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Background: RTOG 0933 reported significant benefit in memory preservation and quality of life as 
compared to historical controls in using hippocampal-avoidance whole brain radiation therapy (HA-WBRT) 
in the treatment of multiple brain metastases. With the publication of the NRG CC001 randomised trial 
showing better preservation of cognitive function and patient-reported symptoms with no difference in 
intracranial progression or overall survival, HA-WBRT with memantine is now established as a new standard 
of care for treatment of multiple brain metastases. However, the planning aspect is significantly more labour-
intensive than traditional WBRT. To streamline workflow, we evaluated MRI-atlas based auto-contouring 
of the hippocampus generated in Elements Treatment Planning System (TPS) compared with manual 
contouring by three radiation oncologists utilizing the RTOG 0933 Hippocampal Atlas and contours done 
by a neuroradiologist.
Methods: Ten patient datasets were contoured by three radiation oncologists following the RTOG atlas 
and inter-clinician conformality was assessed using the Dice co-efficient for overlap and Hausdorff maximal 
and average distances for variability. Auto-contours were generated for the same 10 patient datasets in 
Elements TPS and compared against all radiation oncologists’ contours. The RTOG-based clinician and 
MRI-atlas based Elements auto-contours were then compared to those of a neuroradiologist’s.
Results: The manual contours by the radiation oncologists had reasonable conformality with each other 
with an average Dice co-efficient of 0.766 for both the left and right hippocampi. Hausdorff maximum 
distance was 4.8 mm for the left hippocampus and 5.2 mm for the right hippocampus. When comparing 
Elements auto-contours with clinician contours, there was less spatial overlap with a lower average Dice co-
efficient of 0.537 for the left hippocampus and 0.574 for the right. Average maximum Hausdorff distance 
was almost double that between clinicians at 9.016 mm for the left and 9.359 mm for the right hippocampus. 
When compared with neuroradiologist’s contours, clinician contours performed better than Elements auto-
contours numerically with an average DICE co-efficient of 0.655 vs. 0.598 on the left hippocampus and 
0.671 vs. 0.632 on the right hippocampus respectively but these differences were not found to be statistically 
significant. 
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Introduction

It is estimated that 30% of all cancer patients will develop 
brain metastases with the rate of this likely to continue 
to increase with the ongoing improvements in systemic 
treatments in the palliative setting (1). Recent randomized 
evidence has now shown the treatment of multiple brain 
metastases to allow for better quality of life and memory 
outcomes when patients are given hippocampal-avoidance 
whole brain radiotherapy (HA-WBRT) with memantine 
as opposed to WBRT with memantine via simple opposed 
lateral photons (2,3). However, the workflow for this 
new standard is much more time-consuming, requiring 
inverse planning often delivered with arc therapy, fusion 
of a diagnostic or simulation MRI, and contouring of 
additional at-risk structures including the hippocampi. 
Accurate delineation of these organs-at-risk (OARs) is 
essential, especially of the hippocampi as these are the main 
avoidance areas for memory preservation. This is a time-
consuming task requiring clinician expertise. Thus auto-
contouring methods have been trialed with the aim to 
improve efficiency of workflow and reduce resources (4). 

Auto-contouring algorithms are divided into two 
methods for OAR delineation – atlas based versus deep-
learning. Most commercial radiation therapy software 
utilizes an atlas-based method in which the patient images 
are aligned and compared to the template images within 
a library of expert contoured OARs, or atlas (5,6). The 
selected template contours are then deformed and generated 
to match the anatomical structure of the simulated patient. 
Variation as to the quality of auto-contours will depend 
on the number and quality of templates in the atlas, the 
number of atlases used for auto-contouring, the selection 
of the most appropriate atlas, the image-registration 

techniques, the deformation accuracy, and contour post-
processing (6-12). 

This study was to evaluate the accuracy and potential 
clinical utility of hippocampal contours generated via 
the atlas-based Elements TPS versus clinician manual 
contours and how these compared to the contours of a 
neuroradiologist for HA-WBRT. We present the following 
article in accordance with the STROBE reporting checklist 
(available at https://dx.doi.org/10.21037/tro-21-15).

Methods

Ten consecutive patient datasets in which the whole brain 
was CT scanned with IV contrast and same-day MRI fusion 
were identified. The patients were deidentified and the 
hippocampi were contoured by three radiation oncologists 
following the RTOG atlas (13). A neuroradiologist also 
contoured the hippocampi on the same datasets. This 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013) and reviewed and approved 
by the Sydney Local Health District – Royal Prince Alfred 
Ethics Review Committee (reference: X20-0304 & 2020/
ETH01446). Informed consent was not required as no 
patient information was attached to the MRI nor was any 
patient contact or information otherwise required for the 
purposes of this study.

All manual contouring was performed in Eclipse™ v15.6 
(Varian Medical Systems, Palo Alto, CA) on CT/MRI fused 
data sets. The RTOG atlas included in the RTOG 0933 
trial was used to assist in manual contouring. Automatic 
contouring was performed in the Elements V1.5 (Brainlab 
AG, Feldkirchen, Germany) treatment planning software in 
its ‘Anatomical Contouring’ workspace. 

Conclusions: The current results show reasonable conformality of clinician manual contouring using 
the RTOG Atlas. Differences in clinician contours when compared with neuroradiologist contours may be 
due to differences in RTOG-atlas guidelines adhered to by clinicians compared to a more anatomy-based 
contouring by the neuroradiologist. Whilst Elements TPS could be utilized as a starting point, contours will 
require modification by clinicians to conform to the RTOG atlas. Future study into other auto-contouring 
systems and contouring by radiation therapists after training will be undertaken.

Keywords: Radiotherapy; hippocampal avoidance; atlas-based contouring; organs at risk; auto contouring

Received: 01 July 2021; Accepted: 19 August 2021; Published: 30 December 2021.

doi: 10.21037/tro-21-15

View this article at: https://dx.doi.org/10.21037/tro-21-15



Therapeutic Radiology and Oncology, 2021 Page 3 of 8

© Therapeutic Radiology and Oncology. All rights reserved. Ther Radiol Oncol 2021;5:19 | https://dx.doi.org/10.21037/tro-21-15

Statistical analysis

The resultant manual and automatic contours were 
compared by using a similarity coefficient metric (Dice 
similarity coefficient) and surface distance metrics 
(maximum and mean Hausdorff distance) in the Velocity 
V4.1 (Varian, Palo Alto, CA, USA) software.

Inter-clinician conformality was assessed using the Dice 
co-efficient for overlap and Hausdorff maximal and mean 
distances for variability. Auto-contours were generated 
for the same 10 patient datasets in Elements TPS and 
compared against a random oncologist contour using 
the same statistical methods. The RTOG-based clinician 
and MRI-atlas based Elements auto-contours were then 
compared to those of a neuroradiologist’s. The statistical 
significance between the intercomparisons was assessed 
using the Student’s t-test. 

Results

The manual contours by the radiation oncologists had 
reasonable conformality with each other with an average 
Dice co-efficient of 0.766 for both the left and right 
hippocampi (Figure 1). Hausdorff maximum distance was 
4.8 mm for the left hippocampus and 5.2 mm for the right 

hippocampus (Table 1).
When comparing Elements auto-contours with clinician 

contours, there was less spatial overlap with a lower average 
Dice co-efficient of 0.523 for the left hippocampus and 
0.560 for the right (Figure 2). Average maximum Hausdorff 
distance was almost double that between clinicians at  
9.213 mm for the left and 9.855 mm for the right 
hippocampus (Table 2).

When compared with neuroradiologist’s contours, 
clinician contours had better Dice co-efficient and lower 
average Hausdorff distance while elements contours had 
lower Hausdorff maximal distances although none of 
these differences were found to be significant (Tables 3,4,  
Figures 3,4). 

Discussion

Since the publication of RTOG 0933, the potential for 
hippocampal-avoidance in neurocognitive preservation for 
whole-brain treatment was established (2). This potential 
was of great importance as neurocognitive toxicity has been 
a major contributor in the diminishing use of traditional 
WBRT for the treatment of multiple brain metastases. The 
Phase III NRG CC001 randomised trial results now have 
confirmed HA-WBRT with memantine to be superior to 
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C

Figure 1 Manual contours by radiation oncologists on axial (A), sagittal (B), and coronal (C) fused MRI.
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Table 1 Dice co-efficient and Hausdorff distances comparing radiation oncologists’ (RO) contours

Left hippocampus Right hippocampus

Dice co-efficient
Hausdorff

Dice co-efficient
Hausdorff

Max (mm) Mean (mm) Max (mm) Mean (mm)

RO1 vs. RO2 0.719 5.679 0.867 0.731 6.088 0.843

RO1 vs. RO3 0.814 3.157 0.541 0.810 3.190 0.534

RO2 vs. RO3 0.764 5.436 0.749 0.756 6.227 0.785

Average 0.766 4.757 0.719 0.766 5.168 0.721

A B

C

Figure 2 Manual radiation oncologists’ and elements contours (cyan colour) on axial (A), sagittal (B), and coronAL (C) fused MRI.

Table 2 Dice co-efficient and Hausdorff distances of radiation oncologists’ contours as compared to elements auto-contours

Left hippocampus Right hippocampus

Dice co-efficient
Hausdorff

Dice co-efficient
Hausdorff

Max (mm) Mean (mm) Max (mm) Mean (mm)

RO1 vs. elements 0.490 9.133 1.771 0.530 9.934 1.585

RO2 vs. elements 0.579 9.298 1.501 0.620 8.347 1.300

RO3 vs. elements 0.543 8.615 1.570 0.573 9.796 1.361

Average 0.537 9.016 1.613 0.574 9.359 1.416
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WBRT in diffuse cognitive parameters as well as quality of 
life with no difference in overall or intracranial progression 
free survival (3). However, workflow for HA-WBRT is 
significantly more complicated, requiring recent MRI brain 
acquisition and fusion, OAR contouring, and complex 

planning. 
Contouring of the hippocampi can be challenging and 

a RTOG contouring atlas was published to aid in their 
delineation (13). The first portion of this study assessed 
the conformality of clinician hippocampal contours using 

Table 3 Dice co-efficient and Hausdorff distances of neuroradiologist’s contours as compared to radiation oncologists’ contours

Left hippocampus Right hippocampus

Dice co-efficient
Hausdorff

Dice co-efficient
Hausdorff

Max (mm) Mean (mm) Max (mm) Mean (mm)

Radiologist vs. RO1 0.634 8.172 1.217 0.647 7.432 1.121

Radiologist vs. RO2 0.667 8.620 1.161 0.698 8.056 1.009

Radiologist vs. RO3 0.664 7.913 1.103 0.668 7.169 1.045

Average 0.655 8.235 1.160 0.671 7.552 1.058

Table 4 Dice co-efficient and Hausdorff distances of neuroradiologist’s contours as compared to elements auto-contours

Left hippocampus Right hippocampus

Dice co-efficient 
Hausdorff

Dice co-efficient
Hausdorff

Max (mm) Mean (mm) Max (mm) Mean (mm)

Radiologist vs. elements 0.598 7.078 1.268 0.632 6.026 1.134

A B

C

Figure 3 Manual radiation oncologists’ and neuroradiologist’s contours (red colour) on axial (A), sagittal (B), and coronal (C) fused MRI.
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the RTOG atlas. An average Dice co-efficient of 0.766 and 
average Hausdorff distance of less than 1mm confirmed that 
reasonable conformality can be achieve using this atlas. On 
visual inspection of the manual clinician contours, the main 
point of difference was the superior or inferior slice of the 
contours with no significant differences at the body of the 
hippocampi. This compares favourably to the central review 
of OARs on NRG CC001, where only 65.5% of contours 
were per protocol (3). 

With reasonable conformality confirmed between 
clinician contours, we then compared these to the atlas-
based auto-contours generated by Elements TPS, a MRI-
atlas based system that is commonly used in radiation 
oncology departments that deliver Linac-based cranial 
radiosurgery treatment. The comparison saw a much lower 
Dice co-efficient and almost doubling of the Hausdorff 
maximal distances to 9.0 mm for the left and 9.4 mm 
for the right hippocampus, denoting poor conformality 
between manual and auto-contours. There have been 
limited studies assessing manual versus auto-contouring of 
the hippocampi. One recent study utilized NeuroQuant 
software, a fully-automated software originally designed for 
the quantification of brain atrophy in Alzheimer Disease, 
to contour the hippocampi of 100 patients. These contours 
were reviewed by a sole radiation oncologist with no manual 
intervention required in 99 of these cases (14), suggesting 

that this software may perform better than Elements for 
hippocampi contouring. In addition, deep-learning auto-
contouring has shown promise in other anatomical areas, 
especially in the head and neck region (15-22). Further 
improvements in computing power and neural network 
training may see its more widespread use in the future.

A possible reason for the differences in contours may 
be partly explained by the third comparison, in which the 
clinician and MRI-atlas software contours were compared 
with those done by a neuroradiologist on the same 10 
patient datasets. The neuroradiologist had no prior appraisal 
of the RTOG atlas and contours were anatomy based 
using the MRI sequences. Although there were numerical 
improvements of the dice co-efficients and average 
Hausdorff measurements between radiation oncologist 
contours with the neuroradiologist in comparison to 
elements with radiologist contours, there were no statistical 
differences in any of the conformality indices. This may 
indicate that the Elements atlas was built using anatomical 
contours which differ from the RTOG atlas. 

Conclusions

The current results show reasonable conformality of 
clinician manual contouring using the RTOG Atlas and 
validate its use in the clinical setting. Differences in clinician 
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Figure 4 Elements (cyan colour) and neuroradiologist’s contours (red) on axial (A), sagittal (B), and coronal (C) fused MRI.
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contours when compared with neuroradiologist contours 
may be due to differences in RTOG-atlas guidelines 
adhered to by clinicians compared to a more anatomy-based 
contouring by the neuroradiologist. Whilst elements TPS 
could be utilized as a starting point, contours currently will 
require modification by clinicians to conform to the RTOG 
atlas. Future study into other auto-contouring methods and 
systems and contouring by radiation therapists after training 
will be undertaken.
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