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Introduction

The immune system of an organism protects it against 
foreign invaders using three lines of defence. The first line 
of defence comprises the skin and mucous membrane, which 
act as a natural barrier; the second comprises macrophages 
and bactericidal substances, which act as the ‘vanguard’ of 
the immune response; and the third comprises the immune 
organs and cells, which generate specific immune responses. 

A series of immune checkpoints, with many signalling 
pathways, control the balance of effective immunity and 
self-tolerance. Stimulatory checkpoint pathways promote 
immune responses, while inhibitory checkpoint pathways 
inhibit immune responses (1).

However, some cancer cells and pathogens use various 
mechanisms to escape the immune system, such as by 
overactivating inhibitory immune checkpoints. Therefore, 
scientists have developed a range of immunotherapy 
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treatments. Due to the demonstrated efficacy of several of 
these therapies, such as brake antibodies and genetically 
modified T cells, Science  magazine deemed cancer 
immunotherapy the ‘Breakthrough of the Year’ in 2013 (2). 
In addition, the Nobel Prize in Physiology or Medicine 
was awarded to James P. Allison and Tasuku Honjo in 2018 
for their development of cancer therapy using immune 
checkpoint inhibitors (ICIs) of cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) and programmed cell death 
1 protein (PD-1) (https://www.nobelprize.org/prizes/
medicine/2018/press-release/). 

ICIs inhibit the overactivation of immune-checkpoint 
signalling pathways to a certain extent, thus promoting the 
immune response. ICIs have achieved prominent success 
in clinical trials, and the first ICI was approved in 2011 for 
the treatment of advanced melanoma. Currently, ICIs are 
also used to treat many other cancers, such as non-small cell 
lung cancer (NSCLC) and head and neck squamous cell 
carcinoma (3).

However, the monotherapeutic efficacy of ICIs is limited 
and resistance that develops after the initial clinical response 
is a major problem. However, new inhibitory and stimulatory 
pathways are good targets for immune checkpoint therapy 
(4,5) and combination therapy for cancer, thus providing 
patients with more treatment options.

In this review, we briefly summarise the mechanisms of 
the major immune checkpoint molecules in the immune 
system and the development of effective ICI drugs for 
clinical cancer therapy. Finally, we discuss the challenges 
and future directions of immune checkpoint cancer therapy, 
based on previous clinical studies. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at https://aob.amegroups.com/article/
view/10.21037/aob-21-3/rc).

Summary of immune modulatory mechanisms

The T-cell-mediated immune response involves multiple 
successive steps, including the positive and negative 
selection of T cells, which are then activated and proliferate 
in secondary lymphoid tissues. Subsequently, the T 
cells migrate to sites containing antigens and exhibiting 
inflammation, to execute direct effector functions (via 
cytokines, chemokines and ligands). A balance of the 
stimulatory and inhibitory signals of these steps is crucial 
for regulation of the immune response (6). 

Co-stimulatory and inhibitory receptors and their 
ligands that regulate T-cell activation are generally not 

overexpressed in cancer tissues compared with normal 
tissues. However, inhibitory receptors and ligands 
that regulate T-cell effector functions are generally 
overexpressed in tumour cells or non-transformed cells in 
the tumour microenvironment. Soluble and membrane-
bound receptor-ligand immune checkpoints are good targets 
for agonist antibodies (to synergistically stimulate pathways) 
or antagonist antibodies (to inhibit pathways). Therefore, 
unlike most antibodies that are approved for cancer therapy, 
these antibodies function by targeting lymphocyte receptors 
or their ligands to enhance their endogenous anti-tumour 
activity, rather than by directly targeting tumour cells (7).

Normally, immune checkpoints enable the immune 
system to respond to infections and malignancies, to protect 
normal tissues from damage. However, some of the immune 
checkpoint proteins are expressed in malignant cells, leading 
to immune dysregulation and the facilitation of tumour 
growth and expansion (8).

Here, we detail some of the most commonly studied 
immune checkpoint molecules including inhibitory and 
costimulatory molecules. We also discuss the role of 
immune checkpoint molecules that carry out opposite 
functions as membrane proteins or soluble proteins (such as 
Lymphocyte-activation gene 3, LAG3).

T cell-associated inhibitory molecules

CTLA-4

CTLA-4 is a type 1 transmembrane glycoprotein of the 
immunoglobulin superfamily and is similar to CD28. 
CTLA-4 consists of a signal peptide, an extracellular 
l igand-binding domain, a transmembrane domain 
and a cytoplasmic tail (9,10). CTLA-4 combines with 
oligomerised CD80 (B7-1) and CD86 (B7-2) ligands to 
deliver an inhibitory signal (11). 

Mechanisms of CTLA-4
The interaction of CTLA-4 with CD80/86 inhibits T-cell 
activation via antagonism of CD28-mediated co-stimulation 
and suppresses interleukin-2 (IL-2) secretion and T-cell 
proliferation, but does not induce apoptosis (12-14). In 
addition, CTLA-4-expressing cells capture CD80/86, 
which induces the degradation of these ligands via trans-
endocytosis (15).

One of the most significant biological features of CTLA-
4 is its intracellular localisation and transport patterns. Most 
CTLA-4 resides in intracellular vesicles and endosomal 
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compartments throughout the Golgi apparatus (16-18). 
In resting T cells, a small amount of CTLA-4 protein 
continues to circulate from the Golgi apparatus to the 
cell surface, after which it undergoes rapid endocytosis 
and lysosomal degradation (18). The cytoplasmic tail of 
CTLA-4 binds to the clathrin-associated adaptor proteins, 
activator protein-1 (AP-1) and AP-2/AP-50, to mediate its 
intracellular transport. In addition, the interaction between 
CTLA-4 and protein-T cell receptor-interacting molecule 
(TRIM) is important for the intracellular localisation and 
transport of CTLA-4 (12).

If T cell receptor (TCR) is engaged, CTLA-4 expression 
is induced, and intracellular vesicles containing CTLA-4 
relocate to the immune synapse (16). The cytoplasmic tail 
of CTLA-4 is phosphorylated at Y165 by TCR-induced 
kinases; lymphocyte-specific protein tyrosine kinase 
(Lck) and f-chain-associated protein kinase 70 (ZAP-70), 
which disrupts the interaction of CTLA-4 and AP-2, and 
maintains cell-surface levels of CTLA-4 in the immune 
synapse (12). Notably, if the TCR signal is strong, more 
CTLA-4 accumulates in the immune synapse, which 
provides a dynamic and adjustable inhibitory signal (see 
Figure 1) (19).

The ratio of B7 binding to CD28 or CTLA-4 determines 
whether T-cell activation is initiated or terminated (20). 

CTLA-4:B7 binding transmits the inhibitory signal 
in addition to blocking the stimulatory signal (21,22). 
Furthermore, there is evidence that CTLA-4 activates 
inhibitory signals through CD80/CD86 and induces the 
expression of indoleamine 2,3-dioxygenase (IDO) in antigen 
presenting cells (APCs), leading to localised tryptophan 
depletion and effector T cell inhibition, and the induction 
of regulatory T cells (Tregs) (23,24).

Researchers have demonstrated that CTLA-4 deletion 
in Tregs leads to spontaneous systemic lymphocyte 
proliferation, deadly autoimmune diseases and large 
amounts of immunoglobulin E production in mice with 
a resultant strong tumour immunity. CTLA-4 deletion 
in Tregs also impaired the ability of Tregs to inhibit the 
expression of CD80 and CD86 on dendritic cells (DCs), 
suggesting that Tregs may need CTLA-4 to inhibit the 
ability of APCs to recruit other T cells to suppress the 
immune response (25). In addition to the mechanisms 
described above, the depletion of Tregs is also considered to 
be a mechanism by which anti-CTLA-4 treatment functions 
in mouse tumour models (26).

CTLA-4 blockade appears to inhibit tumours via many 
different mechanisms. The primary mechanism is believed 
to involve direct competition of CTLA-4 with CD28 for 
binding to CD80/86 (27). This mainly occurs in tumour-
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Figure 1 The mechanism of CTLA-4 signalling pathway. When TCR is engaged, the intracellular vesicles containing CTLA-4 relocate to 
the immune synapse. The cytoplasmic tail of CTLA-4 is phosphorylated by Lck and ZAP-70, which disrupts the intracellular transport of 
CTLA-4 with the interaction of AP-2. CTLA-4 inhibits T cell activation through activate PP2A to inhibit Akt signalling. The mechanism in 
the solid blue line box shows a detailed view of the immune synapse in the dotted blue circle. APC, antigen presenting cell; Tregs, regulatory 
T cells; TCR, T cell receptor; HLA, human leukocyte antigen; mAb, monoclonal antibody; Lck, lymphocyte-specific protein tyrosine 
kinase; ZAP-70, ζ-chain-associated protein kinase 70; PP2A, protein phosphatase 2A; Pi, phosphorylation; AP2, activator protein 2.
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draining lymph nodes, as tumour cells do not express B7 
ligands, and APCs can cross-present tumour antigens to 
primary tumour-reactive T cells. In either case, tumour cell 
death requires the release of tumour cell antigens, such as 
neoantigens and tumour-associated antigens, which are then 
processed and presented by APCs. In the case of effective 
antigen presentation, CTLA-4 blockade enhances the co-
stimulation of CD28 and thus activates T cell immune 
response (27).

The regulation of the TCR repertoire may also 
contribute to the therapeutic effects of CTLA-4 inhibition. 
Mechanistically, the absence of CTLA-4 may reduce the 
threshold of TCR ligation that is required to effectively 
activate T cells, because CTLA-4 usually weakens the intensity 
of the TCR signal (27). Thus, the blockade of CTLA-4 
increases the mutual stimulation of T cells in a variety of ways, 
leading to more active tumour-reactive T cells.

Application
A seminal study showing that anti-CTLA-4 antibodies 
promoted anti-tumour immune responses in mouse tumour 
models (28) led to the clinical development of the anti-
CTLA-4 antibody ipilimumab for cancer therapy, especially 
for melanoma treatment for Food and Drug Administration 
(FDA) approval. Significantly, ipilimumab was the first 
checkpoint inhibitor to gain regulatory approval for 
therapeutic use in the United States (29). Another antibody, 
tremelimumab, is a fully humanised IgG2 isotype monoclonal 
antibody (mAb) against CTLA-4. In a phase 1/2 clinical 
trial of melanoma patients, tremelimumab demonstrated 
an objective response rate (ORR) equivalent to standard 
chemotherapy (30).

Acute myeloid leukemia (AML) patients with the CTLA-
4 CT60 AA genotype, which can generate more soluble 
form of CTLA-4 had increased of recurrence risk after 
conventional therapy and lower 3-year overall survival (31). 
42% AML patients have effective immune responses with 
ipilimumab at 10 mg/kg dose, among them 3 responses 
were sustained for over 1 year (32). A phase I clinical 
study of the combination of ipilimumab and decitabine 
is in progress, which has achieved early clinical activity, 
particularly in relapsed/refractory (r/r) AML patients 
without transplanting (33).

New evidence suggests that anti-CTLA-4 treatment 
does not have a general effect on all T cells; rather, 
CTLA-4 blockade leads to the specific amplification of 
tumour neoantigen-specific CD8 T cells in the tumour 
microenvironment, rather than in secondary lymphoid 

organs (34). In fact, anti-CTLA-4 treatment can lead 
to the expansion of specific tumour-infiltrating T-cell 
populations, including the phenotypic depletion of CD8 
T-cell subsets and PD-1+ICOS+TBET+ T helper type 1 
(Th1)-like CD4 effector T-cell populations (where ICOS 
= inducible T-cell co-stimulator) (35). These populations 
appear to be different from typical Th1 cells, as the co-
expression of ICOS and PD-1 are markers of T follicle-
helper cells. These findings are supported by clinical 
observations of ICOS+ CD4 effector T-cells amplification 
after ipilimumab treatment of a variety of tumours (36-39), 
and after treatment with tremelimumab (40). Therefore, the 
amplification of ICOS+ CD4 effector T-cells may be used as 
a pharmacodynamic marker for anti-CTLA-4 therapy (41). 

PD-1

PD-1, also called CD279, is an inhibitory receptor that 
belongs to the immunoglobulin superfamily. It is expressed 
on activated T cells, B cells, natural killer (NK) cells, DCs 
and activated monocytes (42).

PD-1 binds to two distinct ligands, PD-L1 (B7-H1) and 
PD-L2 (B7-DC), which are members of the B7 protein 
family (42). In addition, PD-L1 has been reported to bind 
B7-1 (43). Experimental evidence suggests that the B7-
1:PD-L1 interaction inhibits T cell function in a PD-1-
independent manner (44). The specific functions of PD-L2 
are less clear, as PD-L2-deficient mice have been reported 
to have increased (45) or decreased T-cell responses (46).

Mechanisms of PD-1
PD-1 are important in the maintenance of peripheral 
tolerance and the expected physiological response of T 
cells. Through interactions with PD-L1 and PD-L2, PD-1 
regulates T-cell activation (47,48). 

After stimulation of TCR, PD-1 is phosphorylated at 
tyrosine residues between the immunoreceptor tyrosine-
based inhibition motif (ITIM) and immunoreceptor 
tyrosine-based switch motif (ITSM) in the cytoplasmic tail, 
resulting in the recruitment of phosphatases SHP-1 and 
SHP-2, which further dephosphorylate proximal signalling 
molecules downstream of TCR and CD28 (47-49). Point 
mutation studies indicate that the ITSM motif is necessary 
for inhibition by PD-1 (50,51). In addition, PD-1 ligation 
and recruitment to immune synapses appears necessary to 
mediate the inhibition of proximal TCR signals (51,52).

CTLA-4 and PD-1 inhibit Akt-induced T cell activation, 
thereby inhibiting the CD28-mediated induction of glucose 
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uptake. However, their levels of inhibition are different (49).  
PD-1 inhibits Akt activation through the activation of 
proximal phosphoinositide 3-kinase (PI3K) by SHP-2, 
but CTLA-4 inhibits Akt activation through the activity 
of protein phosphatase 2A (PP2A) (see Figure 2) (49,53). 
Therefore, the combination of CTLA-4 and PD-1 results 
in the activation of partially overlapping yet distinct 
intracellular signalling pathways.

To maintain the immune homeostasis, Tregs induced 
by the PD-1 pathway maintains a high threshold for T 
cells activation to prevent autoimmunity. PD-L1 has 
the ability to promote the development and functions of 
Tregs in lymphoid system to avoid autoimmune responses, 
as it is expressed on both non-hematopoietic cells and 
hematopoietic cells. PD-L1 may also promote the de novo 
development of Tregs in tissues expressing transforming 
growth factor-β (54).

PD-1 blockade may induce tumour rejection by 
reactivating CD8 T cells, and increasing their functional 
activity and number. In addition, blocking the PD-1 
signalling axis can prevent the attenuation of proximal 
TCR signalling, which is mediated by PD-1, to restore 
the activity of exhausted CD8 effectors. Therefore, 
although PD-L1 is continuously expressed in the tumour 
microenvironment, exhausted T cells can still be reactivated 
to produce an effective immune response (27). 

In addition to restoring T-cell activity by regulating 
TCR signalling and gene expression, blocking PD-1 
signalling can partially reverse relevant metabolic 
reprogramming, which mediates T-cell reactivation (55). In 
addition to directly blocking PD-1, immune-based tumour 
rejection can also be induced by antibodies targeting PD-
L1. Due to the dominant expression of PD-L1, its blockade 
is considered to largely phenocopy the effect of PD-1 
blockade. PD-L1 is induced by Th1 cytokines, such as 
interferon gamma (IFN-γ), while PD-L2 is induced by Th2 
cytokines (56).

PD-1 signalling also plays a role in haematological 
neoplasia. AML blasts can down-regulate the expression 
of human leukocyte antigen, while promoting the 
overexpression of PD-L1 and other inhibitory T cell ligands. 
It can also promote the release of reactive oxygen species, 
IDO, arginase, and extracellular vesicles, which not only 
inhibit T and NK cells activities, but also mobilize Tregs and 
myeloid-derived suppressor cells (MDSCs), and promote 
macrophages transformation from M1 to M2 phenotype (57).

Application
In 2015, nivolumab and pembrolizumab gained regulatory 
approval for use as monotherapy for advanced recurrent 
NSCLC. Nivolumab, which was the first anti-PD-1 
antibody to be approved, demonstrated promising 
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Figure 2 The mechanism of PD-1 signalling pathway. After stimulation of TCR, PD-1 is phosphorylated at tyrosine residues between the 
ITIM and ITSM in the cytoplasmic tail, then recruits phosphatases SHP-1 and SHP-2, which further dephosphorylate proximal signalling 
molecules downstream of TCR and CD28. PD-1 inhibits T cell activation through activate PI3K by SHP-2 to inhibit Akt signalling. 
The mechanism in the solid blue line box shows a detailed view of the immune synapse in the dotted blue circle. ITIM, immunoreceptor 
tyrosine-based inhibition motif; ITSM, immunoreceptor tyrosine-based switch motif; PI3K, phosphoinositide 3-kinase.
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therapeutic potential in phase I clinical trials, particularly 
for metastatic melanoma patients, NSCLC, and renal 
cell cancer (58). Pembrolizumab is a highly selective 
humanised IgG4 mAb against PD-1 (59). The success of 
pembrolizumab led to the rapid development of several 
other antibodies that block the PD-1/PD-L1 pathway 
for cancer therapy, such as pidilizumab (CureTech), 
MPDL3280A (Genentech), BMS-936559 (Bristol-Myers 
Squibb), and MEDI4736 (MedImmune/AstraZeneca).

Nivolumab and pembrolizumab have achieved an 
exciting overall response rate in r/r classical Hodgkin 
lymphoma (cHL) of 65–87% in phase I/II studies. 
Pembrolizumab has get shown an overall response rate 
in primary mediastinal large B-cell lymphoma (PMBL) 
of 48%. Nivolumab also acquired 36% and 40% ORR in 
diffused large B-cell lymphoma (DLBCL) and follicular 
lymphoma (FL) patients, respectively. A phase II trial is 
ongoing with pembrolizumab in the treatment of DLBCL 
patients (60). For AML patients, nivolumab combined with 
azacitidine have achieved 33% ORR (57).

The combination of anti-CTLA-4 and anti-PD-1/PD-
L1 mAbs in checkpoint-blockade cancer treatment can be 
both an opportunity and a challenge for immune therapy. 
However, progress has been made in combination therapy 
strategies in recent studies. Interim phase I results have been 
reported for nivolumab and ipilimumab as first-line therapy 
in patients with advanced NSCLC (NCT01454102), showing 
that this combination treatment had acceptable toxicity 
and activity in both PD-L1+ and PD-L1- patients (61). The 
combination of pembrolizumab and ipilimumab as second-
line therapy in stage IIIB/IV NSCLC is currently being 
studied in the KEYNOTE-021 trial (NCT02039674), and 
has shown complete responses of 9% and partial responses of 
45% for certain clinical aspects (61).

Lymphocyte activation gene-3 (LAG-3)

LAG-3 is the ligand of major histocompatibility complex 
(MHC) class II molecules and is thus a member of the 
immunoglobulin superfamily (62,63). It is expressed 
on activated NK cells and T cells, but not on resting T 
cells (62,64). MHC II, fibrinogen-like protein 1 (FGL1), 
galectin-3, LSECtin and α-synuclein are all ligands 
for LAG-3. FGL1 is an inhibitory ligand of LAG-3, 
independent of MHC II (65). 

Mechanisms of LAG-3
LAG-3 is a negative regulator of T-cell activation. It is 

expressed as a co-receptor on T cells and modulates effector 
T-cell activity and Tregs suppressor activity (66).

The combination of LAG-3 and MHC class II, together 
with the CD40 and CD40L (the ligand of CD40) can affect 
the secretion of IL-12 and IFN-γ by APCs in vitro (67). Soluble 
LAG-3 can directly induce the production of Th1 cytokines 
or chemokines, such as macrophage-derived chemokine and 
thymus activation-regulated chemokine, by DCs. In response 
to these signals, mature DCs migrate to lymph nodes (68,69). 

LAG-3 has also been found to be selectively upregulated 
on CD4+ Tregs (70). More recently, LAG-3 blockade (or 
genetic knockout) has been shown to affect the ability of 
conventional T cells to be suppressed by Tregs (71,72). 
Additionally, LAG-3 can maintain a tolerogenic state in 
CD8 cells, thus LAG-3 blocking antibodies augment CD8 
T cell function in vivo, in the absence of CD4 T cells (73).

Application
The above preclinical studies have led to the development 
of two anti-LAG-3 molecules, BMS-986016 and LAG525, 
which are in clinical trials. BMS-986016 is an mAb 
antagonist of LAG-3 and is currently being assessed in 
five active clinical trials. These are phase I or II trials for 
the treatment of a variety of advanced solid tumours and 
haematological diseases. Most trials of BMS-986016 are 
being conducted in combination with a PD-1 inhibitor. 
LAG525 is being studied in a phase I/II clinical trial 
(NCT02460224), in combination with a PD-1 inhibitor, for 
the treatment of patients with advanced solid tumours (74).

IMP321 is a soluble form of LAG-3 that contains the 
first four extracellular domains of LAG-3, but lacks the 
transmembrane domain and intracellular region. It enhances 
tumour immune responses by upregulating co-stimulatory 
molecules and increasing IL-12 production. IMP321 
has been assessed in two phase I clinical trials for the 
treatment of advanced renal cell carcinoma and pancreatic 
adenocarcinoma. It was shown to increase the number 
of tumour-reactive T cells, but no significant objective 
response (OR) was observed (75,76). IMP321 combined 
with paclitaxel for metastatic breast cancer treatment has 
also been assessed in a phase I clinical trial, in which an OR 
rate of 50% was observed (77). With this promising result, 
this study is currently recruiting metastatic breast cancer 
patients for a phase IIb clinical trial (NCT02614833) (78).

REGN3767, a fully human IgG4 antibody that in 
combination with a similar antibody, REGN2810, blocks 
the interaction of LAG3 and MHC II, has exhibited greater 
antitumour efficacy in preclinical tumour models than 
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either antibody alone (79).  

T cell immunoglobulin and mucin domain 3

T cell immunoglobulin and mucin domain 3 (TIM-3) is 
expressed on the surface of activated T cells, NK cells, and 
monocytes. Galectin-9 and carcinoembryonic antigen-
related cell adhesion molecule 1 (CEACAM1) are the main 
ligands of TIM-3, among others (80,81).

Mechanisms of TIM-3
Upon binding to galectin-9 and several other ligands, 
TIM-3 facilitates peripheral immune tolerance by inducing 
Th1 cell death (82). TIM-3 is thought to be an important 
regulator of CD8+ T cell exhaustion in cancer (83). Recent 
studies have shown that TIM-3 is co-expressed with and 
interacts with CECAM1. This interaction is crucial to the 
regulatory function of TIM-3 (84).

Studies have shown that PD-1 is co-expressed with TIM-
3 in tumour-infiltrating lymphocytes, suggesting a potential 
synergistic effect between these two checkpoint co-
inhibitors. TIM-3+ PD-1+ tumour-infiltrating lymphocytes 
have an exhausted phenotype and secrete less IFN-γ, IL-2, 
and tumour necrosis factor alpha (TNF-α) (81,85).

Application
Preclinical studies indicate that TIM-3 inhibition enhances the 
function of effector T cells in the tumour microenvironment 
and increases their anti-tumour effect. This is especially true 
when TIM-3 blockage is combined with PD-1 inhibition. 
In mouse colorectal cancer models, the dual blockade of 
PD-1 and TIM-3 was more effective than monotherapies at 
inhibiting tumour growth (85). In addition, in a mouse model 
of head and neck squamous cell carcinoma, treatment with 
an anti-TIM-3 mAb resulted in decreased tumour growth, 
through the recovery of effector T-cell function (86).

A preclinical study of mice with lung adenocarcinoma 
found that TIM-3 expression increased in the tumours in 
the absence of PD-1 blockade. Subsequent TIM-3 blockade 
resulted in a significant survival advantage. The researchers 
then analysed two patients treated with PD-1 blockade 
and found that, with the increase in TIM-3 expression, a 
similar adaptive resistance pattern was observed (87). These 
promising data from preclinical studies have resulted in 
the development of two anti-TIM-3 mAbs, TSR-022 and 
MGB-453, which are currently being assessed in phase 
I clinical trials, in combination with PD-1 inhibitors, 
for treatment of patients with advanced solid tumours 

(NCT02817633, NCT02608268) (74).

T-cell immunoglobulin and ITIM domain

The T-cell immunoglobulin and ITIM domain (TIGIT) is 
part of the CD28-like family of receptors and is expressed in 
NK and T cells. TIGIT is composed of an extracellular IgV 
domain, a type 1 transmembrane region and a cytoplasmic 
tail. The cytoplasmic tail contains an ITIM domain and an 
immunoglobulin tail tyrosine (ITT)-like motif (88).

Mechanisms of TIGIT
TIGIT binds to CD155 to induce the phosphorylation of 
its cytoplasmic tail by Fyn and Lck. The phosphorylation of 
TIGIT causes its ITT-like motif to bind β-arrestin 2, which 
leads to the recruitment of SH2 domain containing inositol-
5-phosphatase 1 (SHIP1) via the cytosolic adaptor growth-
factor-receptor-bound protein 2 (Grb2). SHIP1 then blocks 
specific pathways, including the PI3K, mitogen-activated 
protein kinase (MAPK) and nuclear factor-κB signalling 
(NF-κB) pathways. The combined effects of TIGIT on 
these signalling pathways strongly inhibits the function of 
NK cells (89,90). 

TIGIT has been shown to directly inhibit T cells in a 
cell-intrinsic manner, by targeting molecules in the TCR 
signalling pathway (91). As a result, TIGIT inhibits the 
activation, amplification and effector functions of T cells. In 
addition, TIGIT indirectly suppresses T-cell responses by 
interacting with CD155 on DCs (92).

TIGIT also contributes to immune suppression 
by promoting the function of Tregs. TIGIT is a direct 
target gene of forkhead box protein P3 (Foxp3), the 
master transcription factor in Tregs (93). Moreover, 
TIGIT expression levels correlate with markers of 
natural Tregs, rather than those of peripherally induced 
Tregs. TIGIT+ Tregs show enhanced demethylation in 
Treg-specific demethylation regions, compared to their 
TIGIT− counterparts, which leads to greater lineage 
stability. Further, TIGIT+ Tregs express higher levels 
of Treg markers, such as Foxp3, CD25 and CTLA-4, 
and the expression of TIGIT on Treg cells results in the 
upregulation of the inhibitory mediator, fibrinogen-like 
protein 2 (Fgl2), which enhances the suppressive function 
of TIGIT+ Tregs. Importantly, the TIGIT-dependent 
expression of Fgl2 results in the selective sparing of Th2 
cell responses, while potently suppressing the responses of 
Th1 and Th17 cells (94).

CD226 (DNAM-1) and CD96 (Tactile) are known to 
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bind TIGIT. CD226 transmits a positive co-stimulatory 
signal (95), whereas CD96 transmits an inhibitory  
signal (96). Similar to CTLA-4, TIGIT has a much higher 
affinity for ligands than CD226. Therefore, TIGIT blocks 
the interaction between CD226 and CD155, to inhibit co-
stimulatory signals (92). However, TIGIT directly binds 
CD226 in cis, which disrupts the homodimerization of 
CD226 and inhibits its co-stimulatory function (97).

Application
In vitro studies and in vivo studies in mice have shown that 
dual blockade of TIGIT and PD-1 or TIM-3 has a synergistic 
effect on immune cell amplification, cytokine release, 
threshing, and the reversal of T cell exhaustion, resulting in 
tumour rejection and the induction of protective memory 
responses (98,99). Significantly, the expression levels of TIGIT 
in cells in the tumour microenvironment appear to be higher 
than the levels in peripheral cells, which should theoretically 
provide a more targeted, less toxic treatment method. In 
addition, TIGIT mainly appears to limit the competency of 
cytokines and the function of CD8 T cells, which accounts for 
its complementing the activity of other types of ICIs (82).

A phase I clinical trial (NCT03119428) is currently 
recruiting patients to assess the safety and potency of the 
anti-TIGIT mAb, OMP-31M32. However, the results of 
this trial are not yet available (8).

Tumour necrosis factor receptor 2 (TNFR2)

TNFR2 is a ligand of tumour necrosis factor alpha (TNFα), 
which has another ligand TNFR1. TNFα is an inflammatory 
cytokine with dual function. While it interacts with the widely 
expressed TNFR1 causing pro-inflammatory role and cell 
death, it also interacts with the limitedly expressed TNFR2 
causing anti-inflammatory role and cell survival (100).

Mechanisms of TNFR2
The binding of TNF to TNFR2 induces the activation of  
NF-κB through NF-κB-inducible kinase (NIK), which further 
leads to phosphorylation of IKKα and p100 processing. 
TNFR2 also recruits the TRAF2-cIAP1-cIAP2 complex. 
cIAP has ubiquitin ligase activity, which can inhibit caspases 
and other apoptosis-inducing factors, thereby activating 
NF-κB/Rel and MAPK signalling pathways. TNFR2 signal 
transduction is mediated through RIPK1 and Etk respectively. 
RIPK1 triggers NF-κB through the IkB kinase (IKK) complex, 
which activates the expression of IL-2 and increases the 
transcription of several genes that are positively related to cell 

survival and proliferation. TNFR2-mediated phosphorylation 
of Etk can partially activate vascular endothelial growth factor 
receptor 2 (VEGFR2), then activates the PI3K/Akt signalling 
pathway to maintain cell survival and proliferation. It can 
also form a TNFR2-Etk-VEGFR2 complex by recruiting 
Etk to promote cell activation. In addition, it also enhances 
the phosphorylation of STAT5, which plays a key role in 
immunosuppression (101,102).

The stability, response to TCR stimulation, amplification 
and function of Tregs is enhanced when TNFR2 signal is 
activated. Researchers have demonstrated that blocking 
intrinsic membrane-bound TNF/TNFR2 signalling in 
CD4+ T-cells reduces IL-2 production and elevates Th17 
differentiation which also correlated with enhanced STAT3 
activity, increased ROR-γt level, and decreased STAT5 activity. 
The membrane-bound form mTNFR2 may change into the 
soluble form sTNFR2, which then binds TNF to inhibit the 
expression of IL-6 in inflammatory conditions (101).

Application
TNFR2 is expressed as an oncogene on many tumours. At 
present, the expression of TNFR2 has been determined in 
at least 25 tumours, such as ovarian cancer, colon cancer, 
multiple myeloma, cutaneous T-cell lymphoma (CTCL), et al.  
The tumour microenvironment cunningly recruits highly 
immunosuppressive TNFR2+ Tregs, thereby promoting 
tumour immune escape. The increased expression of TNFR2 
gene in Tregs in patients with metastatic melanoma is 
related to the depletion of CD8+ T cells. TNFR2 knockout 
mice showed an enhanced immune response to tumours, 
and impaired tumour growth. This may be due to the 
lack of TNFR2+ Tregs, or the failure to develop systemic 
autoimmunity, or the decrease in the number of MDSCs and 
impaired function (103).

In vitro studies have shown that TNFR2 antagonist 
antibodies can inhibit the proliferation of ovarian cancer cells 
and tumour-related Tregs (104). Tumour cells expressing 
TNFR2 in advanced Sézary syndrome can be eliminated 
by TNFR2 antagonist antibodies, and TNFR2 antagonist 
antibodies can also kill TNFR2+ Tregs, adjust Treg/Teff ratio 
to normal level by inhibiting Tregs and Teff (103).

T cell-associated costimulatory molecules

4-1BB

4-1BB as a member of the TNFR superfamily 9, is a 
costimulatory molecule interaction with 4-1BBL, which is 
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expressed in the surface of activated T cells and NK cells (105).

Mechanisms of 4-1BB
4-1BB recruits TNFR-associated factors (TRAF), TRAF1 
and TRAF2 to form heterotrimers, through extracellular 
signal-regulated kinase (ERK) pathway, β-catenin and 
AKT pathways to enhance signal transduction. The main 
transcription factor NF-κB and MAPKs regulates 4-1BB 
signal to promote the production and secretion of IL-2 and 
IFN-γ, while promoting the survival and activation T cells 
by increasing the expression of antiapoptotic genes Bcl-xL 
and Bfl-1 (105,106). 

However, the effect of 4-1BB on Tregs is still very 
controversial: 4-1BB agonist treatment can either inhibit 
the differentiation of conventional effector cells into Treg, 
while impacting the inhibitory effect of Tregs, or maintain 
Tregs amplification and inhibition ability (107,108).

4-1BB is also expressed in many non-T cells, such 
as DCs, monocytes, B cells, mast cells, NK cells and 
neutrophils. 4-1BB up-regulates B7-1 and B7-2, and 
increases the secretion of IL-6 and IL-12 in DC cells. 
The agonistic anti-4-1BB monoclonal antibody enhances 
the ability of DCs to stimulate T cell amplification and 
promotes the phosphorylation of STAT3 to enhance the 
CD8+ T cells response (109). After 4-1BB is triggered, NK 
cells upregulate 4-1BB and increase cytotoxic function, but 
4-1BB activation on resting NK cells will reduce NK cells 
and impair the cytotoxic function of NK cells (105,110).

Application
CTL019 was the first CAR therapy to be approved by US 
Food and Drug Administration, which contains 4-1BB as 
an intracellular domain. Urelumab (BMS 663513) is a fully 
human IgG4 mAb, which is the first 4-1BB agonist antibody 
in clinical treatment. Utomilumab is a fully human IgG2 
mAb, which has shown promising signs in patients with 
advanced solid tumours treated with monotherapy. The 
combination of utomilumab and pembrolizumab have shown 
26% complete or partial responses (NCT02179918) (111). 

CD27

CD27 is a member of TNFR superfamily, which is expressed 
in the early thymus of naïve CD4+ and CD8+ T cells (112). 

Mechanisms of CD27
In the process of T cell activation, CD27 expression 
increased transiently, but after several rounds of T cells 

differentiation, the expression decreased (112). CD27 is 
also a marker of memory B cells, and expresses on NK 
cells (113,114). CD27 interacts with TRAF2 and TRAF5, 
while inducing the activation of NF-κB and MAPK8/JNK 
signalling pathway (115).

Application
Varlilumab is a CD27 agonist, which increases the 
production of chemokines, promotes T cells activation, and 
Tregs downregulation. It has shown 26% stable disease (SD) 
at 3 months in melanoma/renal cell carcinoma patients, and 
1 partial response, 3 SD in 15 lymphoma patients. MDX-
1203 is a CD70 mAb, which has shown 69% SD in patients 
(NCT00944905). SGN-75 is an antibody-drug conjugate 
of CD70 and monomethyl auristatin F, which also induces 
immune responses in renal cell carcinomas and lymphomas 
(NCT01015911) (116).

Inducible T-cell Co-stimulator (ICOS)

ICOS is a CD28 family protein, which is also called CD278 
or AILIM, and mainly expressed in activated T cells. ICOS 
binding with a B7 family protein ICOSL plays the role of 
activating T cells (117,118). 

Mechanisms of ICOS
ICOS binding with ICOSL, which is mainly expressed on 
APCs, through phosphoinositide 3-kinase (PI3K) signal 
pathway to enhance the function of Th1 and Th2 mainly by 
increasing the production of effector cytokines such as IL-
4, IL-5, IL-10, IL-21, IFN γ and TNFα (119,120). 

Application
T cells with high expression of ICOS had stronger immune 
response, upon using anti-CTLA-4 or anti-PD-1 mAbs to 
treat tumour of mice and patients, suggesting that ICOS 
maybe a useful target of tumour treatment (121-123). ICOS 
agonists are unlikely to be used for cancer monotherapy 
because they cannot directly induce a cytotoxic immune 
reaction independently. JTX-2011 is an ICOS agonist, 
which is used in combination with nivolumab in the phase 
1 ICONIC clinical trial (NCT02904226). GSK3359609 
is also a ICOS agonist, which is used in combination with 
pembrolizumab in phase I trials (NCT02723955) (116).

Methods

In this review, we mainly use PubMed (https://pubmed.ncbi.

https://pubmed.ncbi.nlm.nih.gov/
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nlm.nih.gov/) to search literatures for two different parts: 
mechanisms and current therapy. Because the mechanisms 
are well-documented in early published articles, the 
literature year for this part is earlier, whereas the literature 
year for current therapy is chosen for recent 5 years mostly 
with the newer clinical outcome. Studies published in 
higher impact factor journals were prioritised. 

The future of immune checkpoint therapy

Immune checkpoint therapy is an important component 
of immune therapy, and has enabled significant progress in 
cancer treatment. However, the use of immune checkpoint 
therapy alone may have limitations and induce side effects, 
such as autoimmune conditions. The combination of 
immune checkpoint therapy with other forms of immune 
therapy, such as chimeric antigen receptor-T cells (CAR-T), 
TCR-T cells or vaccines, or in combination therapy 
with multiple ICIs, are therefore promising approaches 
for cancer treatment, and several clinical studies are 
already underway to assess these strategies. Nevertheless, 
further research is needed to determine the anti-cancer 
mechanisms of ICIs, to enable the development of effective 
combination therapies. The similarities and differences 
in the mechanisms of different immune checkpoints 
must be established, as this will maximise the benefits of 
combination therapy, while minimising adverse effects.

In this review, we discuss the mechanisms and summarize 
current therapies of main immune checkpoint. Some mAbs 
of immune checkpoint are already applied in clinical trials 
or preclinical studies, which can provide some ideas to 
other scientists. A better understanding of the mechanisms 
of immune checkpoint will benefit the design of protein 
drugs, or combination therapy with immune checkpoint-
blockade. Immune checkpoint therapy is considered as both 
an opportunity and a challenge for researchers. With the 
continued joint efforts of scientists and clinicians, further 
progress will be made in the future.
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