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Introduction

Nearly a century after the first publications which would lead 
to the recognition of the Rh blood group system (1,2), and 
40 years after the molecular basis of the Rh antigens (Ag) 
were discovered (3,4), 55 Rh Ag, over 400 RHD and over  
150 RHCE alleles are recognized by the International Society 
of Blood Transfusion (ISBT) (5). Many more alleles can be 
found in the Genbank database (6), published articles and 
conference abstracts. The Human RhesusBase inventories 

over 600 RHD alleles (7), and the recent RHeference database, 
over 700 (8). Which alleles to detect and how to manage allele 
carriers are recurring questions for immunohematologists.

There are 5 conventional alleles in the Rh system: 
RHD*01 (standard RHD) for the RHD gene, RHCE*01 
(RHCE*ce), RHCE*02 (RHCE*Ce), RHCE*03 (RHCE*cE) 
and RHCE*04 (RHCE*CE) for the RHCE gene (9). RHD*01 
and RHCE*01 are considered to be the reference sequences 
for the RHD and RHCE genes, respectively. The reference 
sequences have only recently been updated in RefSeq (10) 
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to reflect this (NG_007494.1 for RHD and NG_009208.3 
for RHCE). Formerly, RefSeq listed the RHD*10.00 
(RHD*DAU0) and RHCE*01.01 (RHCE*ce48G) alleles. 
The broad term “Rh variants” (11,12) is commonly used 
to designate the products of alleles in the Rh blood group 
system differing from the conventional.

The allele repartition in different populations is far 
from homogeneous. Erythrogene database (13) presents 
an interesting overview through the analysis of blood 
group systems, including Rh, from the 1000 Genomes 
project. This approach has limitations, e.g., none of the 
RHCE*02 (RHCE*Ce) alleles were assigned a prevalence, 
probably because of the sequence identity between exon 
2 of RHD*01 (conventional RHD) and RHCE*02. Some 
genetic variations are associated as if constituting an allele 
but could be explained by the association of two alleles, 
e.g., RHD c.186G>T, c.410C>T, c.455A>C, c.1048G>C 
and c.1136C>T are associated with a 0.91% prevalence in 
Africans, but do not constitute a known RHD allele, whereas 
the variations could be explained at the heterozygous state 
by the association of two alleles RHD*10.00 (RHD*DAU0, 
with the single substitution c.1136C>T) and RHD*04.01 
(RHD*DIVa, associating c.186G>T, c.410C>T, c.455A>C 
and c.1048G>C), alleles common in Africans (37.75% and 
1.06%, respectively, according to Erythrogene).

The clinical significance of blood group alleles and Rh 
variants is not easy to establish, for several reasons. Locating 
the reports in the vast literature is a tedious task. Individual 
variability to alloimmunization remains poorly understood 
(14,15), and most available evidence amount to case reports 
of antibody (Ab) formation, transfusion reactions, or 
hemolytic disease of the fetus and the newborn (HDFN). 
As the reports are real-life data, they are often incomplete, 
particularly regarding serology. Whether the Ab is an allo- 
or auto-Ab and the imputability of an Ab in a hemolytic 
reaction may be difficult to ascertain (16,17). The most 
robust way to demonstrate that an Ab is an allo-Ab is to show 
that it cannot be auto-adsorbed with the patient’s own red 
blood cells (RBCs) (18). However, auto-adsorptions cannot 
be performed in a recently transfused patient and may be 
inconclusive for very weakly expressed Ag.

Several definitions have been proposed for “partial” Rh 
Ag (12). In this work, we will use the term as a synonym 
for “at risk for Ab formation to the corresponding Rh Ag” 
(i.e., a partial D is at risk for allo-anti-D if exposed to the 
standard D Ag). Ab formation to the corresponding Ag 
is theoretically impossible in a heterozygous individual, 
because no epitopes of the Ag would be missing (i.e., a 

carrier of a conventional D Ag and a partial D variant has 
all D epitopes thanks to their conventional D; a carrier of 
a conventional C and a partial C variant has all C epitopes, 
etc.). Genotyping has become key to detect variants in 
the Rh system and resolve difficulties in laboratories, as 
serology cannot reliably distinguish all the subtleties of the 
Rh system (12,19,20). 

One of two main conducts are adopted by most 
transfusion specialists for the management of Rh variants in 
recipients. The first could be called a “preventive” attitude 
and consists in avoiding the exposure of carriers of partial 
Rh variants to the standard Ag, to prevent alloimmunization 
[in women of childbearing age and certain types of patients, 
e.g., with sickle cell disease (SCD)]. The second could be 
called a “palliative” attitude and consists in taking measures 
only when a patient has produced the Ab. Most countries 
recommend the preventive approach for variants at a high 
risk for Ab formation. Several countries recommend the 
preventive approach for Rh variants for which the risk 
for Ab formation is unknown. The choice between the 
preventive and palliative may be made on a case-by-case 
basis for each variant and this requires easily accessing the 
available evidence for Ab formation. The choice will also 
depend on the allele prevalence in the country or region, 
the alloimmunization risk that carriers face, the availability 
of anti-D immunoglobulins and of RBC units of different 
phenotypes, e.g., in a country where partial D variants and 
D negative RBC units are rare, the attitude will probably 
be different than in a country where partial D variants are 
common and D negative units are more readily available.

The present review gathers the current published 
evidence regarding allo-Ab formation associated with 
RHD and RHCE alleles. Null alleles are not discussed, as, 
by definition, they do not express the Ag and carriers are 
consequently able to form Ab when exposed to the Ag, 
e.g., individuals with RHD null alleles are at risk for anti-D 
as much as homozygous RHD*01N.01 (RHD deletion) 
individuals are.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/aob-20-84).

RHD alleles

The earliest reports of anti-D in D positive patients have been 
associated with variant D phenotypes. The DVI phenotype 
and RHD*06 (RHD*DVI) alleles have been responsible for 
many anti-D alloimmunizations with severe consequences 
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(7,21-23). This has given rise to recommendations for reagent 
selection, adopted by many countries, so that RHD*06 carriers 
are typed as D negative and are managed as such (24,25). 
Patients with the DFR phenotype, attributed to RHD*17 
(RHD*DFR) alleles, have also made allo-anti-D (26-28). Many 
RHD alleles, listed in Table 1, have since been associated with 
anti-D formation in carriers of these alleles, in the absence of 
conventional RHD*01.

A few common RHD alleles have a somewhat controversial 
status regarding anti-D formation risk, such as RHD*10.01 
(RHD*DAU0) (29,37,41,58,63,76,79,104,105), RHD*09.03 
(RHD*weak D type 4.0) and RHD*09.04 (RHD*weak D type 
4.1) (76,79,106-108). Both auto- and allo-anti-D have been 
reported in carriers. Several studies in populations with a 
high prevalence for these alleles have reported no anti-D 
in carriers, with the inherent limits of retrospective studies 
(50,109,110). None of the allo-anti-D descriptions were able 
to demonstrate that the anti-D could not be auto-absorbed 
on the carrier’s own RBCs (104,111). Nevertheless, the 
incidence of presumed allo-anti-D is very low compared to 
the alleles’ prevalence. Erythrogene (13) reports RHD*09.03 
as being present in 1.21% in Africa, and reports a very high 
prevalence for RHD*10.01 in all populations assessed (Africa: 
37.75%; America: 12.54%; East Asia: 8.83%; Europe: 4.47%; 
South Asia: 12.68%).

Many rare RHD alleles, not listed in Table 1, have been 
associated with anti-D formation at least once in published 
articles, including RHD*02 (RHD*DII) (112,113), RHD*19 
(RHD*DHMi) (7,21,114), RHD*27 (RHD*DDE) (7,21), 
RHD*33 (RHD*DWI)  (115),  RHD*38  (RHD*DNT) 
(7,21), RHD*39 (RHD*307C) (80), RHD*47 (RHD*DMI) 
(7,21,54), RHD*50 (RHD*1060A) (116), RHD*weak D type 
57 (RHD*01W.57) (73), RHD*710T {provisional name: 
[7] RHD*01W.155} (55). Some have been associated with 
anti-D formation in abstract form, including: RHD*03.02 
(RHD*DIIIb Caucasian) (117), RHD*03.08 (RHD*DIII 
type 8) (118), RHD*24 (RHD*DNAK) (119), RHD*48 
(RHD*DNS) (120), RHD*01W.33 (RHD*weak D type 33) 
(121,122), as well as several alleles not yet listed by ISBT: 
RHD*95A (123), RHD*325G (124), RHD*470G (125), 
RHD*455C,968A (118), RHD*1048C (65).

A few cases of allo-anti-D have been reported in 
abstract form for RHD*01W.1 (RHD*weak D type 1) (126), 
RHD*01W.2 (RHD*weak D type 2) (127) and RHD*01W.3 
(RHD*weak D type 3) (128,129), but these reports are 
extremely rare compared to the number of carriers and 
the consensus is that these alleles should be considered to 
produce normal D antigen (104).

As underlined recently (130), the alleles RHD*01W.33 
and RHD*01W.45 have quite a high prevalence: in America 
(0.14%) for the former, and in America and Europe (0.29% 
and 0.20%, respectively) for the latter (13). Very rare anti-D 
have been reported in carriers of these alleles (69,121,122), 
which may reveal a very low anti-D formation risk, perhaps 
comparable to that of RHD*01W.1, RHD*01W.2 and 
RHD*01W.3. The paucity of anti-D reports may also be 
biased by the genotyping strategies in place and by the 
difficulty to present or publish case reports for such data.

Next to RHD*01W.1, RHD*01W.2, and RHD*01W.3, 
the most important RHD allele for which no allo-anti-D 
has ever been reported despite a large number of carriers 
is RHD*01EL.01 (RHD*1227A). Erythrogene reports 
RHD*01EL.01 with: America 0.29%, East Asia 0.69% and 
Europe 0.10%. Erythrogene also reports RHD*01EL.36, 
which differs from the first by c.1073+152C>A only (a 
genetic variation reported in all populations and also 
found with other genetic variants) (13) with: Africa 1.13%, 
America 0.14%, East Asia 0.20%, Europe 0.60%, South 
Asia 1.94%. Several studies support the absence of anti-D 
formation risk in carriers of this allele (131-133), but others 
urge caution and recommend waiting for the results of an 
ongoing prospective study on the matter (134).

Table 2 lists other RHD alleles frequently reported in 
immunohematology studies, reported in a large number of 
carriers, or associated with a prevalence in Erythrogene (13), 
and for which no anti-D has been reported. In the absence of 
prospective studies following Ab formation in a large number 
of carriers, it may be premature to definitely rule out any 
anti-D formation risk in these alleles. This is particularly true 
for alleles which tend to type as D negative, as carriers are 
less likely to be exposed to D positive RBC units (see Table 2),  
and molecular analysis is less likely to be performed in an 
apparently D negative patient with anti-D.

Some RHD alleles produce low prevalence Ag which may 
be responsible for Ab formation in an individual exposed to the 
Ag. Table 3 lists reports of such alloimmunization, including 
many with severe hemolytic consequences in pregnancy.

RBCs carrying variants in the Rh system can also induce 
Ab formation in recipients negative for the corresponding Ag. 
There are comparatively few reports, mainly of D variants 
with a DEL (226) or very weak D phenotype (any variant 
with a stronger reactivity is of course capable of inducing Ab 
formation in carriers). Cases of primary alloimmunization, 
including RHD*01EL.01 (227,228), RHD*01W.1 (229), 
RHD*01W.67 (230) and cases of anti-D reactivation, including 
RHD*01EL.01 (231), RHD*01W.26 (81) have been reported.
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RHCE alleles 

Most RHCE alleles are responsible for the expression of a 

pair of RhCE Ag: C (RH2), E (RH3), c (RH4), e (RH5). 

The RHCE alleles associated with Ab formation to the 
corresponding Ag are listed in Table 4.

A few RHCE alleles, for which no RH10 or RH20 
phenotype, no prevalence in Erythrogene and, more 

Table 1 RHD alleles associated with anti-D formation in carriers of these alleles, according to the current literature

Common name, ISBT numerical (name based on nucleotide 
changes)

References of the 
anti-D

Prevalence  
(Erythrogene) (13)

Reports† (RHeference) (8)

RHD*DIIIa, RHD*03.01 (RHD*186T,410T,455C,602G,667G,819A) (29-31) Africa: 0.76% (29-35)

RHD*DIIIc, RHD*03.03 (RHD*361A,380C,383G,455C) (7,21,36) – (36-38)

RHD*DIII type 4, RHD*03.04 (RHD*186T,410T,455C) (7,37) Africa: 0.76%;  
America: 0.14%

(21,37-40)

RHD*DIVa, RHD*04.01 (RHD*186T,410T,455C,1048C) (7,16,21,29,41) Africa: 1.06%;  
America: 0.29%

(21,29,33,34,42)

RHD*DV type 2, RHD*05.02 (RHD*D-CE(5)-D) (7,21) – (43-46)

RHD*DV type 7, RHD*05.07 (RHD*D-CE(5:667-5:787)-D) (7,21) – (47,48)

RHD*DVII, RHD*07.01 (RHD*329C) (7,21,49) Europe: 0.30%; 
South Asia: 0.10%

(37,48-53)

RHD*DFV, RHD*08.01 (RHD*667G) (40) Africa: 0.08% (19,34,40,53-57)

RHD*DAU3, RHD*10.03 (RHD*835A,1136T) (7,21,29,55,58,59) Africa: 3.03%;  
America: 0.72%; 
Europe: 0.10%

(29,32-34,40,42,58-60)

RHD*DAU4, RHD*10.04 (RHD*697A,1136T) (7,21,29,61) – (58,59,62)

RHD*DAU5, RHD*10.05 (RHD*667G,697C,1136T) (29,62-64) Africa: 0.83% (32-34,40,42,53,62)

RHD*DOL1, RHD*12.01 (RHD*509C,667G) (7,21,54,65) – (50,65-67)

RHD*DOL2, RHD*12.02 (RHD*509C,667G,1132G) (65) – (34,38,65,67,68)

RHD*DNB, RHD*25 (RHD*1063A) (7,21,69-71) America: 0.14%; 
Europe: 0.20%

(53,66,68,69,72)

RHD*DFL, RHD*28 (RHD*494G) (7,21,54) – (54,73,74)

RHD*DWN, RHD*49 (RHD*1053T,1057_1061delinsTGGAA) (7,21) – (75)

RHD*DAR, with or without additional silent mutations RHD*09.01 
(.00, .01, .02, .03) (RHD*602G,667G,1025C +/– c.744T, c. 957A)

(7,21,37,49,76,77) – (34,37,38,40,44,49,55,77,78)

RHD*partial weak D type 11, RHD*11 (RHD*885T) (7,54,79) – (37,44,48,53,72,74,78,80-91)

RHD*partial weak D type 15, RHD*15 (RHD*845A) (7,37,76,79) East Asia: 0.10% (37,43-45,56,72,80,87,89,92-95)

RHD*partial weak D type 21, RHD*21 (RHD*938T) (18) – (48,66)

RHD*weak D type 41, RHD*01W.41 (RHD*1193T) (96) –

RHD*weak D type 42, RHD*01W.42 (RHD*1226T) (69) – (62,66)

RHD*weak D type 45, RHD*01W.45 (RHD*1195A) (69) America: 0.29%; 
Europe: 0.20%

(97,98)

RHD*DEL8, RHD*01EL.8 (RHD*486+1A) (99-101) – (47,51,81,82,86,87,90,91,101-103)

The RHD*06 (RHD*DVI) and RHD*17 (RHD*DFR) alleles, RHD*10.00 (RHD*DAU0), RHD*09.03 (RHD*weak D type 4.0) and RHD*09.04 
(RHD*weak D type 4.1) are not listed in this table. See text for commentary of these alleles. †, a complete list of the anti-D reported in the 
literature for these alleles can be found in the RHeference database (8).
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Table 2 RHD alleles frequently reported and for which no anti-D have been reported in carriers

Common name, ISBT numerical when applicable  
(name based on nucleotide changes)

Prevalence (Erythrogene) (13) Reports (RHeference)† (8)

RHD*DIII type 6, RHD*03.06  
(RHD*410T,455C,602G,667G,819A)

America: 0.14% (39,40,135)

RHD*DV type 1, RHD*05.01 (RHD*667G,697C) – (34,44,45,56,136,137)‡

RHD*DV type 4, RHD*05.04 (RHD*697C) Africa: 0.08%; South Asia: 1.02% (45,56,136,137)‡

RHD*DAU0.01, RHD*10.00.01 (RHD*579A,1136T) Africa: 1.66% (34,38,49,59)

RHD*DAU0.02, RHD*10.00.02 (RHD*150C,1136T) Africa: 0.08% (59)

RHD*DAU6, RHD*10.06 (RHD*998A,1136T) Africa: 0.23% (59,62)

RHD*DAU14, RHD*10.14 (RHD*201A,203A,1136T) Africa: 0.08% (59,116)

RHD*667G,1136T Africa: 0.08%
South Asia: 0.10%

(38)

RHD*DFW, RHD*18 (RHD*497C) – (54-56)

RHD*DVL2, RHD*32 (RHD*705_707delGAA) – (85,86,138)§

RHD*DUC2, RHD*37 (RHD*733C) America: 0.14% (53)

RHD*186T Africa: 0.76%; America: 3.89%;  
East Asia: 11.41%; Europe: 4.47%; 
South Asia: 1.23%¶

(30,67)

RHD*525T, RHD*59 Africa: 0.15%; America: 0.14%;  
East Asia: 0.20%

(52)

RHD*932C Africa: 1.36%; America: 7.35%;  
East Asia: 11.81%; Europe: 10.34%; 
South Asia: 0.51%

Never reported in an immunohematology  
study or abstract

RHD*weak D 4.3, RHD*09.05 (RHD*602G,667G,819A,872G) – (90,139,140)§

RHD*weak D type 5, RHD*01W.5 (RHD*446A) – (37,44,47,48,51,80,81,88,90,139)§

RHD*weak D type 14, RHD*01W.14 (RHD*544A,594T,602G) – (37,48,72,89)

RHD*weak D type 18, RHD*01W.18 (RHD*19T) – (43,73,94)

RHD*weak D type 24, RHD*01W.24 (RHD*1013C) – (45,94)

RHD*weak D type 25, RHD*01W.25 (RHD*341A) East Asia: 0.10% (43,45,55,56,92)

RHD*weak D type 28, RHD*01W.28 (RHD*1152C) Africa: 0.15% (141,142)

RHD*weak D type 38, RHD*01W.38 (RHD*833A) – (27,47,68,73,78,82,85,86,97,98,139,143)§

RHD*weak D type 66, RHD*01W.66 (RHD*916A) Africa: 0.08%; Europe: 0.10% (135)

RHD*weak D type 93, RHD*01W.93 (RHD*359A) – (51,144,145)

RHD*weak D type 100, RHD*01W.100 (RHD*787A) – (56,94)

RHD*DEL1, RHD*01EL.01 (RHD*1227A) America: 0.29%; East Asia: 0.69%; 
Europe: 0.10%§§

See text

RHD*DEL18, RHD*01EL.18 and RHD*01N.50 (RHD*93insT) – (47,74,84,85,103)§

RHD*DEL43, RHD*01EL.43 (RHD*46C) – (51,83,85)§

RHD*DEL11, RHD*01EL.11 (RHD*1252_1253insT) – (47,74,81)§

Table 2 (continued)
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Table 2 (continued)

Common name, ISBT numerical when applicable  
(name based on nucleotide changes)

Prevalence (Erythrogene) (13) Reports (RHeference)† (8)

RHD*Ex3dup, RHD*01W.150†† (RHD*327_487-4163dup) – (55,56)

RHD*Ex10del – (85,146,147)§

RHD*175A, RHD*01W.151†† South Asia: 0.20% (55)

RHD*648C, RHD*01W.154†† South Asia: 0.82% (55,56)

DBO3, RHD*968A East Asia: 0.50% (148)

RHD*960A – (56,142,149)

List of RHD alleles frequently reported in immunohematology studies, or reported in a large number of carriers in the current literature, but 
for which no anti-D have been reported in carriers. †, additional references listing carriers of these alleles can be found in the RHeference 
database (8). ‡, anti-D have been reported with “DV” phenotype. §, these alleles have a very low D antigen expression (DEL phenotype or 
very weak D phenotype) and anti-D formation in carriers may have occurred but not have been differentiated from anti-D in true D negative 
individuals. ¶, Prevalence for RHD*186T may be overestimated, as this genetic variation can be found in many RHD*03 (RHD*DIII) alleles 
combining several point mutations. ††, provisional ISBT name according to the Human RhesusBase (7). §§, also see text.

Table 3 Low prevalence antigens produced by RH alleles

Low prevalence  
Antigens

Alleles reported to express the antigen
References of antibodies  

to the Ag

RH8 (CW) RHCE*02.08.01 (RHCE*CeCW) (150); RHCE*02.08.02 (RHCE*CeNR) (151) (152-154)

RH9 (CX) RHCE*02.09 (RHCE*CeCX) (150) (155)

RH10 (V) See Table 4 (194,195) (196)

RH11 (EW) RHCE*cEEW (RHCE*03.01) (190) (197,198)

RH20 (VS) See Table 4 (194,195) (199)

RH23 (DW) RHD*05 (.01, .02, .04, .06, and .08) (RHD*DV type 1, 2, 4, 6 and 8) (136); RHD*10.05 
(RHD*DAU5) (57); RHD*D-cE(5,6)-D (200)

(201,202)

RH30 (Goa) RHD*04.01 (RHD*DIVa) (21); RHD*1048C (123); RHD*712A,1048C (203) (204,205)

RH32 RHCE*CeRN (RHCE*02.10.01) (206); RHD*14.01 and .02 (RHD*DBT-1 and 2) (207) (208,209)

RH36 (Bea) RHCE*01.14 (RHCE*ceBE) (210) (210-212)

RH40 (Tar) RHD*07.01 (RHD*DVII) (213); RHD*07.02 (RHD*DVII type 2) (214) (215)

RH45 (Riv) Haplotype associating RHD*04.01 (RHD*DIVa) and RHCE*DIVa(C)− (216) (217)

RH48 (JAL) RHCE*01.20.07 (RHCE*ceJAL) (173); RHCE*01.21 (.01 and .02) (218); RHCE*02.01 
(RHCE*CeMA or RHCE*CeJAL) (173,218)

(173,219,220)

RH49 (STEM) RHCE*01.08 (RHCE*ceBI), RHCE*01.09 (RHCE*ceSM) (175) (221)

RH54 (DAK) RHCE*CeRN (RHCE*02.10.01) (67,222); RHD*12.02 (RHD*DOL2) (175); RHD*03.01 
(RHD*DIIIa) (including with c.150C), RHD*03.07 (RHD*DIII type 7), and RHD*186T 
(30,39,67)

(223)

RH55 (LOCR) RHCE*01.15 (RHCE*ceLOCR) (224) (225)

As all alleles have not been tested for all low prevalence antigens, the allele list for each antigen may not be comprehensive.
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Table 4 RHCE alleles associated with antibody formation to the corresponding antigen(s), RH10 (V) and RH20 (VS) phenotypes

Name based on nucleotide substitutions (ISBT 
numerical, common name)

Reference of antibodies to the  
antigens listed

Prevalence  
(Erythrogene) (13)

RH10, RH20 phenotypes

RHCE*ce48C (RHCE*01.01) See text See text RH:–10,–20, (67,156)

RHCE*ce48C,1025T (RHCE*01.02.01,  
RHCE*ceTI)

Heterozygous: RH4, RH5 (157) Africa: 2.27%;  
America: 0.43%

–

RHCE*ce1025T (RHCE*01.03) – Africa: 0.30% RH:–10,–20, (31)

RHCE*ce48C,712G,733G,787G,800A,916G 
(RHCE*01.04.01, RHCE*ceAR)

Homozygous: RH18, RH19 (19,158);  
Heterozygous, compound heterozygote: 
RH4, RH5 (19,158-160)

– RH:–10,–20, (77,161)

RHCE*ce48C,712G,787G,800A (RHCE*01.05.01, 
RHCE*ceEK)

Homozygous: RH18, RH19 (19);  
compound heterozygote: RH5 (19,41,65)

– RH:–10, (162)

RHCE*ce254G (RHCE*01.06.01, RHCE*ceAG) Homozygous: RH5, RH59 (163);  
heterozygous: RH5 (163)

Africa: 5.60%;  
America: 0.72%

–

RHCE*ce48C,667T 
 (RHCE*01.07.01, RHCE*ceMO)

Homozygous: RH5, RH19, RH31, RH61 
(105,158); heterozygous, compound  
heterozygote: RH5 (19,41,164)

Africa: 1.44%;  
America: 0.43%;  
East Asia: 0.20%;  
Europe: 0.10%

RH:–10,–20, (19,105,165)

RHCE*ce667T  
(RHCE*01.07.02, RHCE*ceMO.02)

– Africa: 0.08% –

RHCE*48C,712G,818T,1132G  
(RHCE*01.08, RHCE*ceBI)

Homozygous: RH18, RH19 (19,65,158); 
heterozygous, compound heterozygote: 
RH5 (19,41,65,67,158)

Africa: 0.08% RH:–10,–20, (67)

RHCE*48C,712G,818T 
 (RHCE*01.09,RHCE*ceSM)

– RH:–10,–20, (67)

RHCE*ce687_689delAAG  
(RHCE*01.13,RHCE*ceBP)

Compound heterozygote: RH31, RH34 
(166)

– –

RHCE*ce286A (RHCE*01.15, RHCE*ceLOCR) Heterozygous: RH26 (167) – –

RHCE*48C,1170T, 
1193A (RHCE*ce48C-D(9)-ce, RHCE*01.16)

Homozygous: RH5 (168) East Asia: 0.60%;  
South Asia: 0.10%

–

RHCE*ce733G (RHCE*01.20.01) Compound heterozygote (29,31),  
see text

Africa: 15.28%;  
America: 2.31%;  
Europe: 0.30%

RH:10,20, (31,161)

RHCE*ce48C,733G (RHCE*01.20.02) Compound heterozygote (29,31), see text – RH:10,20, (31,161)

RHCE*ce48C,733G,1006T (RHCE*01.20.03 
RHCE*ceS)

Homozygous: RH2, RH31, RH34 
(19,30,31,158,169); Heterozygous: RH4†, 
RH5, RH31 (31,41,158,169,170)

– RH:–10,20, (31,35,67,161)

RHCE*ce48C,733G,1025T (RHCE*01.20.04.01, 
RHCE*ceTI type 2)

– Africa: 0.08%;  
Europe: 0.20%

RH:10,20, (31,161)

RHCE*ce733G,1006T (RHCE*01.20.05) – Africa: 0.08% RH:20, (161)

RHCE*ce48C,697G,733G (RHCE*01.20.06, 
RHCE*ceCF)

Homozygous: RH4, RH5, RH58 (171); 
heterozygous: RH4, RH5 (49,171)

Africa: 0.08% RH:10,20, (161,171,172)

RHCE*ce340T,733G  
(RHCE*01.20.07, RHCE*ceJAL)

Homozygous: RH57 (173); heterozygous: 
RH4 (174), RH5, (19)

– Variable: very weak or  
negative for RH10 and 
RH20 (67,161,173,175)

Table 4 (continued)
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Table 4 (continued)

Name based on nucleotide substitutions (ISBT 
numerical, common name)

Reference of antibodies to the  
antigens listed

Prevalence  
(Erythrogene) (13)

RH10, RH20 phenotypes

RHCE*ce48C,733G,941C (RHCE*01.20.09) Heterozygous: RH31 (176) Africa: 2.57%;  
America: 0.14% 

RH:10,20, (176,177)

RHCE*ce-D(5)-ce (RHCE*01.22, RHCE*ceHAR) RH1 (178), RH5 (179) – –

RHCE*ce114C (RHCE*01.41, RHCE*ceWA) Homozygous: RH62 (5,180) – –

RHCE*505C,509G,514T‡ (RHCE*ceMNL) Heterozygous: RH5 (181) –

RHCE*Ce340T (RHCE*02.01, RHCE*CeMA, 
RHCE*CeJAL)

– – RH:–10,–20, (173,182)

RHCE*Ce-D(5)-Ce (RHCE*02.04, RHCE*CeVA) – – RH:–10,–20, (182)

RHCE*Ce122G (RHCE*02.08.01, RHCE*CeCW) Homozygous: RH51 (183,184);  
heterozygous: RH2 (41)

§

RHCE*Ce122G-D(6-10) (RHCE*02.08.02, 
RHCE*CeNR)

Homozygous: RH17-like (151,185) – RH:–10,–20, (151)

RHCE*Ce106A (RHCE*02.09, RHCE*CeCX) Homozygous: RH51 (183); heterozygous: 
RH2 (41)

–

RHCE*ce48C,106A,733G – – RH:20, (140)

RHCE*Ce-D(4)-Ce  
(RHCE*02.10.01, RHCE*CeRN)

Homozygous: RH46 (158,186);  
Heterozygous: RH2, RH5 (158,187,188); 
compound heterozygote (19,166)

– RH:–10,–20, (19,67)

RHCE*Ce890C (RHCE*02.18) Heterozygous: RH31-like (189) – –

RHCE*Ce667T (RHCE*02.22) Heterozygous: RH5 (158) – –

RHCE*cE500A (RHCE*03.01) Heterozygous: RH3 (190) – –

RHCE*cE697G,712G 
(RHCE*03.03.01, RHCE*cEFM)

Heterozygous: RH3 (191) – –

RHCE*cE602C (RHCE*03.04, RHCE*cEIV) ¶ Africa: 0.15% –

RHCE*cE48C (RHCE*03.18) – Africa: 0.76%;  
America: 1.87%;  
East Asia: 0.99%.  
Europe: 0.80%;  
South Asia: 0.41%

–

RHCE*cE350_358delCCATGAGTG††  
(RHCE*03.31, RHCE*cEMI)

RH17-like (192) – –

RHD*DIIIa-CEVS(4-7)-D (RHD*03N.01) and 
RHD*D-CEVS(4-7)-D (RHD*01N.06)

RH2 (31,41,158,187,188) – –

RHCE*CE-D(4-7)-CE RH17-like (193) – –
†, an antibody to this antigen was only reported in poly-immunized patient(s), requiring differential adsorptions to separate specificities. ‡, 
nucleotide substitutions were not explicit in the abstract, and were deduced. §, since none of the RHCE*02 alleles have been associated 
with a prevalence in Erythrogene (probably because of the sequence identity of RHD*01 exon 2 and RHCE*02 exon 2), the numbers listed 
for RHCE*ce48C,122G may in fact apply to RHCE*02.08.01: Europe: 0.99%. South Asia: 0.20%. ¶, carriers of RHCE*03.04 have been 
receiving RH:3 (E positive) RBC units for many years, with no documented allo-anti-RH3 formation. 
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importantly, no Ab report could be found, but are worth 
mentioning are:  RHCE*02.02  (RHCE*CeFV) (232), 
RHCE*02.03  (RHCE*CeJAHK)  (233),  RHCE*02.11 
(RHCE*Ce286A) (234).

As for RHD, a few RHCE alleles have a controversial 
status. Both allo- and auto-anti-e Ab have been reported 
for RHCE*01.01 (RHCE*ce48C) and RHCE*01.20 alleles 
(comprising c.733C>G) (32,60,187). Erythrogene reports 
RHCE*01.20.01 in Africa (15.28%), America (2.31%), 
and Europe (0.30%). The prevalence of RHCE*01.01 
reported by Erythrogene is overestimated, probably because 
RHCE*02 alleles could not be recognized. Nevertheless, 
other sources list the allele as common, particularly in 
Africans (161).

Some studies with immunization data and the clinical 
consequences of Ab were performed before molecular 
typing became standard (235). Unfortunately, molecular 
typing has not since been published for these samples. 

Similarly to what is observed for RHD alleles, some RHCE 
alleles produce low prevalence Ag, which may be responsible 
for Ab formation in an exposed individual (Table 3). 

Discussion

For only a fraction of RHD and RHCE reported to-date, Ab 
to the expressed Ag have been reported. The list presented 
here may not be comprehensive. Some Ab may have been 
reported in other languages, or not reported at all. It should 
be underlined that the data presented in abstract form only 
have not undergone peer-review. It may be that doubts 
arose later as to the specificity of the Ab.

In many of the studies referenced in this review, the 
serology of the Ab is not detailed. Ab to Rh antigens may 
combine allo- and auto-Ab components and be difficult 
to interpret. In many cases, it does not serve any practical 
purpose to perform extensive serology testing once a variant 
has been identified, except for research purposes, as the 
findings would have no effect on patient management (e.g., 
if a patient has anti-D and a D variant, they will receive D 
negative RBC units regardless). This is particularly true 
for the more common alleles and for those previously 
associated with allo-Ab formation. Some studies seem to 
have found allo-Ab in individuals with apparently normal 
RH alleles (e.g., anti-e in an individual with RHCE*01), 
which interrogates the allo-Ab listed in the same study with 
Rh variants (could auto-Ab explain some of the findings?). 
More serology data would often be valuable. It would be 
valuable to the community if, whenever possible, allo- 

and auto-Ab were identified and studies could report the 
analyses performed for this purpose, even when incomplete 
testing was performed.

The common practice of using the term “partial” 
Ag as a synonym with “at risk for Ab formation to the 
corresponding Ag” should continue to be questioned. 
This leads to considering Ab formation risk as a binary, 
putting all Rh variants on the same level and limits our 
ability to adjust policies depending on the variants. The 
variants discussed here are not all equivalent in terms of 
Ab formation risk, as mentioned above for several RHD 
alleles. From our experience, RHD*03.01 (RHD*DIIIa), 
RHD*10.05 (RHD*DAU5), RHD*04.01 (RHD*DIVa) and 
RHD*49 (RHD*DWN) are among the alleles particularly 
prone to anti-D formation. This is observed in our setting 
where carriers are relatively common thanks to the African 
and Afro-Caribbean heritage of many French people, 
even if we cannot estimate the prevalence precisely. These 
variants are not screened by our routine phenotyping 
methods and carriers are unlikely to receive D negative 
RBC units or anti-D immunoglobulins to prevent anti-D 
alloimmunization (which would be the standard patient 
management when D variants at risk for anti-D are detected 
in our country because of weakened Ag expression). These 
variants are regularly detected in D positive individuals after 
forming anti-D. This observation in our setting may not be 
as relevant in populations with a different genetic makeup, 
or with different policies for patient management.

The prevalence listed here is only indicative, as the 
quality of the 1000 Genomes project data is imperfect (236).  
Many alleles have no prevalence associated: either the 
genetic variation(s) are too rare, or the variations could not 
be phased, especially for hybrid alleles or equivalent (none 
of the RHCE*02 alleles has a prevalence, as mentioned in 
the introduction).

With the expansion of genotyping, an increasing number 
of genotyping studies revealing the Rh genetic makeup of 
different populations is being published. When possible, the 
Ab found in the same population would be worth presenting 
together with the genotyping data. Authors should make 
sure to provide serological data, even when incomplete, and 
present the clinical consequences of the alloimmunization, 
if any. 

Antibodies can cause HDFN or hemolytic transfusion 
reactions (HTR). The risk is considered to be possible for 
any Rh allo-antibody, and patients with Ab are usually not 
re-exposed to the offending Ag to avoid such complications. 
Therefore, hemolytic consequences of alloimmunization 
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have been reported in only a subset of the alleles discussed 
here and the available data must be interpreted with caution. 
The most severe HTR, with hyperhemolysis, occur in SCD 
patients (237). In these patients, the causality of a specific 
Ab is particularly hard to establish (16,17). HTR with 
hyperhemolysis can occur in patients with multiple Ab, can 
be caused by auto-Ab or Ab not usually considered clinically 
significant, or even occur in the absence of Ab, making the 
interpretation for a single Ab difficult (32,237-239).

HTR or decreased survival of RBCs have been reported 
for anti-D associated with partial D, including RHD*04.01 
(RHD*DIVa) (32), RHD*10.04 (RHD*DAU4) (29,32,61), 
RHD*03.01  (RHD*DIIIa) and RHD*weak partial D 
4.2 (RHD*DAR) (29), anti-C associated with partial 
C of RHD*03N.01 [RHD*DIIIa-CE(4-7)-D] (32,188), 
and anti-c associated with partial c of RHCE*01.20.07 
(RHCE*ceJAL) (174), among others (29,32,239,240). 
Decreased survival of transfused RBC has been reported 
for anti-e associated with several alleles predicted to be 
RH:–19 and/or RH:–31 in SCD patients (29,32). Many 
RHCE alleles have been reported as RH:–19 and/or RH:–31 
but anti-RH19 and anti-RH31 may sometimes be reported 
as anti-e or anti-e-like (161). The clinical consequences of 
anti-RH19 and anti-RH31 may depend on the underlying 
alleles but it is difficult from the available data to compare 
them. Further monitoring of anti-RH19 and anti-RH31 
Ab formation and potential hemolytic consequences, with 
molecular data and robust serological workups could shed 
light on the heterogeneity of these cases to better inform 
transfusion decisions.

Some RHCE alleles can probably be considered at a low 
risk for Ab formation or severe hemolytic complications: 
RHCE*01.01 (RHCE*ce48C), RHCE*01.20.01 (RHCE*ce733G) 
and RHCE*01.20.02 (RHCE*ce48C,733G). Severe hemolytic 
consequences attributable to these alleles have not been 
reported in the literature, and many countries do not take 
prophylactic measures for alloimmunization when transfusing 
carriers. If the c (RH4) and e (RH5) Ag produced by these 
alleles were at a risk for severe hemolytic complications, the 
incidence would remain very low compared to the alleles’ 
prevalence in some populations (29,32).

It is hard to say if the literature over- or under-estimates 
the clinical consequences of Ab to low prevalence Ag. 
On the one hand, these Ab may be difficult to detect and 
characterize. On the other hand, case reports with these 
Ab may be more likely to be published. A more systematic 
approach to study these Ab could be helpful (241,242).

A better understanding of which Ab are at the highest risk 

for hemolytic complications could be a key to improving our 
inventory management while guaranteeing patient safety. 
Next-generation sequencing is also expanding the possibilities 
and revealing unexpected complexity (243,244). Hopefully, 
data will continue to be reported to guide us. Moving forward, 
it may become possible to classify the alloimmunization and 
hemolytic risks associated with more Rh variants and adapt the 
recommendations for each variant. Such recommendations 
would take into account the alloimmunization risk associated 
with a variant, the risk of hemolytic complications, the 
prevalence of the variant in the population, and the availability 
of Ag negative RBC units in the population.

Web resources

ISBT RHD allele tables (last update Feb 2018, accessed: 
Nov 2020)

 h t t p : / / w w w. i s b t w e b . o r g / f i l e a d m i n / u s e r _
upload/Working_part ies/WP_on_Red_Cel l_
Immunogenetics_and/RHD_Partial_D_blood_group_
alleles_v5.0_180207.pdf

 h t t p : / / w w w. i s b t w e b . o r g / f i l e a d m i n / u s e r _
upload/Working_part ies/WP_on_Red_Cel l_
Immunogenetics_and/004_RHD_weak_D_and_Del_
alleles_v5.0_180207.pdf

 h t t p : / / w w w. i s b t w e b . o r g / f i l e a d m i n / u s e r _
upload/Working_part ies/WP_on_Red_Cel l_
Immunogenetics_and/004_RHD_negative_null_
blood_group_alleles_v4.0_180208.pdf

ISBT RHCE allele table (last update July 2019, accessed: 
Nov 2020)

 http://www.isbtweb.org/fileadmin/user_upload/
ISBT004-RHCE-15th_July_2019.pdf

The Human RhesusBase (last update March 2020, 
accessed: Nov 2020)

 http://www.rhesusbase.info/

Erythrogene (last update Nov 2017, accessed: Nov 2020)

 http://www.erythrogene.com/
Reference Sequence database (RefSeq)

 R H D :  h t t p s : / / w w w . n c b i . n l m . n i h . g o v /
nuccore/171184448 (last update Oct 2020, accessed: 

http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/RHD_Partial_D_blood_group_alleles_v5.0_180207.pdf
http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/RHD_Partial_D_blood_group_alleles_v5.0_180207.pdf
http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/RHD_Partial_D_blood_group_alleles_v5.0_180207.pdf
http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/RHD_Partial_D_blood_group_alleles_v5.0_180207.pdf
http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/004_RHD_weak_D_and_Del_alleles_v5.0_180207.pdf 
http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/004_RHD_weak_D_and_Del_alleles_v5.0_180207.pdf 
http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/004_RHD_weak_D_and_Del_alleles_v5.0_180207.pdf 
http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/004_RHD_weak_D_and_Del_alleles_v5.0_180207.pdf 
http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/004_RHD_negative_null_blood_group_alleles_v4.0_180208.pdf 
http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/004_RHD_negative_null_blood_group_alleles_v4.0_180208.pdf 
http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/004_RHD_negative_null_blood_group_alleles_v4.0_180208.pdf 
http://www.isbtweb.org/fileadmin/user_upload/Working_parties/WP_on_Red_Cell_Immunogenetics_and/004_RHD_negative_null_blood_group_alleles_v4.0_180208.pdf 
http://www.isbtweb.org/fileadmin/user_upload/ISBT004-RHCE-15th_July_2019.pdf 
http://www.isbtweb.org/fileadmin/user_upload/ISBT004-RHCE-15th_July_2019.pdf 
http://www.rhesusbase.info/ 
http://www.erythrogene.com/
https://www.ncbi.nlm.nih.gov/nuccore/171184448
https://www.ncbi.nlm.nih.gov/nuccore/171184448
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Nov 2020);
 R H C E :  h t t p s : / / w w w. n c b i . n l m . n i h . g o v /

nuccore/588480537 (last update Oct 2020, accessed: 
Nov 2020).

RHeference database (last update April 2021, accessed: 
April 2021)

 https://www.rheference.org/ 
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