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Introduction

Machine learning (ML) is a branch of artificial intelligence 
(AI) that aims to find general rules in complex data through 
pre-set algorithms and apply these rules to new data for 
classification and prediction (1). In recent years, thanks to 
the rapid advancement of computer software and hardware 
and the vigorous development of the internet, massive 
biomedical data can be obtained within a short period, 
which paves the way for AI applications in modern medical 
sciences (2). Numerous AI methods, represented by ML 
algorithms, are gradually changing modern medical models.

As an important part of modern medicine, laboratory 
medicine explores the mechanisms underlying the 
occurrence and development of diseases through laboratory 
testing, thus providing a scientific basis for risk assessment, 
diagnosis, stratification, prognosis assessment, and treatment 
monitoring (3). In general, a laboratory testing process is 
divided into three phases: pre-analytical, analytical, and 
post-analytical. The pre-analytical phase involves the 
selection of proper laboratory tests and the collection and 
transport of qualified specimens, during which the influence 
of specimen quality on laboratory tests should be avoided (4). 
In the analytical phase, the laboratory test procedure should 
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be continuously optimized to ensure that the test results are 
timely and accurate; meanwhile, the cost of laboratory tests 
should be continuously reduced, to meet the clinical needs 
for disease diagnosis and treatment with the lowest resource 
consumption (5). The post-analytical phase requires a scientific 
and reasonable interpretation of the clinical relevance of the 
test results, to provide patients with better medical care (6).

In recent years, ML algorithms have greatly reshaped 
the landscape of laboratory medicine (7). Accumulating 
studies indicated that ML algorithms can be used to reduce 
laboratory costs and errors, and improve laboratory quality 
management. Here we summarize the application of ML 
in laboratory medicine by giving examples. We present the 
following article in accordance with the Narrative Review 
reporting checklist (available at https://amj.amegroups.com/
article/view/10.21037/amj-22-92/rc).

Methods

The PubMed database was searched to identify studies 
published between the years 2000/1/1–2022/8/1 using the 
search terms “machine leaning”, “laboratory medicine”, 
“biomarker”, and “laboratory test”. A manual search was also 
performed using the references of the review articles retrieved 
and primary research. With no further inclusion or exclusion 
criteria, the searched papers that provide new aspects of 
laboratory medicine and ML were read. Two authors drafted 
the manuscript together with the typical examples in this 
field. Table 1 lists the summary of the search strategy.

Key content and findings

Application of ML in the pre-analytical phase

As mentioned earlier, the purpose of the pre-analytical 
phase is to ensure specimen quality and minimize errors. 

The advances in laboratory testing methodologies have 
dramatically lowered the incidence of errors in analysis, 
and most errors in the testing process are seen in the pre-
analytical phase (8), which may include misidentification, 
inappropriate container, insufficient volume, and clotting of 
an anticoagulated specimen (9).

Misidentification is a common error in the pre-analytical 
phase. In clinical practice, misidentification is recognized 
mainly by delta check (i.e., by comparing historical 
records) (10), which, however, is mainly based on human 
judgment and lacks uniform objective criteria. Different 
laboratory technicians in different laboratories may have 
different understandings of the delta check, resulting in 
large diversities in recognizing misidentification among 
different laboratories and individuals. In addition, manual 
judgment is time-consuming, which is not conducive to 
saving laboratory resources. Therefore, several studies have 
explored the value of ML in recognizing misidentification 
(11-14). In most of these studies, specific laboratory test 
data were first downloaded from the laboratory information 
system (LIS), and then the data that could be used for 
analysis (e.g., patients who have received duplicated testing 
within seven days.) were screened by using inclusion and 
exclusion criteria. Computer software was then used to 
randomly create misidentification in half of the specimens, 
and the accuracy in recognizing artificial misidentification 
was compared between ML algorithms and human 
judgments. All of these studies found that ML algorithms 
were much more accurate than human judgments (11-14). 
In one study, researchers used ML algorithms to analyze 
misidentification in electrolytes and renal function tests and 
found that the accuracy of manual identification was only 
about 77.8%. In contrast, even the simplest ML algorithm, 
the decision tree, achieved an accuracy of 86.5%, and the 
accuracy of the artificial neural network even reached 

Table 1 The search strategy summary

Items Specification

Date of search 2022/8/1

Databases and other sources searched PubMed

Search terms used “Machine learning”, “laboratory medicine”, “biomarker”, “laboratory test”

Timeframe 2000/1/1–2022/8/1

Inclusion and exclusion criteria None. The searched papers that provide new aspects of laboratory medicine and ML were read

Selection process The authors read the articles together

ML, machine learning

https://amj.amegroups.com/article/view/10.21037/amj-22-92/rc
https://amj.amegroups.com/article/view/10.21037/amj-22-92/rc
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92.1% (14). More importantly, the accuracy of recognizing 
misidentification can be significantly improved if the ML 
results are presented to lab technicians to alert them to 
the risk of misidentification (15). Thus, the accuracy of 
ML alone in recognizing misidentification is much higher 
than that of manual identification, and the accuracy can 
be further improved if the ML results are presented to 
laboratory staff for comprehensive judgment.

Hemolysis, icterus, and lipemia (HIL) of blood samples 
are common pre-analytical errors that pose large challenges 
to laboratory tests (16,17). Traditionally, HIL is mainly 
observed by the visual inspection, which is time-consuming 
and can be affected by subjective factors, leading to low 
accuracy in clinical practice. Some newly-developed 
biochemical instruments can detect the HIL status of the 
specimen and describe the status of the specimen by using 
indicators such as the hemolysis index (H-index), icterus 
index (I-index), and/or lipemia index (L-index) (18,19). 
However, approximately 10 minutes are required for the 
biochemical instrument to describe the specimen status, 
which will affect the efficiency of the biochemical instrument 
and even the laboratory turnaround time. A recent study used 
deep learning to analyze sample images to determine whether 
HIL existed. It was found that all areas under the receiver 
operating characteristic curve (AUCs) of deep learning in 
recognizing HIL were above 0.98, showing significantly 
higher accuracy than biochemical instruments (20).  
Therefore, deep learning can dramatically increase the 
accuracy in identifying low-quality serum samples (20).

In addition to recognizing misidentification and low-
quality samples, ML can also be used for identifying the 
clotting of specimens. In coagulation tests, the clotting of 
the samples will affect the accuracy of the test results. In 
clinical practice, the clotting of specimens is mainly judged 
by visual inspection, which, however, is not able to identify 
small clots in some coagulated blood specimens. Since 
clotting can cause changes in the results of a coagulation 
test, the likelihood of clotting can be predicted based on 
the results of the coagulation test. A recent real-world study 
used backpropagation (BP) neural networks to determine 
the likelihood of clotting in a blood sample (21). The results 
showed that the BP neural network method based on the 
coagulation test results was extremely accurate in predicting 
blood clotting, and the AUC reached 0.97.

Application of ML in the analytical phase

The analysis phase includes the entire process from the 

entrance of a specific sample into the laboratory to the 
reporting of the test results. In this process, ML can 
optimize laboratory work procedures, reduce laboratory 
costs, and increase laboratory efficiency. ML algorithms 
serve different purposes for different laboratory tests or 
test panels. Here, we illustrate the applications of ML 
algorithms in different clinical settings.

Since low-density lipoprotein cholesterol (LDL-C) 
is a key risk factor and therapeutic target for cardio-
cerebrovascular diseases (CVDs), LDL-C testing is of 
great value for the prevention and treatment of CVDs. The 
reference method for LDL-C testing is beta quantification 
following ultracentrifugation, which, however, is time-
consuming and labor-intensive and requires very expensive 
instrumentation, making it unsuitable for routine testing. 
Early in 1972, Friedewald discovered that LDL-C 
concentration was related to the concentrations of high-
density lipoprotein cholesterol (HDL-C), total cholesterol 
(TC), and triglycerides (TG) and invented an LDL-C 
calculation formula, the famous Friedewald formula (22):

- -
5

TGLDL C TC HDL C= − −  [1]

in which the difference between TC and HDL-C is 
also known as non-HDL-C. Many laboratories use the 
Friedewald formula to calculate the concentration of 
LDL-C, rather than directly testing it. Although the 
Friedewald formula has been widely used, it has some 
limitations. In particular, the prediction accuracy of the 
formula decreases as the TG concentration increases. 
This is mainly because the Friedewald formula assumes 
the triglyceride/cholesterol ratio in very-low-density 
lipoprotein (VLDL) to be 5:1. The mathematical basis for 
this assumption is linear regression, which does not take 
into account that the triglyceride/cholesterol ratio in VLDL 
is affected by a variety of factors. Unlike conventional linear 
regression, ML algorithms are more flexible and do not 
presuppose a linear relationship between the dependent and 
independent variables. For example, the random forest (RF) 
algorithm, in essence, is to build multiple decision trees 
through the training dataset, operate using these decision 
trees in the testing dataset, and calculate the probability of 
classification according to the operation results of multiple 
decision trees. Therefore, ML algorithms may be more 
advantageous in predicting LDL-C. So far, several studies 
have evaluated the accuracy of ML algorithms in predicting 
LDL-C, and all of these algorithms were based on TC, TG, 
and HDL-C (23-29). These studies have found that ML 
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algorithms had higher accuracies than Friedewald’s formula 
and even the Martin formula, which was proposed more 
recently (30). ML algorithms are also quite accurate in 
individuals with higher and lower LDL-C concentrations. 
Notably, ML algorithms can be directly incorporated into 
the LIS and are easy to use.

The liver enzymes test is an important part of the liver 
function test. The common liver enzymes tested include 
aspartate aminotransferase (AST), alanine aminotransferase 
(ALT), alkaline phosphatase (AKP), and γ-glutamyl 
transferase (GGT). Although the clinical values of these 
enzymes are specific, they may overlap each other to some 
extent. Therefore, some enzymatic tests may be redundant 
from the perspective of saving laboratory testing costs. One 
study proposed that ALT and AKP results could be used to 
predict GGT measurements (31). Using ML algorithms, 
the researchers found that the ALT and AKP decision trees 
had an accuracy of up to 90% in predicting GGT. In other 
words, tests for GGT in 90% of liver function tests are not 
needed because GGT can be accurately predicted by ALT 
and AKP measurements. One of the most important roles 
of ML in the analytic phase is to use low-cost laboratory 
tests to predict high-cost laboratory tests. In addition to 
GGT, the level of ferritin can also be predicted based on the 
results of routine blood tests (32,33).

In addition to the prediction of laboratory results, ML 
has been widely used in auto-verification (34), establishing 
the rules for urine sediment examination (35), morphologic 
classification of erythrocytes (36), and data analyses in 
metabolomics (37).

Application of ML in the post-analytical phase

The mission of laboratory medicine in the post-analytical 
phase is to translate the test results into effective clinical 
information and provide scientific evidence for the diagnosis 
and evaluation of diseases. The role of ML in this process 
is to integrate the existing test results to guide the diagnosis 
and treatment of diseases. Here we use two samples to 
illustrate how to use ML algorithms to study the clinical 
value of laboratory tests.

Pleural fluid biochemistry is an important approach for 
diagnosing tuberculosis pleurisy. In particular, adenosine 
deaminase (ADA) has a diagnostic accuracy of about 90% 
for this disease (38). Other biomarkers in the pleural fluid, 
including lactate dehydrogenase (LDH) and leukocyte count, 
also have certain diagnostic values for tuberculous pleurisy. 
Therefore, the clarification of whether biomarkers (e.g., 

LDH) in pleural fluid can improve the diagnostic accuracy 
of ADA is necessary. In other words, do the combinations of 
multiple biomarkers (including ADA) have higher diagnostic 
performance than ADA alone? A study published in 2019 
used ML algorithms such as support vector machine (SVM) 
and RF to explore the diagnostic value of the combination of 
these pleural fluid markers for tuberculous pleurisy; the AUC 
of ADA was found to be only 0.89 but reached 0.97 with the 
application of RF algorithm (39). Therefore, although ADA 
has a high diagnostic value for tuberculous pleural effusion 
(TPE), it can achieve higher diagnostic accuracy if it is used in 
combination with other biomarkers by using ML algorithms.

Assessing the prognosis of diabetic nephropathy is the 
basis for developing individualized treatment protocols 
and thus improving patient outcomes. At present, many 
markers and scoring systems can be used to predict the 
progression of diabetic nephropathy, with the most widely-
used system being the chronic kidney disease classification 
system released by the Kidney Disease Improving Global 
Outcomes (KDIGO). However, the accuracy of this system 
in predicting the prognosis of chronic diabetic nephropathy 
is far from satisfactory. Therefore, new prognostic factors 
for diabetic nephropathy are urgently needed. A cohort 
study published in 2021 used the RF algorithm combined 
with multiple biomarkers (KIM-1, TNFR1, and TNFR2) to 
predict the prognosis of patients with diabetic nephropathy 
and found that the AUC of the RF algorithm was 0.77, 
whereas the AUC of the KDIGO grading system was only 
0.62 (40). Therefore, ML algorithms have more advantages 
in predicting the prognosis of diabetic nephropathy.

Furthermore, ML algorithms are widely used in the 
screening of Downs syndrome (41) and the diagnosis of 
malignant pleural mesothelioma (42).

Conclusions

The past few years have witnessed the wider application 
of various ML algorithms in laboratory medicine. These 
advanced ML algorithms have brought more insights 
and addressed a variety of problems in this field. This 
article introduces the applications of ML in laboratory 
medicine by giving some typical examples, aiming to refresh 
our knowledge in this emerging interdisciplinary field. 
Laboratory technicians are encouraged to master this new 
technology and apply it in clinical practice, thus promoting 
the development of laboratory medicine. It is foreseeable 
that, with the optimization of ML algorithms and the 
advances in computer software and hardware performance, 
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ML will become a strong driver for the development of 
laboratory medicine.
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