 
phases, quantization methods and gray levels (E) Receiver operating characteristic (ROC) curve for AEp64. A, arterial phase; D, delayed 
phase; E, porto-venous phase; Ep, equal probability quantization; U, uniform quantization; W1R, within 1-year response; EndR, end 
response; IFFF, in-field failure free.
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W1R, EndR, and IFFF, respectively. 

Association of W1R with 1-year OS

Patients with W1R had significantly higher survival 
(P<0.001) (Figure 4). After excluding patients with missing 
data for survival evaluation, the remaining cohort comprised 
of 156 samples. The patients with W1R had a median 
survival of 27.4 months, compared to 8 months in patients 
without W1R. This result suggested that achieving W1R 
was associated with better survival probability. 

Discussion

Despite great therapeutic outcomes and advances in 
radiation techniques, the treatment of HCC using SBRT 
remains challenging. The benefit of SBRT is stronger for 
CP class A patients, who can receive higher radiation doses 
and more aggressive fractionation schedules with lower 
toxicity (1,22-26), than for CP class B patients (23,27). 
Moreover, several studies also reported a clear survival 
benefit in CP class A compared to CP class B (23,25,27,28). 
Therefore, the balance of benefits and risks should be 
carefully evaluated. In our study, patients undergoing SBRT 
were mostly in the CP class A (76.7%, Table 1). However, 
there were still 23.3% CP class B patients. The latter had 
poorer liver function and thus the prescription of a higher 
dose was limited. Additionally, as high as 40.7% patients 

with W1R had PVT, which further reduced the chance 
of survival benefit (29,30). Nonetheless, SBRT is still 
considered to be of therapeutic benefit for patients with 
PVT (31). In the evaluable 53 cases of PVT, EndR was 
achieved in 42 cases (79.2%), which represented a higher 
percentage than in patients who received Sorafenib alone 
(7% based on mRECIST) in a comparable study (32).  
After a median follow-up of 32.8 months, the 1-year LC 
in the overall cohort was 85.4%. This relatively lower LC 
could be explained by various definitions of LC across 
studies (1,22-26). In our analysis, only those having at 
least a partial response were considered as achieving LC. 
In a similar cohort in Taiwan, the reported 1-year in-field 
control was 85.3% (33). Even though this finding was quite 
similar to our result, their LC was defined as the absence of 
new lesion or increase in tumor size, which was less strict 
compared to our definition. Therefore, our result might be 
better and still comparable to the literature.

Scorsetti et al. used a similar definition of LC to that 
in our study and found that higher LC contributed to 
higher OS in HCC patients after SBRT (28). In support 
of this, patients with W1R were shown in our study to 
have significantly longer survival than those without 
W1R (Figure 3). Therefore, achieving LC seems to be of 
great clinical significance. In several previous reports, LC 
appears to be determined by tumor size (28,34). However, 
as aggressive tumors tend to exhibit increased intratumoral 
heterogeneity, the sole use of tumor size in predicting LR 
appears insufficient and inappropriate (35-37). In addition 
to histologic and genomic study, radiomics is another 
non-invasive approach that enables a spatiotemporal and 
quantitative measurement of tumoral heterogeneity (38). 
In the current study, 26 out of 46 features were based 
on the matrix manipulation, which were related to the 
quantitative description of size and intensity variations of 
the connected sub-regions. The most predictive features 
selected by LASSO for the three LRs were LRHGE, 
LZLGE, and LRLGE, respectively. These metrics 
quantify the heterogeneity in size and intensity within 
tumor volumes in CT images, which was in agreement 
with a previous study describing the significance of Gray-
Level Uniformity for prognosis in HCC patients receiving 
radiotherapy (39). These features are related to the spatial 
correlation with emphasis on gray levels, possibly capturing 
the intratumoral heterogeneity. However, the value of 
these features is attributed to the type of CT scans and the 
preprocessing methods. In our study, the features extracted 
from the A phase had higher mean F1 scores in either SVC 

Figure 4 Kaplan-Meier plot for patients with or without 1-year 
response (W1R).
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or LRG classifiers. This finding is in line with the fact 
that the development of HCC tumor frequently involves 
neovascularization of unpaired arteries without associated 
portal tracts (40,41) and consequently that contrast 
enhancement in the A phase with early wash-out in the E 
phase is a widely accepted diagnostic criteria. Therefore, 
features in the A phase are believed to be much more 
informative, potentiating the prediction for LR. Unlike in 
other studies (42,43), we used two quantization methods 
and identified that Ep quantization with 8 and 64 gray levels 
performed better on the A phase CT scans. Ep quantization 
method attempts to define a decision threshold in the tumor 
volume while maintaining the same number of voxels after 
quantization (16). Ep quantization and 8 gray levels showed 
higher cumulative F1 scores individually in the A phase 
in the SVM and LRG classifiers (Figure 2D). The SVM 
classifier based on AEp8 also exhibited the highest mean F1 
score for the three LRs, suggesting the feasibility of these 
parameters for LR prediction. 

Even though we hereby proposed a radiomics-based 
ML strategy for SBRT in HCC, some limitations of 
current predictive models still need to be addressed prior 
to clinical application. First, the sample size was small 
in the initial dataset. Although we used an oversampling 
technique, the augmented data retained the intrinsic 
characteristics of the small number of original tumors, 
restricting its general utility. An alternative is to use image 
augmentation, generating large number of tumor images 
for training. However, this strategy also suffers from the 
similar limitation. Second, the tumors were not segmented 
automatically, thus the uncertainty of the peripheral 
regions might be increased. Future development of tumor 
segmentation out of normal liver could help refine this 
procedure. Furthermore, we did not adopt image filtering 
such as Laplacian or Gaussian filters, which could have 
enhanced the reproducibility of feature extraction. Finally, 
since low specificity was consistently observed for SVM and 
LRG, IFFF seemed poorly defined and required further 
elucidation. Once more patients are included with clearly 
defined target response, we believe that our model will 
exhibit some improved performance in the future.

Conclusions

In conclusion, this is the first study to propose a radiomics-
based predictive model for SBRT efficacy in patients 
with HCC. The findings warrant further studies in 
larger populations to confirm the feasibility of using our 

radiomics-based model in the clinic.
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Figure S1 Sensitivity and specificity of support vector machine (SVM) classifiers and logistic regression (LRG) classifiers. (A) Sensitivity of 
SVM classifiers. (B) Specificity of SVM classifiers. (C) Sensitivity of LRG classifiers. (D) Specificity of LRG classifiers.
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