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Introduction 

Blood transfusion in high income countries (HICs) is safe. 
The tragedy of human immunodeficiency virus (HIV) in 
the early 1980s highlighted multiple systemic deficiencies 
spanning blood donor selection, testing and post-transfusion 
surveillance (1,2). Almost 4 decades later, the enterprise 
of blood collection, processing and transfusion is vastly 
different. Consequently the risks of the major transfusion 
transmissible infections (TTIs) [i.e., HIV, Hepatitis B and 
C viruses (HBV and HCV respectively) and T. pallidum] is 
low (1,3). Such a transformation has allowed for focusing of 
efforts toward historically neglected transfusion associated 
infectious risks (e.g., bacteria, Babesia) while developing 

pathogen reduction technologies to contend with infectious 
risk proactively. The massive investment in blood safety 
to restore confidence in the blood supply, has contributed 
to a different problem: one of imbalance where the public 
health yield is often vanishingly low, whereby resources may 
arguably be better directed elsewhere (4,5). Blood safety at 
any cost is not without its own risk, impacting sustainability 
and capacity to contend with challenges as they arise (6). 

Nonetheless blood transfusion offers another glaring 
example of health disparity. Specifically, blood transfusion 
safety and infectious risk is divided between HICs and low- 
and middle-income countries (LMICs). Every element of 
the blood safety continuum from donor selection through 
to post-transfusion surveillance is either lacking or absent 
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in low-income countries (7). TTIs are the metric of 
associated dysfunction, that to date still lacks for durable 
investment or public attention, despite broad impact on 
public health (7,8). This is not a unique problem, but rather 
one that falls under the purview of inattention to pathology 
and laboratory services in general (9). Demand for blood 
transfusion remains high in LMICs, forcing continued 
reliance on suboptimal practices (e.g., replacement and 
paid donation, rapid testing, etc.) (10). Further, post-
transfusion surveillance is lacking, where a demonstration 
of transmission and clinical sequela might help to motivate 
for change (11). 

The following offers an overview of transfusion 
associated infectious risk. Description of the major TTIs 
is used to illustrate some of the lessons learned and how 
history has informed current practice. Where possible, 
examples have also been used to illustrate the differences in 
risk and mitigation between HICs and LMICs. 

Prevention strategies 

The overwhelming majority of pathogens do not indeed 
require any intervention and pose little to no risk to 
transfusion recipients. There are multiple factors that 
inform the decision to intervene (12,13). Emergence of 
novel as well as re-emergence of established pathogens 
is occurring with far greater frequency than might be 
appreciated. Each agent requires careful evaluation of risk 
to the blood supply. Foremost among those factors is the 
association with a clinically important outcome. Given the 
resources required for assay development, it is not feasible 
to address all—or even most—pathogens. Agents that 
are short lived in the blood generally do not pose risk. By 
contrast, agents with protracted, asymptomatic phase (e.g., 
HIV, HBV and HCV) are particularly dangerous as donors 
are likely to be unaware of their infectious status at time 
of donation. Individuals who are infected with pathogens 
that confer acute symptom onset are likely to self-defer 
or be detected during pre-donation screening (e.g., fever, 
anemia). Second are considerations surrounding tolerance 
of storage and processing, transfusion transmissibility and 
clinical penetrance. Agents that do not survive prolonged 
refrigeration, are unlikely to transmit. Laboratory evidence 
of transmission alone is insufficient evidence of recipient 
risk. Rather, there should be evidence of symptomatic 
disease in recipients. Third is the epidemiology of the agent, 
including the geographic distribution, seasonal incidence 
and prevalence in the blood donor population. Fourth is 

detectability. Specifically, one needs to weigh up each of 
the available approaches and the associated advantages and 
disadvantages of each. Fifth, are the financial ramifications. 
Ideally, this is guided by formal economic analysis to 
quantify the cost per quality adjusted life year ($/QALY). 
Finally, there are other variables that impact decision 
making. These are more difficult to quantify but often carry 
undue influence over the science. Politics, funding and 
culture all affect decision making. 

When intervention is decided, the different approaches 
include donor selection and risk-based deferral, laboratory-
based testing and pathogen reduction (PR).

Risk based deferral

Risk-based decision making (RBDM) is used to identify 
low-risk donors. RBDM is typically accomplished using 
a donor history questionnaire. The latter is designed 
specifically to exclude those with medical history and/or 
socio-behavioral risk factors for TTIs. 

Laboratory-based blood donor testing

Serological testing 
Some pathogens are not easily detected through RBDM 
and require a laboratory-based strategy, using serological- 
(detection of antibodies with or without antigens) and/
or nucleic acid testing (NAT). There are advantages 
and disadvantages of each strategy. Serological testing 
is undertaken using a variety of different technologies 
[e.g., Enzyme linked immunosorbent assay (ELISA), 
chemiluminescent immunoassay (CLIA), etc.]. The 
presence of antibodies generally reflects exposure rather 
than active infection. With some pathogens (notably 
chronic viruses e.g., HIV), it may reflect active infection. 
Serological assays are lower cost than NAT, readily 
available and have a variety of formats, spanning rapid/
point of care, semi-automated and fully automated. 
Rapid tests are typically not validated for blood donor 
screening; consequently, they lack comparable sensitivity 
and specificity of automated assays (14,15). They are most 
commonly used in low resource settings given the low cost 
and ease of use (15). 

NAT
NAT offers a better correlate of active infection than 
serology. The key advantage of NAT is its ability to 
shorten the window to detection of a given pathogen. As 
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way of example, the pre-seroconversion window period 
of HCV is 1–3 months (16,17). By contrast, HCV RNA 
becomes detectable within 5–8 days of infection. For HIV, 
NAT has shortened the time to detection by ~10–15 days 
(18-20). Nonetheless, NAT is relatively high cost, and 
requires both greater technical expertise and infrastructure 
than serological testing. Consequently, use of donor NAT 
remains rare in upper middle-income countries (e.g., 
South Africa, Namibia) and non-existent in low-income 
countries (10). 

Many of the NAT assays are able to be performed on 
individual donor samples (ID-NAT) or in mini-pools 
(MP-NAT). Mini-pools improve the efficiency and cost-
effectiveness of screening. The size of the pools is informed 
by the background incidence of the targeted pathogen in 
the donor population. As way of example, multiplex NAT is 
undertaken routinely for HIV, HBV and HCV in pools of 
6 to 16 donor samples. In the event of a positive result, the 
pools are “deconstructed” and the individual donor samples 
are subjected to multiplex NAT. Larger pools may be used 
in populations with a low incidence of infection for the 
individual agents. By contrast, MP-NAT is not appropriate 
in cases with a high background incidence of any of the 
targeted pathogens i.e. it would defeat the purpose given 
the need for frequent need to investigate reactive pooled 
samples. 

Testing algorithms
The testing algorithms in use impact infectious risk. In 
high-income countries (HICs) testing algorithms typically 
combine screening tests, repeat testing in the event of a 
reactive result (i.e., use of the same assay on additional 
aliquots from the index sample), confirmatory testing (i.e., 
use of a different assay) with or without supplementary 
testing (2). The latter is used to facilitate donor counseling 
and management. For example, a non-treponemal assay 
such as the Venereal Disease Research Laboratory (VDRL) 
assay might be used to understand whether a donor has 
active syphilis, even though this information would not 
be necessary for blood product management given that 
the screening results would have already led to disposal of 
the blood and deferral of the donor. Given the high costs 
of reagents and challenges surrounding procurement, 
testing approaches in LMICs typically lack repeat and/or 
confirmatory testing. 

PR

PR offers a departure from the traditional paradigm of 
targeted testing (21). There are a variety of technologies 
(e.g., photochemical inactivation (PI), solvent detergent 
treatment, nanofiltration) that allow for global treatment 
of blood products, rendering them safe from infection (22). 
PR has long been in routine use for plasma derivatives (e.g., 
albumin, and immunoglobulins) (23). PI is increasingly being 
used to contend with bacterial contamination of platelets. 
Addition of a psoralen or riboflavin to the blood product 
followed by exposure to UV light, leads to irreversible cross-
linkage of DNA or RNA in the case of amotosalen/UVA 
or oxidation of the guanine bases with strand breakage in 
the case of Riboflavin/UVB light, thus rendering a broad 
range of pathogens incapable of replication (22,24). Other 
approaches include methylene blue treatment, solvent-
detergent treatment or glutathione treatment (22). Key 
advantages include the ability to address different classes of 
pathogen simultaneously using a single intervention. These 
include those pathogens that are well established (e.g., HIV, 
HBV, HCV), those that may be emerging and those that are 
entirely novel. Function is not significantly different from 
untreated products. Independent of infectious risk, PI is a 
very effective measure to prevent transfusion associated graft 
vs host disease. While the individual technologies vary, the 
key limitations of PR in general, is the absence of a licensed 
technology for red cells and whole blood, which remain the 
major blood products. Further, cost is a formidable barrier, 
particularly in low resource settings where PR would confer 
greatest benefit (25,26). 

Categorization of TTIs (Tables 1-3)

TTIs can be categorized broadly based on the evidence for 
transfusion transmissibility, the extent of risk (i.e., whether 
global or regional) and intervention. For the purpose of this 
review, Category I pathogens (i.e., HIV, HBV, HCV and 
T. pallidum) are those for which transfusion transmissibility 
is well established, risk is global and donor screening is 
near universal (Table 1). Category II and III both include 
pathogens for which transfusion transmissibility has 
been well established and mitigation measures have been 
implemented albeit in selected countries (Table 2). They 
differ with respect to extent of risk whereby Category II 
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Table 1 Category I: risk and intervention for the major TTIs in HICs

Pathogen Disease association
Transfusion 

transmissible 
Risk-based 

deferral
Donor 

serology
Donor 
NAT

Pathogen 
reduction*

Other
Contextualized residual 

risk

Category I HIV AIDS +++ √ √ √ √ Rare; 1 in 2.3 million 
donations (3)

HBV Chronic hepatitis; 
cirrhosis; 

hepatocellular 
carcinoma

+++ √ √ √ √ Rare; 1 in 1.5 million 
donations (3)

HCV Chronic hepatitis; 
cirrhosis; 

hepatocellular 
carcinoma

+++ √ √ √ √ Rare; 1:2.6 million 
donations (3)

T. pallidum Syphilis ++ √ √ – √ Refrigeration Rare/absent; e.g., no 
reported cases in US 

since 1960s 

+ to +++ grading of risk (+ is lowest and +++ is highest risk). √, in routine use (note: interventions may be applied alone or in combination). 
*, platelets and plasma; –, not available or not routinely performed as blood donor intervention. HIV, human immunodeficiency virus; HBV, 
hepatitis B virus; HCV, hepatitis C virus; AIDS, acquired immunodeficiency syndrome.

pathogens pose global risk and Category III pathogens are 
regional, acknowledging that the distinction is somewhat 
arbitrary. Category IV includes pathogens that have 
been implicated—albeit rarely—in cases of transfusion 
transmitted disease. Risk is considered low independent of 
the prevalence in the general population (Table 3). Finally, 
Category V includes pathogens for which there is no clinical 
evidence for transfusion transmitted infectious disease. 

Viruses

HIV

No other infectious agent has impacted blood transfusion 
safety like HIV. A link between HIV and blood transfusion 
was first raised following development of immune 
dysfunction in three patients with hemophilia (51).  
Similarly, a neonate who was transfused developed 
opportunistic infections at 14 months of age (52). A 
lookback study revealed that one of the 3 blood donors 
had died from AIDS related complications, offering 
supporting evidence of transfusion transmissibility. Delayed 
recognition of transfusion as a mode of transmission had 
devastating consequences, most notably for patients with 
hemophilia who depended on plasma-derived clotting 
factor concentrates for treatment. One study that employed 
retrospective modeling of transfusion associated risk of HIV 
in the San Francisco Bay area from January 1978 to March 

1985 offered important insights into the scale of the early 
epidemic and the then hazard of blood transfusion (53).  
From 1980 to 1982, there was a 50% increase in cases 
of contamination, peaking in 1982, when 3.3% of all 
donations were HIV contaminated. Measures that were 
introduced in 1982 to 1983 included self-deferral of high-
risk donors (e.g., MSM) and confidential exclusion of 
donated units. Beginning in May 1984, exclusion of anti-
HBc positive donations further reduced the by 40–50%. In 
March 1985, the first highly sensitive and specific antibody 
test was implemented for HIV-1. In 1992, implementation 
of a third generation enzyme immunoassay, enabled 
detection of HIV-2 (54). In 1999 minipool-NAT for HIV 
was introduced as a multiplex test with HCV. Nearly four 
decades since first recognition, transfusion transmitted HIV 
is rare in HICs. For example, the estimated risk in the US is 
less than 1 in 2 million, a figure based on a modeled—rather 
than an observed incidence (2,3). Unfortunately, this is 
not the case in LMICs where transfusion transmitted HIV 
remains a significant public health challenge, given the high 
background incidence of HIV coupled with suboptimal 
blood donor selection and testing (7,11). 

Hepatitis B and hepatitis C virus (HBV and HCV)

Prior to the HIV era, HBV and T. pallidum were the only 
agents screened in blood donors. Studies in the 1950s and 
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1960s first highlighted the risk of post-transfusion hepatitis 
in recipients of blood transfusion from paid donors (up to 
4-fold higher than that from voluntary donors) (55,56). In 
one study of patients who underwent open heart surgery, 
51% of those who received blood from commercial donors 
developed post-transfusion hepatitis vs. 0% from voluntary 
donors (57). Testing for Hepatitis B surface antigen (HbsAg) 
began in the 1970s. However, a high proportion of patients 
with transfusion-associated hepatitis did not have evidence 
of HBV or other viruses that were commonly associated 
with hepatitis [e.g., hepatitis A virus or cytomegalovirus 
(CMV)], earning the designation as non-A non-B hepatitis 
(NANBH) (58). Hepatitis B core antibody (HBcAb) was 
later found to be a surrogate marker of NANBH; in one 
study 12% of recipients of HBcAb positive blood went on to 
develop NANBH (59). Alanine transaminase (ALT) was also 
recognized as a surrogate measure of NANBH; one study 
suggested that its measurement in donors would prevent 
29% of cases of post-transfusion hepatitis (60). Consequently, 
ALT and HBcAb were integrated into donor screening (61). 

HCV was ultimately implicated as the cause of NANBH; 
this led to the implementation of anti-HCV testing (e.g., in 
the US) in 1990 (62). Anti-HCV screening was estimated 
to prevent half of all cases of transfusion-associated 
hepatitis (63,64). Of those infected with HCV, 50–60% will 
develop chronic hepatitis (65). Nonetheless, the long pre-
seroconversion period remained a significant limitation 
of a serology-based strategy alone. Consequently, HCV 
NAT was adopted in the US in 1999; HBV NAT was added 
in 2009 (2). Testing for HBV and HCV has had a major 
impact on blood safety, whereby the estimated residual risk 
of acquisition of HBV (1 in 1.5 million donations) and HCV 
(1 in 2.6 million donations) from blood transfusion, at least 
in HICs, is extremely low (3). NAT also confers the ability 
to detect occult hepatitis B infection (OBI), particularly in 
settings where HBcAb is not routinely performed (7,66,67). 

Hepatitis E virus (HEV)

HEV is a non-enveloped, positive-sense, single-stranded 
RNA virus. There are 4 Genotypes (G1-4), which 
differ with respect to their primary mode of spread and 
epidemiology. Specifically, G1 and G2 are spread by the 
fecal-oral route, accounting for epidemics in low-income 
countries (LICs) through water-borne spread. G3 and 
G4 are food-borne zoonosis (porcine viruses) whereby 
human spread follows consumption of infected meat 
(68,69). HEV is a major cause of acute hepatitis globally. 

Largely neglected (compared to HBV and HCV), it has 
drawn attention given a progressive increase in HEV 
in parts of Western Europe. While it causes mild self-
limiting infection in the immunocompetent, it may result in 
severe or even fatal disease (i.e., acute fulminant hepatitis) 
in pregnancy and the immunocompromised. Persistent 
infection and chronic hepatitis are also well described with 
rapid development of cirrhosis. 

Surveillance studies suggest high rates of background 
exposure in parts of the world, as reflected by observed 
seroprevalence estimates in Nepal (47%), Bangladesh (50%), 
France (53%) and Netherlands (27%) (70,71). Cases of 
transfusion-transmitted HEV G3 have been reported in 
France, UK and Germany. Risk of transfusion transmitted 
HEV pertains to RBCs, platelets, granulocytes and plasma. 
The lowest infecting viral dose 2×104 IU and 55% of 
components transmit the virus conferring a 40–50% risk 
of infection in recipients (72). Molecular surveillance in 
donor population suggests variable rates of G3 viremia e.g., 
1 in 762 (The Netherlands), 1 in 9,500 (USA); 0 of 13,993 
(Canada), 1 in 4,997 (Ireland) and 1 in 3,830 (England) 
(73-76). Surveillance has likely informed donor screening 
policy: HEV NAT is routinely performed in donors in 
Japan, Netherlands, France, Germany, UK and Ireland (77). 
Of note, PR (e.g., Intercept, Mirasol) is relatively ineffective 
against non-enveloped viruses, including HEV. 

Human T-cell lymphotropic virus (HTLV) 

HTLV-I and HTLV-II were the first described retroviruses 
in humans. HTLV-I is the cause of adult T-cell leukemia/
lymphoma (ATCL) and HTLV-1 associated myelopathy/
tropical spastic paraparesis (HAM/TSP). While less well 
defined, HTLV-II produces similar neurological disease 
to that observed in HAM/TSP (78,79). Most HTLV-I 
and HTLV-II infections are asymptomatic. HTLV “hot 
spots” (i.e., areas with high endemicity) include Southwest 
Japan, Central Africa, Melanesia, Caribbean basin and  
Brazil (80). While HTLV-1 is prevalent in Europe and 
Japan, a high proportion of HTLV infected donors 
in the US have HTLV-II (81). Both HTLV-1 and II 
are transfusion transmissible (82). In one study, 63% 
of recipients who were transfused with—relatively 
fresh—cellular blood components (whole blood, red 
blood cells, and/or platelets) from HTLV-I antigen or 
antibody positive blood donors, seroconverted (83). 
Transfusion-transmitted HTLV can lead to persistent 
infection in transfusion recipients (84). Many of the risk 
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factors for HTLV (notably intravenous drug use) are 
enquired specifically on the donor history questionnaire. 
Leukoreduction also helps to prevent transmission (85). 
Donor screening is not universal; rather it is largely 
confined to HICs (81). Most countries have elected to 
forgo testing for HTLV given low regional prevalence 
and/or clinical penetrance where most infections are 
asymptomatic and the incidence of HAM/TSP and 
ATCL in HTLV-1 infected individual is ~1% and 2–4% 
respectively) (86). Given the high cost of averting serious 
HTLV-associated morbidity or death, testing of first-time 
donors only has been proposed as a more cost-effective 
approach (87). Countries that do screen blood donors 
do so using antibody-based testing. For example, donor 
screening in the US has been effect since 1988 using an 
EIA against a whole blood HTLV lysate. Supplementary 
tests have been used to interpret the findings (86). In 
general, the high homology (60%) between HTLV-1 and 
HTLV-II, enables detection of both viruses using assays 
that target HTLV-I (88). Over time, adoption of refined 
algorithms has reduced reliance on supplementary testing 
for interpretation or results (89,90). 

CMV

Blood transfusion has long been cited as a risk of CMV, 
notably in the immunocompromised (e.g., organ transplant 
recipients) and hospitalized neonates and infants (91-93). In 
one study, 67% of neonates who received CMV seropositive 
blood went on to show laboratory evidence of infection vs 
none in the group who received blood from seronegative 
donors (35). Nonetheless, the risk of transfusion transmitted 
CMV remains contentious given that a high proportion of 
the general population is already CMV seropositive and 
most infections are asymptomatic (35). Further, the risk 
estimates have been highly variable. For example, one study 
found only 1 of 126 (0.8%) seronegative neonates became 
infected following transfusion of seropositive blood (36). A 
landmark clinical trial showed that the risk of transfusion-
transmitted CMV was not significantly different between 
leukocyte filtered blood and blood collected from CMV 
seronegative donors (94). This led to the gradual transition 
away from selective inventories where blood was reserved 
for high-risk patient populations (e.g., pregnant women, 
the immunocompromised, neonates), instead favoring 
leukoreduced blood. Leukoreduction is now routine in 
many if not most HICs. This is not the case in LMICs 
where leukoreduction is the exception. 

West Nile virus (WNV) 

WNV is a mosquito-borne flavivirus within the Japanese 
encephalitis (JE) antigenic Complex (95,96). The majority 
(80%) of infections are subclinical; however, ~1% of those 
infected will develop neuro-invasive disease, including 
meningoencephalitis. Historically, there were sporadic 
outbreaks of WNV in Africa, Middle East and Western 
Asia (95). Its sporadic nature changed with the emergence 
of WNV in New York City in August 1999 (97); within 
5 years, WNV was widely distributed throughout the 
continental US (95,98). At the outset of the US epidemic, 
transfusion associated risk was estimated to be low (2.7 
per 10,000 donations) (99). Multiple cases of transfusion 
transmitted WNV were subsequently described (100); 
one of the initial reports described 23 cases of transfusion-
transmitted WNV, representing 16 blood donors (101). 
NAT for WNV was developed rapidly and implemented 
in 2003 (102,103). A strategy was devised whereby mini-
pool NAT is performed year-round with reflex to ID-NAT 
following detection of a positive donor in a given area code 
(102,104,105). ID-NAT is continued for a minimum period 
(e.g., seven consecutive days) in the geographic region in 
which the infectious donor originated. This approach is 
used to optimize probability of identifying donors with 
low level viremia that might otherwise escape detection 
using MP-NAT (102,106). MP-NAT is resumed thereafter 
assuming that no additional positive donors are detected. 
The period of ID-NAT may be extended based on regional 
surveillance and seasonal activity. For example, one might 
include overlapping geographic regions (107). WNV 
positive donors are deferred for a period of 120 days after 
donation. Lauded as one of the successes of modern blood 
banking, the current testing approach has proved to be 
very effective having successfully interdicted thousands of 
potentially infectious blood products (103,108). 

Protozoa

Trypanosoma cruzi (T. cruzi)

T. cruzi is the protozoan parasite that is responsible for 
the eponymous Chagas disease. While most T. cruzi 
infections are asymptomatic, up 40% of those who are 
infected either have or will develop complications that 
include cardiomyopathy and gastrointestinal disease 
(e.g., megaesophagus, megacolon) through destruction 
of intramural autonomic ganglia (109). T. cruzi is widely 
endemic in Central and South America, extending as far 
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North as the Southern US where autochthonous cases 
have been reported (109,110). Global travel, trade and 
migration have blurred historical boundaries of endemicity 
extending risk to non-endemic countries (111,112). T. cruzi 
is primarily transmitted by triatomine insects (aka assassin 
or kissing bugs), accounting for its association with poverty 
i.e., triatomine insects inhabit adobe, mud, straw and 
thatch (113). Vertical transmission (i.e., congenital T. cruzi 
infection) and blood transfusion are also well described 
routes of transmission. Blood donor antibody-based 
screening, has long been in use in the Americas to prevent 
transfusion-transmitted T. cruzi. Individuals with a history 
of either a positive test for T. cruzi or clinical (Chagas) 
disease are permanently deferred from blood donation. 
RBDM (e.g., inquiry regarding birth or residence in an 
endemic country) may also be effective in non-endemic 
countries (114). 

Babesia 

Babesia is a genus of tick-borne intraerythrocytic 
protozoan parasite and the causative agent of the clinical 
infection babesiosis. The major species that infect humans 
are B. microti, B. divergens, B. duncani and B. venatorum, 
each of which differs with respect to its geographic 
distribution (115).  Babesia  are readily transfusion 
transmissible from any red blood cell (RBC) product, with 
as few as 10–100 parasites needed to establish competent 
infection (116). The overwhelming majority of cases of 
transfusion-transmitted babesiosis (TTB) are ascribed to B. 
microti, rare cases have been caused by B. duncani and other 
variant species (117-119). B. microti is widely endemic in 
the Northeastern and upper Midwestern United States: 
over 200 cases of TTB have been reported (117). Infection 
in immunocompetent adults is often subclinical or mild; 
by contrast, selected patient subsets—notably the extremes 
of age, the asplenic and immunocompromised—are at risk 
of severe infection accounting for the high fatality rate 
(~20%) in TTB (115). Further, persistent, symptomatic 
infection is not uncommon, such that donors are unaware 
of infection status at time of donation (120,121). This 
recognition led to development of antibody and molecular 
assays for blood donor screening in the US (121-125). 
In 2018, the US FDA published their recommendations, 
favoring regional molecular screening for Babesia in 
the highest risk states (126). The approved molecular 
assays are highly sensitive and specific and are capable of 
detecting the 4 major species of clinical concern. Where 

available, PR is also permissible as an alternative to 
molecular testing. The few blood donor studies that have 
been undertaken outside of the US (i.e., in Canada, China, 
Australia and Austria) suggest that risk of TTB remains 
low (127-130). 

Plasmodium 

Plasmodium (the cause of Malaria) is a leading, unaddressed 
risk to global blood transfusion safety (31). Malaria poses 
very different challenges for blood safety in endemic and 
non-endemic countries. In endemic countries, the optimal 
mitigation strategy is still uncertain. Approaches in use 
for clinical diagnosis, such as microscopic examination 
of peripheral blood smears, are not amenable to high 
throughput donor testing given the low sensitivity 
of microscopy, coupled with the labor required for 
slide preparation and screening (131,132). Serological 
testing is not feasible given the high seroprevalence 
whereby residents in endemic countries often develop 
semi-immunity (antibodies with low grade, subclinical 
parasitemia) early in childhood (133). Therefore, antibody 
testing would incur very high rates of deferral in areas 
where blood supply is already inadequate (134). By contrast, 
molecular testing is exquisitely sensitive but is high cost and 
technically demanding, accounting for its rare adoption in 
LMICs even for the major TTIS (HIV, HBV and HCV). 
Further, optimal management of donors with positive 
molecular results (i.e., DNA- or RNAemia) is uncertain 
given that a high proportion of donors would be expected 
to be parasitemic, there is already unmet need for blood 
and many of the recipient population are also infected 
with Plasmodium (135). Alternative strategies that have 
been proposed to prevent transfusion-transmitted malaria 
(TTM) include PR of whole blood (i.e., using a PI system), 
prophylactic administration of antimalarial to transfusion 
recipients and/or addition of antimalarials to blood products 
(136,137). 

Malaria also poses a problem for non-endemic 
countries, where deferral of donors for malaria risk is 
often out of proportion to the actual risk of TTM (138).  
Specifically,  most non-endemic countries enquire 
regarding travel to or residency in an endemic country. An 
affirmative response results in temporary deferral ranging 
from 3 months to several years. While risk-based deferral 
is generally effective (i.e., cases of TTM are rare in non-
endemic countries), a high proportion of those who are 
deferred will never return (30). Novel molecular assays 
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have been proposed to screen donors either universally 
or selectively (e.g., those with history of malaria, travel or 
residency in endemic countries) in non-endemic countries. 

Bacteria 

Globally, bacterial contamination of blood products and 
associated septic transfusion reactions remains another 
major neglected transfusion associated risk. Platelet 
products are disproportionately at risk given their storage 
at high temperatures (20 to 24 ℃), in gas permeable bags. 
Bacteria that are most commonly implicated include 
Gram positive commensal, skin and mucosal flora (e.g., 
coagulase negative Staphylococcus spp., Staphylococcus aureus) 
that are thought to be introduced at time of collection 
(27,139). The most commonly implicated organisms 
display attributes that favor growth in blood products 
(e.g., adherence to plastics and formation of biofilms) as 
well as ways of evading host immune system (140,141). 
Gram negative flora are more commonly implicated in 
contamination of red blood cells. In the US and other 
HICs, a number of measures were adopted almost 20 years 
to limit contamination, including standardized phlebotomy 
site cleaning, use of diversion pouches during collection 
and bacterial culture (142,143). Collectively, these measures 
reduced the incidence of bacterial contamination by ~70%. 
Nonetheless, recognition of residual risk of bacterial 
contamination has led to development and now adoption of 
other safeguards, including large volume delayed sampling, 
secondary bacterial culture, point of care testing and PR 
(143-147). In LMICs, even primary bacterial culture is the 
exception (148). Post-transfusion surveillance and reporting 
is suboptimal, likely accounting for the low rates of reported 
septic transfusion reactions. 

T. pallidum 

Syphilis, caused by the spirochete, T. pallidum, was the first 
recognized TTI. First described in 1915, by 1941 138 cases 
of transfusion-transmitted syphilis had been reported (149).  
Mandatory antibody-based testing for T. pallidum began 
in the 1950s. This proved highly effective: no cases of 
transfusion-transmitted syphilis have been reported in 
the US since the 1960s (1,150). Current testing in the US 
employs an inverse testing algorithm using a treponemal 
specific assay, reserving non-treponemal specific assays 
for supplementary testing to guide counseling. Primary 
screening with treponemal specific assays avoids the 

problem of false positivity and unnecessary deferral of 
donors. Testing notwithstanding, other factors likely have 
contributed to the absence of reported cases. Survival studies 
have showed that T. pallidum only remains infectious for 72 
to 120 h of refrigerated storage (151). The prevalence of 
active syphilis in blood donors is low and risk-based deferral 
likely serves to exclude syphilis positive donors given shared 
socio-behavioral risk factors for other TTIs (152,153). 
The low risk of transfusion-transmitted syphilis has led 
to intermittent calls to abandon testing given high cost 
with limited yield. A cost effectiveness study in Australia 
estimated that the cost utility of universal testing was 
$538.5 million per disability adjusted life year averted (154).  
The counterargument that T. pallidum serves as a surrogate 
marker for other TTIs, has not been substantiated (155). 
By contrast, screening in LMICs remains important given a 
larger reservoir of syphilis, transfusion of fresh whole blood 
and suboptimal donor selection (156). 

Other 

A relatively low number of pathogens pose credible risk to 
the blood supply. Yet an ever-expanding list of pathogens 
has been described. Many of those “other” pathogens have 
largely been confined to isolated case reports (e.g., hepatitis 
A virus, Dengue) and case series (Leishmania, Toxoplasma, 
Anaplasma), without prompting a change in policy and/or 
leading to adoption of a defined intervention (37,46-49,157). 
Unfortunately, there are also pathogens that have been 
targeted for intervention (e.g., Zika virus, vCJD), incurring 
enormous cost with questionable gain (4,12,158-160). 
Hypervigilance is not without risk: in one extreme example, 
a reported association between chronic fatigue syndrome 
(CFS), and xenotropic murine leukemia virus-related virus 
by a laboratory in Nevada, prompted concerns of a novel 
transfusion-associated risk (161). This led to deferral of 
patients with CFS from blood donation pending evaluation 
while a series of studies were launched to investigate the 
link, none of which were able to conform the finding. 
Rather it was late established that XMRV was a rumor virus, 
ascribed to contaminating reagents and adherent laboratory 
practices (162). The unfortunate saga of XMRV ended with 
a retraction of the original article and ultimately closure 
of the reporting laboratory amidst demonstrated scientific 
misconduct (163). A few prominent examples where 
interventions were adopted merit description for the lessons 
that they offer.

Creutzfeldt-Jakob disease (CJD) and variant CJD (vCJD) 
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are prion diseases that are included among transmissible 
spongiform encephalopathies (TSEs),  a  group of 
untreatable, progressively debilitating and ultimately fatal 
neurodegenerative diseases, characterized by accumulation 
of misfolded, proteinaceous infectious particles, or prions 
in the brain and lymphoreticular tissues (164). To date, no 
cases of CJD have been attributed to blood transfusion. 
However, 3 cases of transfusion-associated vCJD have been  
described (165). A fourth, pre-clinical case of transfusion-
associated vCJD was identified on autopsy material (158). 
The 4 cases are the culmination of exhaustive donor 
recipient tracing studies and mining of registries in the 
United Kingdom (UK) (166). The UK was the focus of 
the outbreak of bovine spongiform encephalopathy (BSE) 
(i.e., “mad cow disease”) in the 1990s; vCJD in humans 
has been ascribed to ingestion of beef that had been 
contaminated with the BSE protein (167). Of note, both 
BSE and scrapie, another prion disease, have been shown 
to be transfusion transmissible (168-170). vCJD merits 
description as a TTI for the scale of the response by the 
blood banking community. Permanent donor deferral has 
long been in place for those with a risk factor for CJD 
(e.g., family history, transplantation of dura mater) or 
vCJD (e.g., residence or time spent in the UK and parts of 
Western Europe around time when the incidence of BSE 
and vCJD were highest [1980–1996] (171). The blood 
banking community’s response to vCJD offers an example 
of application of the precautionary principle: when data are 
lacking, one is compelled to do everything possible to guard 
against a public health threat (172). Nonetheless, that is not 
without its own negative consequences whereby the donor 
loss and impact to blood supply arguably far exceeded 
that of the risk of vCJD. Likely spurred by the response 
to COVID-19, the deferral policy for vCJD was revised 
in 2020, to focus on deferral of those who spent time 
UK, France and Ireland (i.e., the highest risk countries) 
(173,174). 

Zika virus,  a formerly obscure mosquito-borne 
flavivirus (Flaviviruses include Dengue, Yellow Fever 
Virus and WNV), drew attention in 2007 with the first 
sizable outbreak in Yap, Micronesia (175). Following 
subsequent outbreaks in the Pacific, including a large 
epidemic in French Polynesia, Zika emerged in Brazil 
in 2014, thus heralding rapid, pandemic spread (176). 
Although the overwhelming majority of infections are 
either asymptomatic (~50–80%) or mild (i.e., self-limiting, 
flu-like illness) when contracted during pregnancy, Zika 
has the propensity toward severe teratogenic effect (176).  

Complications include microcephaly, abortion and 
intrauterine death (177-179). Risk to the blood supply 
was uncertain at the outset, forcing reliance on scant 
data to guide blood transfusion policy (180). In 2016, the 
US became the only country to mandate blood donor 
testing, using NAT. During the outbreak in French 
Polynesia a surveillance study found that 42/1,505 (2.8%) 
of asymptomatic blood donors were ZIKA RNA+, 11 of 
whom developed symptoms post-donation (181). Another 
study in Martinique (i.e., which had not been published 
at time of implementation of the US policy) reported that 
between January and June 2016, 76/4,129 (1.84%; 3% at 
peak) blood donations were Zika RNA+; over half (54.7%) 
of the associated blood donors developed symptoms (182).  
Four cases of possible transfusion transmission were 
reported in Brazil, none of which resulted in clinical 
sequelae in the recipients (183-185). The US policy 
was criticized given continued testing despite a waning 
epidemic, coupled with the absence of clinical cases of 
transfusion-transmitted Zika. The policy, abandoned in 
2021, came at enormous cost ($US137 million per year and 
$US341 million per QALY) with no discernible benefit to 
blood safety (4,5,186). The lessons of Zika pertain less to 
how best to respond to an emerging infectious disease, and 
more about how to modify practice as new data become 
available (12,13). 

Summary 

Decades of investment in blood transfusion safety has 
largely restored confidence in the blood supply in HICs. 
Risk of TTIs is low given the collective strategies spanning 
refined donor selection and testing. Further, innovative 
strategies such as PR, could prove transformative by 
addressing infectious risk proactively. However, the 
pendulum has swung from one extreme to another: from 
relative neglect in the pre-HIV era to a growing litany 
of indiscriminate and disproportionate responses to 
known or emerging pathogens. This is reflected in the 
economics of blood transfusion safety, where interventions 
routinely exceed $US1million per quality adjusted life year, 
questioning sustainability and counter-intuitively, straining 
the ability to respond to emerging infectious threats (6,187). 
By contrast, LMICs contend with the opposite problem 
whereby transfusion-associated infectious risk remains 
pervasive, largely unaddressed and poorly characterized 
given a myriad of challenges and competing priorities (8). 
There is need and opportunity to do better. 
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