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Introduction

In the past decades, technological advances such as high-
resolution computed tomography (CT), magnetic resonance 
imaging (MRI) and positron emission tomography (PET) 
have improved the preoperative work-up of patients 
undergoing surgery. However, their introduction in the 
operating room remains limited and, when it occurs, the co-
registration of preoperative images within the surgical field 

may not always match the definitive intraoperative findings.
In this regards, fluorescence-guided surgery (FGS) has 

shown its capacity to improve surgical outcomes, filling 
the gap between preoperative imaging and intraoperative 
findings. As a matter of fact, FGS has been able to provide 
invaluable anatomical and functional information during 
invasive procedures, including sentinel lymph node (SLN) 
mapping, identification of solid tumours, lymphography 
and angiography (1-4).
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FGS requires two components to work properly: a 
fluorescent probe and an imaging device (5). Among 
the fluorescent agents, many have become available, but 
only a few have been clinically approved. They can be 
used as injectable solutions of the fluorophores alone or 
in alternative the dyes can be conjugated to targeting 
molecules, such as monoclonal antibodies. Indocyanine 
green (ICG) has been one of the most frequently employed 
in urology, even though other molecules have been adopted, 
such as 5-aminolevulinic acid (5-ALA), its metabolite, 
hexaminolevulinate (HAL), and methylene blue (MB). 
Among the new generation of tracers targeting specific 
proteins, the IRDye800CW has been the most commonly 
used in clinical practise (6,7). 

The wavelength emitted varies from dye to dye and 
it can be within the visible or in the near-infrared (NIR) 
spectrum, as in the case of ICG and MB. 

As regards to imaging devices, there have been many 
adopted in the urological field. The most commonly 
used and the first-ever approved by the Food and Drug 
Administration (FDA) has been the SPY system (8). Others 
are the photodynamic eye system (9), the IC-view system (10) 
and the fluorescence vascular imaging (FVI) (11).

Although, most of the current applications of FGS 
are mainly reported with regards to adult surgery, there 
has recently been a substantial increase in the number of 
publications in the field of paediatric surgery (12).

This review aims to collect the most recent applications 
of fluorescence optical imaging in urology, exploring its 
benefits and highlighting its indications for the surgical 
treatment of urological disorders in both adults and 
children. We present the following article in accordance 
with the Narrative Review reporting checklist (available 
at https://amj.amegroups.com/article/view/10.21037/amj-
20-194/rc).

Methods

A non-systematic literature search of PubMed and EMBASE 
databases was carried out in August 2021 in order to select 
relevant papers published between January 1990 and July 
2021, which provided data on urological applications of 
FGS. In order to identify eligible studies, a broad search 
was conducted using various combinations of keywords 
such as: “Fluorescence-guided surgery” [All Fields] OR 
“fluorophores” [All Fields] OR “dyes” [All Fields] OR 
“indocyanine green” [All Fields] OR “5-aminolevulinic 
acid” [All Fields] OR “hexamynolevulinate” [All Fields] 

OR “methylene blue” [All Fields] OR “IRDye800CW” [All 
Fields] OR “urology” [All Fields] OR “paediatric urology” 
[All Fields]. The inclusion criteria were studies published 
in the English language reporting results, indications 
and outcomes regarding the use of fluorescence-guided 
technology in urology.

Discussion

FGS is a promising technology that has been recently 
introduced in cancer surgery and might potentially change 
the future of reconstructive and oncological procedure 
and at the same time improving patients’ outcomes. In 
particular, its applications have shown to be ideal in the 
urological field where it has been widely used with very 
interesting results.

Kidneys and ureters

FGS has provided highly satisfactory results for both 
surgical oncology, transplant and reconstructive surgery.

Several authors have described the use of FGS to allow 
an easier identification of tumours and to perform partial 
nephrectomies (PNs) more safely, with the ultimate aim 
to achieve an adequate degree of oncological radicality 
preserving at the same time the function of the spared renal 
parenchyma (13,14). 

Tobis et al. (13) reported the use of ICG to highlight 
the renal vasculature and to distinguish 17 renal cortical 
tumours from normal tissue with the potential to maximize 
oncologic control and nephron sparing during 16 open 
PNs. Following the administration of aliquots of 1–5 mL of 
ICG (2.5 mg/mL solution), the difference in fluorescence 
between the normal parenchyma and tumour tissue 
allowed a clear outline of the tumour margins, especially in 
malignant cases.

Similarly, Mitsui et al. (14) concluded that the fluorescence 
imaging system was very helpful for confirming negative 
margin status, in even the most complex cases, during 
16 ICG-based open PNs for organ-confined small renal 
tumours. 

Moreover, NIR fluorescence imaging proved to play a 
key role during robot-assisted PNs, as reported by several 
authors (15-18). 

Angell et al. (17) in their study devised a dosing strategy 
and assessed the reliability of NIR fluorescence to localize 
79 cortical tumours. Two doses of ICG were injected: 
the test dose, before surgery, and the calibrated dose, 

https://amj.amegroups.com/article/view/10.21037/amj-20-194/rc
https://amj.amegroups.com/article/view/10.21037/amj-20-194/rc


AME Medical Journal, 2022 Page 3 of 10

© AME Medical Journal. All rights reserved. AME Med J 2022;7:15 | https://dx.doi.org/10.21037/amj-20-194

before resection. The test dose was deliberately low to 
avoid confusing over-fluorescence while the calibrated 
dose was defined on the extent of differential fluorescence 
achieved by the first dose. The authors concluded that, with 
standardized dosing regimen, NIR fluorescence was highly 
reliable in achieving differential fluorescence of kidney and 
renal cell carcinomas. 

Mattevi et al. (18) described the use of NIR fluorescence 
imaging to guide selective arterial clamping during 20 
consecutive robot-assisted PNs and compared their 
outcomes with 42 conventional ones. The ICG solution 
was administered twice: the first dose (5 mg of 2.5 mg/mL 
solution) after arterial clamping and the second dose (2.5 mg  
of 2.5 mg/mL solution), after the excision of the tumour 
mass to check the remaining kidney perfusion. In terms 
of early functional outcomes, it was seen, not only a lower 
loss of GFR in the operated renal unit (P=0.046), but also a 
lower total GFR loss (P=0.007) in patients undergoing the 
fluorescence-guided robot-assisted PNs. Interestingly, no 
positive margins were detected in the fluorescent-guided 
procedures while three were identified in the standard 
group (7.1%) with a statistically significant difference 
(P=0.025).

Although a standardized way to administer the 
fluorescent agents and long-term functional benefits have 
yet to be established, all authors agreed in considering 
FGS a safe and reliable option to improve the oncological 
outcomes and to maximize nephron-sparing during PN in 
surgical oncology.

To go further, FGS has also been adopted to differentiate 
benign from malignant lesions. The study carried out by 
Hoda et al. (19) demonstrated the reliability of 5-ALA FGS 
in predicting the type of lesions affecting 77 patients with 
kidney cancer, with an accuracy of 94% and a predictive 
positive value of 98%. In detail, they administrated  
15–25 mg/kg of oral 5-ALA 4 hours before the laparoscopic 
procedure. While, 58/61 (95.1%) renal cell carcinomas 
showed a positive response when exposed to light, only a 
single case of angiomyolipoma (6.3%) showed positivity to 
light, among 16 non-malignant lesions. 

Even if Manny et al.  (20) reported that tumour 
hypofluorescence couldn’t be considered a reliable way 
to establish the malignancy of the mass (sensitivity: 84%; 
specificity: 57%), they proved the efficacy of ICG-FGS in 
decreasing the ischemia time, in the identification of hilar 
vessels and tumour-specific vessels and in enhancing the 
contrast between the tumour and, the surrounding healthy 
parenchyma (15).

Moreover,  ICG has been adopted by Vignolini  
et al. (11) to assess graft and ureteral reperfusion during 6 
robot-assisted kidney transplants from living donors. The 
authors concluded that the intensity of the fluorescent signal 
resulted to be a reliable indicator with which to evaluate the 
renal parenchyma, the ureter and the vascular anastomoses, 
even though, larger studies were needed to standardize the 
technique.

Furthermore,  f luorophores have been valuably 
employed by Verbeek et al. (21) to avoid severe urological 
complications during complex lower abdominal surgeries. 
In particular, the injection of 10 mg/mL of MB solution 
(0.25–1 mg/kg) allowed an easier identification of the 
ureters during 12 open abdominal surgeries.

Conversely, Hanna et al. (22) described the use of ICG to 
perform 5 robotic ureteral reimplantations to repair distal 
ureteral injuries, secondary to laparoscopic gynaecologic 
surgeries. The intraoperative vascular assessments using 
ICG assisted in ensuring a well-vascularized tension-free 
ureterovesical anastomosis and all the patients had complete 
resolution with no evidence of anastomotic complications.

Bladder

5-ALA and its metabolite, HAL, have been widely adopted 
in bladder surgery.

In particular, many authors described the use of 5-ALA/
HAL photodynamic diagnostic (PDD) cystoscopy as a 
meaningful tool to increase the detection of non-muscle-
invasive bladder cancers (BC) (23-26).

Hermann et al. (23) reported that an endovescical 
instillation of 50 mL of HAL 60 minutes before the planned 
PDD cystoscopy allowed the identification of 20 neoplastic 
lesions (c) otherwise missed by the white light (WL). 

The same authors conducted a randomized clinical 
trial comparing the BC recurrence rate after conventional 
transurethral resection of the bladder (TURB) in WL 
and after HAL-guided TURB in Ta/T1 patients (24). 
Interestingly, in 44 out of 90 patients (49%; 95% CI: 
38–60%) the fluorescence-guided cystoscopy after 
complete WL TURB identified residual tumour tissue: 
residual Ta tumour in 37, residual T1 tumour in 3, residual 
carcinoma in situ (CIS) tumour in 4 patients. Noteworthy, 
a significantly longer recurrence-free period (P=0.02) and 
a histologically-verified reduction in the recurrences rate 
(P=0.05) were reported in patients allocated in the HAL-
TURB arm.

Gakis et al. (25) moved in the same field, describing the 
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impact of PDD-guided TURB on the survival rate of 89 
patients, subsequently undergoing radical cystectomy (RC) 
and bilateral pelvic lymphadenectomy for BC, compared to 
a control group of 135 patients undergoing the traditional 
WL-TURB. Their results revealed that patients in the 
PDD-guided TURB group (n=66: HAL; n=23: 5-ALA) had 
not only a lower number of TURB before RC (P<0.001); 
a lower incidence of re-resections (P=0.015) and a longer 
time lapse between the first TURB and the RC (P=0.044) 
but also required less adjuvant chemotherapy (P=0.001) and 
displayed higher survival rates.

Moreover, Zare et al. (26) conducted a multicenter 
prospective study analyzing the feasibility of integrating 
HAL-guided TURB in the follow-up of 69 patients affected 
by non-muscle invasive BC. Despite the additional time 
required for the instillation of the fluorescent dye, this 
procedure was associated with an easier detection of early 
recurrent and more extended lesions. 

In spite of all these promising results, more prospective 
randomized clinical trials are still required to allow a better 
understanding of the impact of PDD-guided TURB on 
surgical outcomes and survival of patients affected by BC. 

Moreover, some authors have reported the application of 
fluorescence optical imaging during partial or RC to assess 
the lymphatic drainage, to identify tumour location or to 
evaluate ureteral blood flow (27-30).

Manny et al. (27) described the feasibility of FGS in 10 
robotic RCs using real-time cystoscopic injection of ICG 
for tumour marking and identification of sentinel lymphatic 
drainage. Its additional intravenous injection for mesenteric 
angiography allowed the maximal preservation of bowel 
vascularity to the conduit and remaining bowel segments.

Schaafsma et al. (28) prospectively enrolled 20 patients 
with invasive BC scheduled for RC. ICG bound to human 
serum albumin was injected peritumourally to permit SLN 
mapping: in 5 patients directly into the bladder wall (serosa) 
after laparotomy and in 15 patients cystoscopically into the 
bladder wall (mucosa) before surgery. The authors reported 
that fluorescent lymph nodes (LNs) were observed only in 
the patient group with cystoscopic injection. Filling of the 
bladder post-injection with saline for at least 15 min was 
added in 12 patients to promote drainage of the conjugate 
to the LNs. Noteworthy, in 11 of these 12 patients (92%) 
one or more NIR fluorescent LNs were identified.

In their study, Doshi et al. (29) described the use of 
NIR fluorescence imaging with intravenous ICG injection 
to assess ureteral vascularity prior to ureteroenteric 
anastomosis during RC. They concluded that it reduced 

the risk of ureteroenteric anastomotic stricture (UES) and 
increased the time lapse for its occurrence. 

Conversely, Lee et al. (31) retrospectively reviewed 
8 patients who underwent 10 robotic ureteroenteric 
reimplantations due to benign UES that developed after 
RC. The injection of ICG directly into the ureter or in the 
intra-urinary diversion allowed for precise identification 
of the strictured ureter and urinary diversion and for the 
localization the UES margins. 

Prostate

Fluorophores has been also adopted to guide SLN biopsy 
and LN dissection during laparoscopic and robot-assisted 
radical prostatectomies (32-37). 

In 2014, Manny et al. (38) described their initial clinical 
experience in 50 patients undergoing fluorescence-
enhanced robotic radical prostatectomy using real-time 
lymphangiography and tissue marking with ICG. The 
injection of 0.4 mL of a 2.5 mg/mL ICG solution into each 
lobe of the prostate resulted in a quick and reliable diffusion 
of dye throughout the organ without visible fluorescence 
in the periprostatic structures in all patients. ICG injection 
was able to identify the potential SLN prostatic drainage 
in 76% at a mean time of 30 min post-injection with 100% 
sensitivity, 75.4% specificity, 14.63% positive predictive 
value, and 100% negative predictive value for the detection 
of nodal metastasis.

In 2015, Hruby et al. (33) injected 2.5 mL of ICG per 
prostatic lobe under transrectal ultrasound guidance at the 
start of the laparoscopic radical prostatectomy in 38 patients 
with clinically localized intermediate and high risk prostate 
cancer. They added super-extended pelvic lymph node 
dissection (PLD) as control and proved that fluorescence 
targeted PLD had superior sensitivity (97.7%) and negative 
predictive value (99%) to detect LN metastasis.

The same year, Yuen et al. (39) injected ICG into the 
prostate under transrectal ultrasound guidance just before 
surgery in 66 consecutive patients with clinically localized 
prostate cancer. Lymphatic vessels were successfully 
visualized in 65 patients (98%) and SLN in 64 patients 
(97%). They concluded that this novel method was 
technically feasible, safe and easy to apply with minimal 
additional operative time.

In 2016, Nguyen et al. (40) performed a lymphatic 
mapping study and determined the value of fluorescence 
SLN detection with ICG for the detection of LN metastases 
in 42 intermediate and high risk patients undergoing radical 
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prostatectomy and extended PLD. A complex drainage 
pattern of the prostate was delineated by this study, which 
showed that lymphatics cross over to the opposite side and 
that the common iliac regions and the fossa of Marcille 
should not be overlooked. 

In 2018, Miki et al. (41) reviewed a prospective cohort 
of 50 consecutive patients with intermediate to high risk 
localized prostate cancer undergoing laparoscopic radical 
prostatectomy and SLN biopsy guided by fluorescence 
detection using intraoperative imaging with ICG. 
Noteworthy, over 90% of positive SLN were identified at 
two predominant sites: one site was the junctional LNs, 
located at the junction between internal and external iliac 
vessels; the other was the distal internal iliac LNs, located 
along the inferior vesical artery. They concluded that 
particular attention should be paid to analyzing these LNs 
to reduce the possibility of overlooking metastasis.

Similarly, in 2018, a prospective randomized clinical trial 
with 120 patients with intermediate or high risk prostate 
cancer undergoing extended PLD in robot-assisted radical 
prostatectomy was conducted by Harke et al. (42). 

Patients were prospectively randomized into two groups: 
the intervention group receiving the transrectally injection 
of ICG into the prostate before the docking of the robot 
and the control group undergoing conventional extended 
PLD. The authors concluded that even if ICG seemed to 
be beneficial for a more meticulous diagnostic approach and 
for a better understanding of the lymphatic drainage, the 
sensitivity of the procedure was not sufficient to recommend 
stand-alone ICG-PLD.

More recently, in 2020, Shimbo et al. (43) reported their 
experience with ICG-guided extended PLD during 100 
robot-assisted radical prostatectomies. They concluded 
that although the direct role of fluorescent LN in SLN 
identification appeared to be limited (34% sensitivity 
and 64.8% specificity rates), the identification of 5 main 
lymphatic pathways could contribute to high-quality 
extended PLD.

Interestingly, Jeschke et al. (32) investigated the 
feasibility of visualizing the prostate lymphatic drainage 
by injecting 2.5 mL of ICG into each prostatic lobe of 
26 consecutive patients with clinically localized prostate 
cancer and compared these results with the standard 
99mTc-labelled colloid radio-guided SLN dissection. The 
fluorescent approach allowed the real-time visualization of 
the lymphatic vessels and the identification of additional 
120 LNs compared with the 99mTc exploration alone. 

To go further, van der Poel (34) developed a hybrid 

multimodal radiocolloid, the ICG-99mTc-nanocolloid, with 
the aim to optimize the SLN dissection during 11 robot-
assisted laparoscopic prostatectomies associated with an 
increased risk of LN metastasis. Being it both radioactive 
and fluorescent, a single administration allowed for pre-
operative SLN mapping through SPECT/CT guidance 
and intra-operative fluorescence detection through NIR 
fluorescence laparoscopy. While the real-time fluorescence 
guidance proved particularly valuable in areas, where 
accurate gamma tracing was hindered by background 
signals, the fluorescence detection was limited by the severe 
tissue attenuation of the signal. 

To confirm the efficacy of the ICG-99mTc-nanocolloid 
for SNL detection, Meershoek et al. (36) proved that 
this hybrid tracer outperformed free ICG in a masked, 
randomized controlled trial wherein prostate cancer 
patients received either ICG-99mTc-nanocolloid (n=15) or 
ICG-99mTc-nanocolloid and free ICG (n=10) before robot-
assisted SLN biopsy and extended PLD. 

To go further, Van den Berg et al. (37) presented the 
first-in-human multispectral fluorescence imaging approach 
in 10 patients with prostate cancer in which ICG-99mTc-
nanocolloid-based SLN identification was supported 
by additional lymphangiographic guidance provided 
by fluorescein. The multispectral imaging allowed the 
identification of different anatomic features: while the 
ICG-99mTc-nanocolloid-based imaging visualized 85.3% 
of SLNs, the fluorescein imaging identified the lymphatic 
ducts in 80% of patients. These findings suggested that 
the lymphangiographic tracer could provide additional 
information during SLN biopsy and that FGS using 
differently coloured dyes may improve functional and 
oncological outcomes in patients affected by prostate cancer.

The use of the ICG-99mTc hybrid tracer has been widely 
investigated not only as a SLN marker but also as a tool for 
the identification of tumour margins during prostate cancer 
dissections. Unfortunately, only unreliable results have 
been achieved so far; therefore more sensitive and specific 
probes have been developed in preclinical studies. In 
particular, in prostate specific membrane antigen (PSMA)-
positive prostate cancers, the conjugation of a NIR light-
emitting dye with PSMA-inhibitors have been extensively 
investigated (44-47). The success of these preclinical studies 
has high potential for the clinical translation of these 
fluorescently labelled probes. In the foreseeable future, 
they could lead to a better visualization of tumour margins 
and increased oncological outcomes during prostate cancer 
surgery.
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Penis

The role of FGS has been also investigated for the surgical 
treatment of penile carcinomas and precancerous lesions of 
the penis (48,49).

Penis laser therapy should be preferred to more radical 
and mutilating curative surgeries in younger and sexually 
active patients in order to preserve the organ function and 
the overall quality of life. However, a significant increase 
in the local recurrence rate have been reported by several 
authors (50-52). In this scenario, FGS may be beneficial 
to improve the detection rate of penile neoplastic lesions 
and their tumour margins to allow a more complete radical 
surgery. 

In particular, Schlenker et al. (49) investigated the long-
term recurrence rate of 26 patients affected by premalignant 
CIS (n=11) and invasive penile carcinoma (n=15) treated 
by 5-ALA-guided laser coagulation. Noteworthy, no 
intra- or peri- operative side effects were observed and a 
significant reduction in the rate of local recurrence was 
reported compared to the 48% reported in literature for 
laser therapy. In particular, local recurrence did not occur in 
Tis patients while it was recorded in 26.7% of patients with 
invasive penile carcinoma, 3 of whom developed more than 
3 years after a first surgical procedure and were more likely 
“de novo” cases.

The same fluorescent dye has been adopted for achieving 
maximum tumour resection of penile-scrotal extramammary 
Paget’s disease (48). Despite the small sample size of the 
study (only 5 patients were included), not only the 5-ALA 
helped to define the tumour margins, but it also allowed the 
identification of 31 distant scatter lesions, which in 4 cases 
proved to be positive after serial biopsies pathology.

The ICG-99mTc hybrid tracer has been also investigated 
for the intraoperative optical SLN identification in case of 
penile cancer (53,54). 

In particular, Brouwer et al. (53) reported the advantages 
of the ICG-99mTc-nanocolloid compared to the gold 
standard combination of the radiocolloid with blue dye 
in 65 patients with penile squamous cell carcinoma. 
Noteworthy, the ICG-base fluorescent imaging enabled 
the visualisation of 96.8% of SLNs, while only 55.7% was 
stained by blue dye (P<0.0001).

Similar results were also confirmed by a larger study 
enrolling 400 patients, as published by Dell’Oglio  
et al. (54). The analysis of the 266 patients who received 
both the ICG-99mTc-nanocolloid and blue dye revealed 
that the fluorescence imaging yielded a 39% higher 

SLN detection rate than the blue dye (95% CI: 36–43%, 
P<0.001).

Application in paediatric urogenital surgery

Although the available literature has been mostly focused 
on FGS in adult surgery, more recently, there has been an 
increasing interest in its application in paediatric urology.

In the field of paediatric oncology, Abdelhafeez et al. (55) 
described the use of ICG to facilitate accurate, real-time 
recognition of 12 renal tumours (5 Wilms tumours and an 
epithelioid angiomyolipoma) at the time of nephron-sparing 
surgery. The intravenous infusion of ICG the day before 
surgery (1.5 mg/kg) allowed the successful localization of 
hypo-fluorescing tumours in all 8 patients.

In 2016, Herz et al. (56) described its application in 6 
paediatric robot assisted laparoscopic heminephrectomies 
(HNs) with the ultimate aim to reduce the risk of innocent 
moiety injury. In particular, ICG-FGS helped to highlight 
unexpected renal vascular anatomy in 3 children, saving 
the remaining moiety from possible iatrogenic injuries and 
avoiding massive intraoperative bleeding. 

In one case, a vessel that was believed to be perfusing 
the lower affected moiety was in fact perfusing the upper 
innocent moiety. Had selective arterial mapping not been 
used, that artery would most likely have been ligated, 
leading to innocent moiety loss. Two of the three other 
cases showed continued vascularization of the moiety to 
be excised, despite ligating what was believed to be the 
perfusing vessels. ICG-FGS showed the remaining vessels 
and allowed for safe moiety removal. 

Esposito et al. (57) compared the results of 9 ICG-guided 
HNs with 52 standard laparoscopic HNs in children. They 
observed that the fluorescence-guided procedures were 
associated with lower median operative times (75.5 vs. 
166.2 min; P<0.001) and with a lower rate of postoperative 
complications (0% vs. 19.2%; P<0.001). 

The same authors described the use of ICG in 4 robot-
assisted deroofing of simple renal cysts, which resulted in a 
lower incidence of residual liquid on the bottom of the cyst 
on long term follow-up, compared to 10 standard minimally 
invasive approaches (0% vs. 61.5%; P<0.001).

Interestingly, the comparative analysis between 3 ICG-
guided and 149 standard laparoscopic nephrectomies 
showed no significant difference between the two 
techniques regarding the median operative time (52 vs. 
47 min; P=0.33), the overall success rate (100% vs. 100%; 
P=0.33) and the postoperative complications rate (0% vs. 
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0.9%; P=0.33) (45).
Conversely, ICG optical imaging was reported to 

allow a safer dissection of the renal hilum in two patients 
undergoing a retroperitoneal laparoscopic nephrectomy in 
the series of procedures collected by Fernández-Bautista  
et al. (58).

They also adopted the intravenous injection of 
ICG to perform an angiography-assisted laparoscopic 
varicocelectomy in a 13-year-old boy with asymmetric 
testes and testicular pain. This allowed a safer selection and 
ligation of all the vascular structures of the spermatic cord 
without compromising the lymphatic vessels. 

On the other hand, Esposito et al. (59) preferred the 
ICG-guided fluorescence lymphography as a highly reliable 
technique to perform 41 paediatric minimally invasive 
varicocelectomies. In their series, 2 mL of ICG solution 
(5 mg/dL) was injected in the left testicle of 25 boys with 
grade II or III left varicocele. During surgery, the lymphatic 
vessels were easily isolated and spared. As a consequence, 
at 18-months’ follow-up, no persistence or recurrence of 
varicocele and no postoperative hydrocele were recorded.

Future perspectives and potential new applications of FGS 
in urology

Although the past decade has witnessed meaningful advances 
in the clinical application and technical development of 
FGS, there is still room for further developments. 

To date, biomedical fluorescence imaging has mainly 
relied on NIR-I (wavelength: 700–900 nm) dyes, which 
have been preferred over visible light (wavelength:  
380–800 nm) due to the less tissue autofluorescence and 
absorbance. However, the limited tissue penetration (up 
to 10 mm) and the low tissue contrast of NIR-I dyes have 
reduced their clinical applications. More recently, studies 
are investigating NIR-II (wavelength: 1,000–2,000 nm) dyes 
as promising tools for achieving higher contrast, greater 
sensitivity and improved penetration depths with interesting 
surgical applications in adult and paediatric urology (60).

To increase the signal from tumour cells and to minimize 
background noise, not only NIR-II fluorophores but 
also tumour-specific targeted probes are currently under 
investigation. In this regards, Hekman et al. (6,7) has 
published the first human study on the use of 111In-DOTA-
girentuximab-IRDye800CW to improve intraoperative 
visualization of clear cell renal cell carcinoma.

Finally, complementary analytical tools, such as artificial 
intelligence, can be added to a fluorescence optical imaging 

system to improve decision-making proficiency of FGS (61).

Conclusions

The available literature has shown that FGS could be 
considered a powerful tool to improve oncological, 
anatomical and functional outcomes in both adult and 
paediatric urology. An increased identification of SLNs, a 
more accurate visualization of tumour margins and an better 
definition of blood supply and lymphatic drainage have 
been described as greatly beneficial for patients undergoing 
urological procedures. Longitudinal studies with wider 
sample sizes are still needed to draw firm conclusions and to 
confirm its benefits in the clinical scenario.
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