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Introduction 

Dedicator of cytokinesis 2 (DOCK2) belongs to the DOCK 
protein family, which contains 11 members, named DOCK1 
(DOCK180) to DOCK11. According to the difference 
of their structure and activated substrates, DOCK family 
proteins can be divided into four subgroups-DOCK-A, 
DOCK-B, DOCK-C and DOCK-D, and DOCK2 belongs 
to DOCK-A subgroup, which contains another two 
proteins-DOCK1 and DOCK5 (1). 

There are two types of guanine-nucleotide exchange 
factors (GEFs) that can activate Rho small GTPases—
traditional Dbl-GEFs and non-traditional DOCK-GEFs, 

and DOCK2 belongs to the latter (2). Traditional Dbl-
GEFs contains two conserved domains, the Dbl homology 
(DH) domain and the pleckstrin homology (PH), the former 
having the catalytic activity of GTPases (3,4) and the latter 
interacting with phospholipid , which may be related to the 
binding of GEFs to membrane (5,6). However, the DOCK 
proteins do not contain either of these domains. Instead, 
their N-terminal regions contain DOCK homology region 1  
(DHR-1) binding to PIP3 to mediate DOCK membrane 
localization, and their C-terminal regions contain DOCK 
homology region 2 (DHR-2) to catalyse the activation of 
small GTPases (7-10). In addition to DHR-1 and DHR-2,  
there is still another domain located in the N-terminal 
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of DOCK2, Src-homology 3 (SH3), which is a domain 
unique to DOCK-A and DOCK-B subgroups, but not 
DOCK-C and DOCK-D, and it can interact with proteins 
containing proline-rich sequences such as engulfment 
and cell motility (ELMO) (9,11). Besides, DOCK2 has a 
segment of polybasic amino acids (PAA) at the C-terminal, 
and its interaction with phosphatidic acid (PA) may also be 
involved in DOCK2 localization (12,13) (Figure 1). 

As GEFs, the main function of DOCK protein family 
is to mediate the activation of Rho small GTPases by 
catalyzing GDP-GTP conversion (7). Rho small GTPases 
family is composed of 4 members—RhoA, Cdc42, Rac 
and less known Rnd (14,15). DOCK2 mainly activates Rac 
and then activated Rac participates in the regulation of 
various cellular functional activities, such as cytoskeleton 
remodeling and cytokine secretion (11,16-19). 

DOCK2 is mainly expressed in hematopoietic tissues, 
especially immune cells such as lymphocytes, neutrophils and 
plasmacytoid dendritic cells (pDC), so it plays an important 
role in the regulation of the immune system (20-22). However, 
DOCK2 is also expressed in other tissues such as prostate 
cancer and myeloma, and may affect their prognosis (23,24). 
In addition, under some circumstances, DOCK2 can be 
induced to express. For example, increased platelet-derived 
growth factor-BB (PDGF-BB) release after vascular injury 
can induce the expression of DOCK2 in smooth muscle 
cell (SMC) and participate in the regulation of vascular 
remodeling (25). 

Dock2 biallele deficiency can cause severe combined 
immunodeficiency, which is clinically characterized by early 

onset, invasive infection, and it may be related to T cell, B cell, 
and NK cell dysfunction caused by DOCK2 deficiency (26).  
However, with the deepening of research on DOCK2, more 
and more studies have shown that DOCK2 not only affects 
immune function, but also is closely related to the occurrence 
and development of a variety of diseases. This article focuses 
on the relationship between DOCK2 and diseases and 
reveals its role in immune-related diseases, hematopoietic 
and vascular diseases, and tumors. A deeper understanding of 
DOCK2’s role in the development and progression of disease 
is conducive to the discovery of new therapeutic targets and 
methods to improve the survival of some patients. We present 
the following article in accordance with the Narrative Review 
reporting checklist (available at https://aob.amegroups.com/
article/view/10.21037/aob-21-5/rc).

DOCK2 and immune-related diseases

DOCK2 is expressed in immune cells and can regulate the 
development (27-29), migration (20,30,31), activation (32)  
and some other processes of immune cells. Therefore, 
DOCK2 plays an important role in the occurrence and 
development of a variety of immune-related diseases, including 
immunodeficiency diseases and autoimmune diseases.

Congenital DOCK2 biallele mutation can cause severe 
combined immune deficiency (CID), and it is autosomal 
recessive. Its clinical characteristics are susceptible to 
a variety of bacteria and viruses at a young age, and 
the infection is aggressive and difficult to control. The 
molecular mechanism has not been fully elucidated. 
However, in such patients, the number of T cells decreases 
and the activation of Rac1 and the polymerization of actin 
in T cells are abnormal, and the secretion of interferon by 
NK cells is also impaired. Abnormalities in the number 
or function of various immune cells may partly contribute 
to CID (33). Some case has also reported that DOCK2 
deficient patient may have increased IgM, but more case 
data are needed to support this conclusion (34). 

DOCK2 also affects the pathogenesis and disease severity 
of systemic lupus erythematosus by regulating the secretion 
of typeⅠinterferon. After the stimulation of Toll like 
receptor (TLR) 7 or TLR9 by RNA or DNA, respectively, 
plasmacytoid dendritic cells (pDC) are activated (35-38).  
Then DOCK2 activates Rac1 in a TLR-independent 
manner, the latter phosphorylates IκB kinase (IKK) α, 
then activated IKKα promotes the activation and nuclear 
transposition of transcription factor interferon regulatory 
factor (IRF) 7, thereby promoting the secretion of type Ⅰ 
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Figure 1 The structure of DOCK2. The N-terminal of DOCK2 
contains SH3 domain and DHR-1 domain. The former can 
interact with ELMO and participate in the regulation of cell 
migration, while the latter can interact with PIP3 and is related 
to DOCK2 membrane localization. DOCK2 has DHR-2 domain 
at its C-terminal, which can catalyze the activation of Rac and 
then participate in the regulation of various cellular functions. In 
addition, there is a PAA-rich sequence at the C-terminal, which can 
interact with PA and may also be involved in DOCK2 localization. 
SH3, Src-homology 3; ELMO, engulfment and cell motility; PAA, 
polybasic amino acids; PA, phosphatidic acid.
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interferon (IFN) (18). Through its N-terminal interaction 
with DOCK2, B cell adaptor for PI3K (BCAP) synergistic 
promotes Rac1 activation and IKKα phosphorylation, and 
also participates in the secretion of typeⅠinterferon and the 
development of lupus disease (39). However, DOCK2 only 
participates in a branch of interferon secretion regulation 
pathway. After TLR7 or TLR9 are stimulated, MyD88 
can be recruited and activated, and then the downstream 
IKKα and IRF7 can be activated (40). In addition, other 
molecules, such as TRAF3 and AP, are also involved in the 
regulation of interferon secretion (41). The etiology of 
lupus disease is still unclear, and DOCK2 may only play a 
partial regulatory role in its development.

DOCK2 is also associated with the pathogenesis of 
Alzheimer’s disease. Normally, DOCK2 is low expressed 
in brain tissue; however, the number of cells expressing 
DOCK2 in the brain of Patients with Alzheimer’s disease 
is significantly increased. In addition, the expression of 
DOCK2 in microglia promotes the secretion of TNFα 
and MCP-1 after LPS stimulation, which exacerbates the 
inflammatory damage of neurons and may promote the 
development of Alzheimer’s disease. Another evidence is 
that the offspring of DOCK2 knockout mice bred with 
Alzheimer’s mice have reduced amyloid beta-deposits in 
the hippocampus, compared with the control group (42). 
In conclusion, DOCK2 may, to some extent, promote the 
development of Alzheimer’s disease through immune-
related injuries.

Besides, DOCK2 is involved in the inflammatory 
response and graft  rejection.  When DOCK2 was 
deficient, Rac could not be activated. After TCR was 
stimulated, IL-4R migration from the cell surface to 
lysosomes was blocked, resulting in impaired IL-4R 
degradation and enhanced TH2 immune effect, which 
could lead to more severe blepharitis in mice and longer 
duration of inflammation after infection (43). Studies 
have shown that DOCK2 defect in transplant recipients 
can prolong the survival time of cardiac allograft in 
their body. The mechanism is not clear, but it may be 
related to reduced T cell activation and infiltration into 
transplanted tissue (44). 

In general, DOCK2 is essential to maintain the normal 
function of the immune system. DOCK2 abnormalities are 
involved in the occurrence and development of a variety 
of immune-related diseases, such as CID, systemic lupus 
erythematosus, Alzheimer’s disease, etc., but more studies 
are needed to reveal their pathogenesis. 

DOCK2 and hematopoietic or vascular diseases

DOCK2 is significantly expressed in hematopoietic cells 
and is essential for the normal function and development 
of hematopoietic cells (20,45-47). In malignant diseases 
of hemopoietic system, DOCK2 has a high probability of 
abnormality and significantly affect the prognosis of the disease.

After CXCL12 stimulates the multiple myeloma 
receptor CXCR4, DOCK2 activates Rac1, and then 
promotes the integrinα4β1 of myeloma cells to bind to 
other cells that express VCAM-1, enhancing the adhesion 
ability of myeloma cells, and promoting their homing to 
bone marrow (24,48). Myeloma cells also express another 
receptor, sphingosine-1-phosphate receptor 1 (S1P1). After 
the stimulation of its ligand sphingosine-1-phosphate (S1P), 
the affinity of integrinα4β1 is up-regulated, and its binding 
with VCAM1 is more efficient. In addition, S1P is also 
involved in the activation of DOCK2-Rac1 pathway (49). 
These two pathways synergistically regulate the progression 
of multiple myeloma.

With the induction of Wnt5a, the proline-rich domain 
(PRD) in the cytoplasm of receptor tyrosine kinase-like orphan 
receptor 1 (ROR1) interacts with SH3 domain of DOCK2 
which activates Rac1 and Rac2 to promote the proliferation of 
chronic lymphocytic leukemia (CLL). However, DOCK2 do 
not affect the chemotaxis migration of CLL cells promoted by 
Wnt5 (50). Abnormal Wnt5a-ROR1-DOCK2-Rac pathway 
may be one of the causes of disease progression in CLL 
patients with high ROR1 expression.

Internal tandem duplication (ITD) mutations of FMS-
like tyrosine kinase-3 (FLT3) in acute myeloid leukemia 
(AML) cells are common, and lead to poor prognosis 
of AML patients. However, the reduction of DOCK2 
expression in FLT3 ITD mutated leukemia cells can inhibit 
the proliferation of AML cells and improve their sensitivity 
to cytosine arabinoside, thus prolonging the survival time 
of patients. The mechanism has not been fully elucidated, 
but DOCK2 has been observed to interact with FLT3 (51), 
which may change the biological effect of FLT3 mutation. 

DOCK2 activates Rac, and the activated Rac phosphorylates 
ERK, which then starts the signal cascade reaction and 
promotes the proliferation of B-cell lymphoma (52).

In addition, when DOCK2 is deficient, NK cells cannot 
normally form lytic synapses to kill leukemia cells due to 
the lack of Rac activation, thus leading to the weakening of 
anti-tumor immunity (53). 

DOCK2 is also associated with other diseases in 
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addition to hematopoietic malignancies. In patients with 
type A hemophilia lacking factor VIII (FVIII), DOCK2 
gene polymorphism caused by DOCK2 single nucleotide 
mutations may lead to increased autoantibodies and cause 
FVIII resistance, which may lead to a decrease in the effect 
of alternative therapy (54). Compared with the mouse 
inflammatory response model caused by low-dose LPS, the 
expression of DOCK2 in the mouse sepsis model caused by 
high-dose LPS was decreased, suggesting that the normal 
expression of DOCK2 has a positive effect on the prognosis 
of sepsis (55). But more research is needed on how DOCK2 
can improve the prognosis of sepsis.

DOCK2 may a l so  be  assoc ia ted  wi th  vascular 
abnormal i t ies  af ter  vascular  in jury,  and vascular 
abnormalities are associated with a variety of diseases, such 
as atherosclerosis and restenosis after angioplasty. The 
mechanism is that, after blood vessel injury, platelet-derived 
growth factor-BB (PDGF-BB) induces the expression of 
DOCK2 in the medial smooth muscle cell (SMC) of the 
blood vessels. DOCK2 reduces the expression of myocardial 
protein and its binding with serum response factor (SRF), 
resulting in decreased expression of SMC markers, thus 
modulating phenotypic transformation of SMC from 
contractibility to decreased elasticity (25,56).

The above evidence proves that DOCK2 plays an 
irreplaceable role in a variety of hematopoietic malignant 
diseases. Because DOCK2 is selectively highly expressed 
in hematopoietic cells and relatively low in other tissues, it 
has the potential to become one of the potential therapeutic 
targets for hematopoietic malignant diseases and may 
also provide new ideas for the treatment of these diseases. 
In addition, DOCK2 is also associated with hemophilia, 
septicemia and abnormal blood vessels after injury, indicating 
that DOCK2 functions are relatively complex, and more 
studies are needed to reveal its pathogenic mechanism. 

DOCK2 and solid tumor

With the development of gene sequencing technology and 
epigenetics, DOCK2 has been found to be closely related 
to the development and prognosis of a variety of tumors. 
Abnormal expression, mutation or modification of DOCK2 
may cause changes in tumor behavior.

DOCK2 regulates prostate cancer in a variety of ways. 
On the one hand, DOCK2 is highly methylated in prostate 
cancer tissues and hypomethylated in other tissues including 
benign and malignant tumors and blood cells. Moreover, 
hypermethylation of DOCK2 is positively correlated with 

some adverse prognostic indicators of prostate cancer, 
such as high prostate-specific antigen (PSA), large tumor 
volume, positive surgical margin, and positive lymph node 
metastasis, suggesting DOCK2 hypermethylation may lead 
to poor prognosis of prostate cancer (57). On the other 
hand, DOCK2 affects cell proliferation in PC3 cell lines of 
prostate cancer cells. After CXCL13 stimulates its receptor 
CXCR5, DOCK2 knockdown will cause decreased Rac 
activation and then affect the JNK signaling pathway, thus 
reducing PC3 proliferation. However, DOCK2 knockdown 
have little influence on AKT or ERK1/2 activation mediated 
by CXCL13 in PC3 cell line, which is important to cell 
proliferation and survival (58), and DOCK2 knockdown also 
have little influence on the migration ability of PC3 cell line. 
But strangely, in another cell line of prostate cancer, LNCaP, 
DOCK2 is barely expressed and it also does not affect LNCaP 
cell invasion and proliferation mediated by CXCL13 (23).  
But the mechanism by which DOCK2 acts differently in the 
two lines of prostate cancer cells remains unclear. 

DOCK2 is highly expressed in the tumor tissues of 
patients with early colorectal cancer, and more CD8+ 
T lymphocytes are recruited to infiltrate into the tumor 
tissues, thus prolonging the overall survival time of patients. 
Moreover, the high expression of DOCK2 was negatively 
correlated with tumor size and invasion (59). Therefore, the 
high expression of DOCK2 may improve the prognosis of 
colorectal cancer.

A series of bioinformatics analysis shows that DOCK2 has 
a high mutation rate in a variety of tumors, such as esophageal 
adenocarcinoma (60), colorectal cancer (61) and intraductal 
papillary mucinous neoplasms of the pancreas (62), but the 
mutated domain and relevant mechanisms are still unclear. 
Besides, when Piwi like RNA-mediated gene silencing 1 gene 
(PIWIL1) was knocked out, the invasion and migration ability 
of gastric cancer cells was weakened, and DOCK2 expression 
was decreased, suggesting that PIWIL1 might be the upstream 
molecule of DOCK2 in gastric cancer (63). 

In conclusion, DOCK2 epigenetic changes, abnormal 
expression or mutations may affect the occurrence, 
development and prognosis of tumors. However, due to the 
different expression levels of DOCK2 in different tumors 
and its different role, it may be difficult to develop targeted 
drugs for DOCK2, but DOCK2 may be a predictive 
indicator for some tumors.

Conclusions

As GEF, DOCK2 participates in multiple signaling 
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pathways and regulates various diseases by activating Rac. 
DOCK2 is expressed in a variety of immune cells and 
affects their functions. Therefore, abnormal DOCK2 can 
cause serious immune deficiency and is also related to 
autoimmune diseases. DOCK2 also affects the progression 
of a variety of hematopoietic malignancies. Due to its 
relatively high expression in hematopoietic cells, DOCK2 
has the potential to become a new therapeutic target for 
leukemia, lymphoma, etc. 

However, due to the diversity of downstream molecules 
of Rac and the complexity of signaling pathways, the 
pathogenic mechanism of DOCK2 abnormality has 
not been fully clarified. Cell type is one of the factors 
that determine the molecular mechanism of DOCK2. 
In lymphocytes,  DOCK2 affects  their  migration, 
differentiation and activation, and is indispensable for 
the maintenance of normal immune function (27,31,32). 
In tumor cells, abnormal DOCK2 may alter tumor cell 
behaviors and affect the occurrence and development 
of tumors (20). The different expression and epigenetic 
regulation of DOCK2 in different cells may be the reason 
for the different functions of DOCK2. 

Existing studies on DOCK2 mostly focus on its regulation 
of hematopoietic cells, and partly reveal the mechanism of its 
regulation on immune functions, which may be related to its 
relatively high expression in hematopoietic cells. However, 
some researches have shown that DOCK2 may also be 
related to the occurrence and development of solid tumors, 
but most studies only stay at the level of gene sequencing 
or macroscopic phenomena, and have not clarified the 
molecular mechanism of how DOCK2 regulates tumor 
cell behavior. In the future, on the basis of gene sequencing 
finding that DOCK2 is highly mutated in some solid tumors, 
we can further explore the molecular mechanism of how 
DOCK2 regulates tumor cell behavior. 

In addition, although DOCK2 is associated with a variety 
of diseases and has the potential to be a target for treatment 
of some diseases, no drug targeting DOCK2 has been 
developed so far. In the future, based on the further study of 
the mechanism of DOCK2 regulating diseases, some drugs 
targeting DOCK2 can also be developed appropriately. 
Only in this way can we really benefit the patients.

In general, DOCK2 is closely related to the occurrence 
and development of a variety of diseases. Although the 
knowledge we have learned so far may only be the tip of the 
iceberg, it provides some clues for us to further explore the 
function of DOCK2 in the future, and also provides new 
ideas for the treatment of some patients. 
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