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Discovery and implication of dynamical circuit 
activity

The  ana ly s i s  method  proposed  by  E l s ayed  and  
Cunningham (1) aims to solve one class of problems: 
provide a suitable null distribution for neuron population 
activity. The advent of new population recording methods 
has allowed us to discern structures in the aggregate activity 
of a neural circuit that represent external input or internal 
state. The question arises, however, as to whether such 
structure is an expected result of primary features of neuron 
responses, such as a simple summation of their individual 
tuning properties. One of the more prominent results 
under this question is the rotation structure of motor cortex 
coding of reach (2). A modified bootstrapping strategy was 
developed to answer this question.

A traditional bootstrapping method randomly samples 
(with replacement) the activity of individual neurons to 
destroy its temporal structure and form a null distribution (3). 
Additional tricks were sometimes applied to bootstrapping, 
such as sampling small segments of neuron activity instead of 
single time points, to preserve some temporal smoothness in 
the resampled distribution. Sometimes bootstrapping was not 
done at sample level, but hierarchically at neuron, condition, 
or individual levels (4). Resampling at larger granularity 
keeps the temporal or inter-neuronal structure, while 
keeping potential information represented by firing pattern 
in the random sample. With simple resampling methods, 
it was not possible to discriminate between correlation 
structure in time, inter-neuron or between conditions, and 
emergent dynamical behaviors that are above these “primary 
structures”.

Neuron activity in dynamical systems

Although all evolving systems are in sense dynamical 
systems,  a  dynamical  system as often referred in 
neuroscience is one where the evolution of internal state 
drives the output, and external input (stimulus or control 
signal) indirectly changes the output by perturbing the 
internal state evolution (5). The evolution of dynamical 
systems can be described as the motion of a point in its state 
space. Neural circuits can have different types of dynamics, 
including periodic, quasi-periodic and chaotic, depending 
on whether this motion has one orbit, multiple orbits, or 
no orbits (6). A quasi-periodic system allows multiple semi-
stable states and a chaotic system allows cascading response/
high sensitivity to input (6). A neuron circuit being 
dynamical implies it being able to hold a semi-stationary 
state, in contrast with models in which a brain area passively 
responds to stimuli or generates activity patterns that match 
desired motor output one-to-one.

The two differentially squeezing approaches

The study proposed two methods for preserving the 
primary features in neuron activity while exposing 
interesting higher order features. The main contribution of 
this paper was to formalize the notion of primary features 
of a neural population (7). Essentially, the primary features 
of population activity were defined as signal statistics at 
3 levels: tuning of single neurons, temporal correlation 
of firing rates, and signal correlations across neurons (1). 
These 3 levels correspond to correlation structures on the 
3 margins of the population activity tensor: temporal, inter-
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neuronal, and between conditions.
Two modified bootstrapping strategies can be used to 

fix these 3 structures. The first one shuffles the recorded 
data independently for conditions and time, then applies a 
weight matrix to the randomized data. The weight matrix 
was optimized to minimize the difference between the 
marginal covariance matrices of the randomized data and 
the real data. The second method calculates the lowest 
entropy distribution of random data preserving the 3 
marginal covariance matrices, then samples from this 
distribution. The second method is more computational 
intensive, but preserves the exact amount of correlation 
structure, while the first one is cheaper but may carry extra 
information into the null distribution (1).

With these methods, the null distribution can be calculated 
for new datasets, and statical tests can be performed against 
the null distribution to reveal any structure beyond the 
marginal correlations. A true population structure not arising 
from the temporal and spatial correlation of the neurons’ 
activity implies unknown circuit structure or dynamics, which 
should lead to interesting future discoveries.

Dynamical activity can be captured in 
correlations

While the emphasis of these two tests are on novel emergent 
properties of population dynamics, there exists a gap between 
what they test and the original idea of dynamical neural 
circuits. For example, the dynamic activity reported in 
Churchland et al. (2) was indicated by persistent rotation of 
population data projected on primary components. Similar 
findings include animal decision coded in different rotations 
patterns in population firing in the pre-frontal cortex (8).

Both systems have often been called “dynamic” and can 
be roughly imagined as circuits with oscillatory activity or 
moving waves. In such a circuit, a subpopulation of neurons 
drives the increase of activity of another subpopulation 
while suppressing themselves. The direction of the 
drive depends on top-down command, and generates a 
rotation in the state space. This relation between neuron 
subpopulations, despite being an emergent population 
property not tied to any individual neurons’ tuning 
properties, is partially captured by the inter-neuronal 
correlation structure. This tight relation between the 
rotation dynamic and the correlation structure is reflected 
in the existence of rotation structure in the null control 
shown in supplementary Figure 10 of the paper (1). Certain 
features in the original data are not captured by this null 

control, as evident from the statistical test performed by the 
authors and intuitively from the stronger attractor from the 
original data compared to the null control. However, the 
basic dynamical characteristic of system was captured in the 
null, as the dynamical generator model of the motor cortex 
activity (2) showed as much similarity to the original data as 
to the null with all 3 correlation structures.

The real applications

Perhaps the larger contribution of this method lies in its 
ability to decompose population activity structures. Since 
the null distribution can be constructed using an arbitrary 
combination of conditional, neuronal, and temporal 
correlation structures, it allows us to attribute a given 
population phenomenon to one or more of these structures. 
A typical oscillatory population with external perturbation 
would yield population activity dependent on the neuronal 
correlation structure. An area with dense population coding 
for the external input, such as early visual areas responding to 
naturalistic inputs, will show a structure in its response that 
is dependent on the structure of input, such as the temporal 
correlation structure in natural movies (9), or inherent 
biases in natural scenes. As such, the rotation structure in 
motor cortex coding (2) can be understood as having large 
contributions from inter-neuronal and inter-conditional 
correlations, which in no ways detract from its significance as 
a hallmark of a dynamical system. The coding structure for 
reach in the motor cortex has significant components beyond 
what can be captured by the marginal correlation structures, 
from perhaps yet unmodeled reasons. The continued effort 
from the authors (1,2) thus elucidate the basic dynamical 
coding in the cortex, and reveals novel emergent population 
behaviors worthy of future discoveries.
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