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Platelets are small anucleate cells in blood, which play key 
roles in hemostasis and thrombosis (1). After red blood 
cells, platelets are the most abundant cells in circulation. 
Although the prevailing view is that platelets are produced 
from the megakaryocytes in the bone marrow, a recent 
study has shown that they can also be produced from 
megakaryocytes in the lungs (2). Megakaryopoiesis and 
platelet generation involve a series of well-orchestrated 
cellular processes including commitment of hematopoietic 
s t em ce l l s ,  d i f f e rent i a t ion  and  pro l i f e ra t ion  o f 
megakaryocytic progenitors, and maturation and shedding 
of megakaryocytes to produce functional platelets (3). 
Several cytokines and growth factors in the bone marrow 
such as thrombopoietin, interleukin-1 (IL-1), IL-6, and 
IL-11 have been reported to contribute to these processes, 
which can be further regulated by the fluctuations of 
cytokines and growth factors during aging or pathological 
states (1,3). Interestingly, although platelets lack a nucleus, 
they are prepackaged with the residual RNA, organelles 
and transcriptional machinery that make them capable of 
de novo synthesis in response to environmental stimuli (4,5). 
In addition to their roles in hemostasis and thrombosis, 
mounting evidence reveals that platelets are versatile cells 
and are significantly involved in numerous physiological and 
pathological pathways, such as inflammation and immune 
responses, angiogenesis, atherosclerosis, lymphatic vessel 
development, liver regeneration, and tumor metastasis (1). 

Platelet disorders are therefore associated with many human 
diseases, such as cardiovascular diseases, cancer, renal 
diseases, and microorganism infections (6-8).

In the article published in Blood (9), Davizon-Castillo 
et al. elegantly demonstrated that age-related pro-
inflammatory cytokine tumor necrosis factor alpha (TNF-α) 
drives megakaryocyte metabolic reprogramming, platelet 
mitochondrial dysfunction and platelet hyperreactivity. 
There is a long-standing link between aging, chronic 
inflammation and platelet activity. However, no causal 
evidence exists to directly link age-related TNF-α 
upregulation to platelet hyperreactivity. Davizon-
Castillo et al. showed that washed platelets from old mice 
exhibited increased activation of platelet integrin αIIbβ3, 
phosphatidylserine exposure, platelet aggregation and 
enhanced thrombus formation under flow conditions. 
Remarkably, exogenous administration of TNF-α to young 
mice recapitulated the aged megakaryocyte and platelet 
phenotype. TNF-α blockade with a monoclonal anti-TNF-α 
antibody in older mice reversed platelet hyperreactivity, 
thrombosis, and mitochondrial changes. Additionally, they 
used TNFΔARE mice, which have chronically elevated levels 
of TNF-α, and mice lacking functional TNF receptors (p55/
p75 KO mice) to further demonstrate their observations. 
These results establish the causative link between increased 
systemic levels of TNF-α and platelet hyperreactivity in old 
mice. The discovery is further supported by the observation 
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of increased mitochondrial mass in human patients with 
myeloproliferative neoplasms, which is associated with 
higher TNF-α levels and platelet hyperreactivity. The 
authors observed an alteration of inflammatory signaling 
pathways, including TNF-α, IL-1ß and IL-6, in aged mice 
determined by single cell RNA-sequencing of primary bone 
megakaryocytes. Interestingly, exogenous administration of 
IL-1ß did not promote platelet hyperreactivity. As previous 
evidence has shown that IL-6 can regulate megakaryocyte 
formation, platelet generation, platelet function, and IL-6 
and TNF-α overlap in downstream transcriptional response, 
it is worthwhile to further characterize the role of IL-6 in 
this process (10). In addition, as both TNF-α and IFN-γ 
are cytokines in Th-1 like immune response, it would be 
also interesting to examine whether IFN-γ blockage has the 
similar effect as the anti-TNF-α antibody.

Platelet activation is an energy-dependent process, but 
the type and integrated use of metabolic fuels required 
to participate are still poorly understood. Previously, 
it has been reported that activated platelets shift to a 
predominantly glycolytic phenotype coupled with a 
minor rise in mitochondria oxygen consumption (11). 
Other groups have further found that platelets switch to 
aerobic glycolysis and accelerate flux through the pentose-
phosphate pathway (PPP) during activation (12). In this 
paper, Davizon-Castillo et al. used liquid chromatography 
mass spectrometry-based metabolomics to study the 
systemic metabolic profiles in platelets from young and old 
mice. Interestingly, they found that platelets from old mice 
had depressed late-stage glycolytic metabolites pyruvate and 
lactate. Meanwhile they also revealed that platelets from 
old mice have a higher ATP-linked respiration capacity 
after activation, and elevated PPP intermediaries 6PGL, 
6PG and E4P. However, this distinctive metabolic profile 
has only been observed in aged mice; the same experiment 
in TNF-α treated mice has not been performed, making it 
unclear whether the metabolic reprogramming is caused 
by TNF-α, other age-related factors, or both. Moreover, 
the authors interpreted the elevation of the PPP as a 
compensatory response to oxidative stress or accelerated 
cellular proliferation. In most cells, the PPP is the major 
source of NADPH production, which is essential for 
scavenging reactive oxygen species (ROS). In immune cells, 
NADPH from the PPP is used as a substrate for the enzyme 
NADPH oxidase (NOX) to generate ROS. Platelets, 
which are now emerging in recognition as immune cells, 
have also been reported to express NOX (13). NOX-
generated ROS has been shown to regulate αIIbβ3-integrin 

activation (14) and contributes to platelet activation in 
aging (15). Based on the observed elevation of PPP and the 
contradicting role of PPP-NADPH-ROS axis in platelets 
compared to other cells, it is worthwhile to check levels of 
NADPH and ROS in aged and TNF-α treated mice, and 
explore the possibility of ROS serving as a missing link 
between metabolism reprogramming and hyperreactivity. 
In addition to serving as an energy and metabolite provider, 
mitochondria contribute to platelet activation by other 
functions such as mitochondrial permeability transition, 
collapse of mitochondrial membrane potential (1Ψ m), Ca2+ 
homeostasis and apoptosis (16). Whether these functions 
are affected during aging remains to be further elucidated.

Platelet hyperreactivity has been associated with many 
diseases such as cardiovascular diseases, cancer, sickle cell 
disease, inflammatory bowel disease, sepsis, rheumatoid 
arthritis, myeloproliferative disease, Alzheimer’s disease and 
diabetes (1,7,17-19), however, the exact mechanisms are 
still not very clear. Whether the same pathway discovered 
by Davizon-Castillo et al. contributes to these disease 
processes requires further study. Deemed inflammatory 
cells decades ago, platelets store and release a substantial 
repertoire of inflammatory mediators upon activation that 
attract key immune cells, enhancing inflammation (20). 
Thus, platelets are a pivotal player in the pathogenesis of 
multiple inflammatory diseases. As chronic inflammation 
induces platelet hyperreactivity, platelets may in turn 
accelerate inflammation, making platelets a promising 
target to manipulate the inflammatory response in 
diseases. Notably, COVID-19, an infectious disease 
caused by severe acute respiratory syndrome coronavirus 
2 (SARS-COV-2) that has spread to all 7 continents 
with over 200 countries and territories, is also associated 
with a high inflammatory burden and cytokine storm. 
Researchers found that TNF-α, IL-6, IL-10 and IL-
2R are closely related to severity of COVID-19 (21). 
Disseminated intravascular coagulation (DIC) as well 
as micro-thrombosis were also common in COVID-19 
related deaths (22). As reported, old age is one of the 
predisposing conditions for COVID-19 pneumonia (21).  
It is possible that platelet hyperreactivity contributes to 
DIC and higher COVID-19 incidence/severity in senior 
patients.

Platelet transfusion is a common therapy for bleeding 
in hematology/oncology patients, post-cardiac surgery 
patients, trauma patients with acute hemorrhages and 
patients with thrombocytopenia and/or functionally 
abnormal platelets. Platelets have a short shelf life of up to 
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5–7 days. Over time in storage biochemical and functional 
changes occur in the platelets and therefore their storage 
medium (23). These changes, well-characterized as platelet 
storage lesions (PSL), include acidification of the storage 
medium and platelet activation among others (24). A recent 
study found that platelets from young donors exhibited 
better storage performances than those from older donors. 
Mitochondria functions were also found to be associated 
with PSL and post transfusion performances (25). 
Therefore, the discovery by Davizon-Castillo et al. that 
platelets from older individuals had increased mitochondria 
mass and metabolic reprogramming may partially help to 
explain the donor-to-donor variations in platelet transfusion 
efficacy and safety. As the authors have mentioned, the 
hyperreactive platelets with increased mitochondria mass 
have the potential of exacerbating inflammatory response 
by releasing higher amounts of mitochondrial DNA and 
other inflammatory mitochondrial components. Whether 
this will aggravate transfusion-related adverse events such 
as transfusion-associated sepsis and organ failure in patients 
who already have severe systemic inflammatory response; 
and on the other side, whether these hyperreactive platelets 
have higher efficacy in controlling bleeding, particularly for 
treatment of polytraumatic patients and those with massive 
bleeding, are worth further studies.
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