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Introduction

There are three main components manufactured from 
whole blood: red blood cells (RBCs), plasma, and platelets. 
Each of these components can also be collected individually 
through apheresis. RBCs are collected and stored at 4 ℃ 
with a variety of different solutions that confer different 
shelf-lives ranging from 21–42 days. RBCs that have rare 
antigens can be stored frozen for extended periods of time. 
Platelets have the shortest shelf-life of 5–7 days depending 
upon bacterial testing and pathogen inactivation. Lastly, 
plasma can be stored liquid for up to 5 days or frozen for 
up to 12 months or 7 years depending upon the freezing 
temperature. Plasma contains a multitude of different 
proteins, peptides, and biologic substances (1). Novel uses 
for these components are still being found. 

Approximately 53 million liters of plasma was collected 
in the United States in 2019 (2). Between 2010 and 2019, 

plasma collections in the US nearly tripled and the number 
of source plasma collection centers doubled (401 to 832) (3). 
Currently, almost 20 different therapeutic plasma proteins 
are purified from plasma via multi-step processes including 
precipitation and/or chromatography. Interestingly, the 
demand for pharmaceutical plasma products, particularly 
intravenous immunoglobulin (IVIG) products, is increasing 
at the rate of 3–8% per year (1,4).

Plasma is classified according to the method of collection: 
recovered plasma or source plasma. Recovered plasma is 
typically collected by blood donor centers as a byproduct 
of a whole blood donation. Recovered plasma typically is 
comprised of 100–260 mL from a whole blood donation (4). 
Notably, in 2015, recovered plasma comprised only 13% of 
total fractionated plasma (5). Source plasma is collected via 
plasmapheresis at special plasma collection centers. Over 
two thirds of plasma used for fractionation comes from 
source plasma (6). During the plasmapheresis procedure, 

Review Article

Blood derivative therapy

Amy E. Schmidt1, Majed A. Refaai2

1CSL Plasma, Boca Raton, FL, USA; 2University of Rochester Medical Center, Rochester, NY, USA

Contributions: (I) Conception and design: Both authors; (II) Administrative support: AE Schmidt; (III) Provision of study materials or patients: None; 

(IV) Collection and assembly of data: Both authors; (V) Data analysis and interpretation: Both authors; (VI) Manuscript writing: Both authors; (VII) 

Final approval of manuscript: Both authors.

Correspondence to: Majed A. Refaai, MD. University of Rochester Medical Center, Rochester, NY, USA. Email: Majed_refaai@urmc.rochester.edu.

Abstract: There are three main components manufactured from whole blood: red blood cells (RBCs), 
plasma, and platelets. Plasma contains a multitude of different proteins, peptides, and biologic substances. 
Approximately 53 million liters of plasma was collected in the United States in 2019. Following collection, 
plasma is frozen and manufactured into plasma-derived medicinal products (PDMPs). During the 
manufacture process, several thousand plasma units are pooled for Cohn fractionation, which is based upon 
cold ethanol precipitation of proteins. The PDMPs are further prepared using ion exchange or affinity 
chromatography and additional steps to inactivate and remove infectious diseases such as viruses. Almost 20 
different therapeutic plasma proteins are purified from plasma via these multi-step manufacturing processes. 
Interestingly, the demand for pharmaceutical plasma products, particularly intravenous immunoglobulin 
(IVIG) products, has been increasing. The manufacture and therapeutic role of blood derivatives particularly 
immunoglobulin therapy, Rh immunoglobulin (RhIG), COVID-19 convalescent plasma (CCP) and 
hyperimmune globulins, albumin, clotting factors, fibrin sealants, and platelet rich plasma will be described. 

Keywords: Plasma; plasma fractionation; source plasma; albumin

Received: 08 September 2021; Accepted: 27 October 2021; Published: 31 March 2022.

doi: 10.21037/aob-21-64

View this article at: https://dx.doi.org/10.21037/aob-21-64

27

mailto:Majed_refaai@urmc.rochester.edu
https://crossmark.crossref.org/dialog/?doi=10.21037/aob-21-64


Annals of Blood, 2022Page 2 of 27

© Annals of Blood. All rights reserved. Ann Blood 2022;7:7 | https://dx.doi.org/10.21037/aob-21-64

the donor’s blood is centrifuged to separate the components 
based upon density. The plasma is collected sterilely into 
a bag and the remaining components are returned along 
with normal saline. Source plasma volume per donation 
is typically ranges from 690–880 mL depending upon the 
donor’s weight. Donors can donate source plasma more 
frequently than recovered plasma as longer time is needed 
to replace RBCs after a whole blood donation. A donor 
can donate plasma or platelets twice in a 7-day period with 
at least 48 hours between donations. In contrast, donors 
of whole blood or single unit RBCs can only donate every  
56 days. In the US, source plasma donors can donate up to 
104 times per year; however, only a small portion (0.3%) 
donate more than 100 times a year. Approximately 14% 
donate more than 50 times a year and 49% donate 10 or 
fewer times per year (4).

Plasma can also be classified as standard or hyperimmune. 
Hyperimmune plasma is collected from donors that have 
been vaccinated or inoculated with a particular antigen 
to produce a specific type of immunoglobulin such as 
Rh immunoglobulin (RhIG). Lastly, plasma types can be 
categorized based upon the remuneration status of the 
donor such as paid, compensated, or unpaid. Most donors 
at large plasma collection centers are paid/compensated 
for their time. The safety of paid versus unpaid plasma 
donation is a topic of great debate (7-10).

Blood and plasma donation is overseen in the US by the 
Food and Drug Administration (FDA). However, because 
the majority of source plasma for plasma-derived medicinal 
products (PDMPs) is collected in the US, most plasma 
donor centers in the US are also overseen by other health 
agencies such as the German Health Authority (GHA) in 
addition to the FDA. Additionally, most of the plasma donor 
centers in the US voluntarily participate in the International 
Quality Plasma Program (IQPP) certified by the Plasma 
Protein Therapeutic Association (PPTA). Notably, PDMPs 
are defines by the World Health Organization (WHO) 
as essential medicines and plasma for fractionation is a 
strategic resource (11).

Source plasma donors are typically screened at the time 
of donation using questionnaires, and they are also medically 
evaluated prior to donating. At initial donation, they receive 
a physical examination and have their total protein and 
hemoglobin quantitated at the plasma collection center 
using point of care testing. Each plasma donation is tested 
for infectious disease markers such as hepatitis B virus (HBV) 
antibodies and deoxyribonucleic acid (DNA), hepatitis C 
virus (HCV) antibodies and ribonucleic acid (RNA), human 

immunodeficiency virus (HIV) antibodies and RNA, as well 
as for RBC antibodies and Parvovirus B19 DNA. Notably, 
per IQPP standards, donors must pass two sets of qualifying 
measurements (have two successful donations) prior to the 
plasma being able to be used for further manufacture of 
PDMPs (3). In addition, the donors have serum or plasma 
protein electrophoresis (SPEP) performed at their first 
donation and every 4 months thereafter. The donors also 
undergo a physical evaluation every 6 months to one year 
depending upon the collection facility policy.

The cost of plasma accounts for 20–45% of the 
production costs in plasma fractionation industry (12). In 
general, blood products from unpaid donors are considered 
safer as there is less reason for donors to misrepresent 
their medical history. However, reliance on unpaid donors 
would not meet the current demand for plasma and its 
fractionated products. In countries where plasma donors 
are not remunerated, the percent of population donating 
is very low. For example, in Australia, only 0.13% are 
plasma donors (13). Thus, the safety of plasma and its 
derivatives relies on donor selection and screening as well 
as on efficient viral inactivation steps during processing and 
production. Importantly, there has not been any reported 
transmission of infectious blood borne diseases via plasma 
derivatives since 1994 (14). 

There are some differences in the quantity of different 
proteins observed between source plasma and recovered 
plasma.9 Source plasma has been found to have lower IgG 
levels but higher amounts of clotting factors as compared 
to recovered plasma (15). Several other studies have shown 
decreases of IgG, IgA, IgM, albumin and total protein in 
apheresis plasma collected from long-term frequent plasma 
donors (16-18). Laub et al. studied recovered plasma from 
non-paid donors and apheresis plasma from remunerated 
and unpaid donors and compared the levels of total 
protein, 15 plasma protein markers, and anti-Parvovirus 
B19 and anti-Streptococcus pneumoniae IgG in donations from 
different countries including Belgium, Finland, France, 
the Netherlands, Germany, and the US. They found that 
plasma pools from paid donors at plasma collection centers 
in the United States had lower total protein (9%), albumin 
(15%), total IgG (24%), IgM (28%), hemopexin (11%) and 
retinol-binding protein (10%) (6). Interestingly, the paid 
donors had higher C1-inhibitor, pre-albumin and C-reactive 
protein (CRP) as compared to pools from unpaid European 
Union or US whole-blood or plasmapheresis donors (6). 
The minimum yield from a fractionated unit of fresh frozen 
plasma in Spain is 24 g of albumin, 4.025 g of IVIG, 80 IU 
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of FVIII, 105 IU of FIX, and 0.156 g of α1-antitrypsin (19).
Source plasma donors have their RBCs returned to them 

and are at low risk of iron depletion. During source plasma 
donation, the collection device and tubing is rinsed with 
saline during the postdonation saline reinfusion. This helps 
reduce the RBC loss for each plasma donation to ~5 mL 
or less. For frequent plasma donors, this small loss could 
still add up to 250–500 mL RBC loss over the course of a 
year. A recent study by Schreiber et al. showed that iron 
depletion was not increased in frequent source plasma 
donors and that frequent plasma donation does not decrease 
iron stores (20). It has been hypothesized that the frequent 
plasma donations and exposure to citrate which is used as 
an anticoagulant could lead to osteoporosis; however, long-
term observational studies have shown that this does not 
occur (21). Additionally, reaction rates for donors are quite 
low with <0.03% severe reactions (22). 

Following collection, plasma is frozen and manufactured 
into PDMPs. During the manufacture process, several 
thousand plasma units are pooled for fractionation. During 
the manufacture process, the plasma undergoes Cohn 
fractionation which is based upon cold ethanol precipitation 
of proteins (23,24). The PDMPs are further prepared using 
ion exchange or affinity chromatography and additional 
steps to inactivate and remove infectious diseases such as 
viruses (25-27). PDMP manufacture requires at least two 
orthogonal virus reduction procedures that can inactivate 
or remove enveloped and nonenveloped viruses (28). 
Pasteurization is useful for inactivation of enveloped viruses 
and some nonenveloped viruses. Animal parvoviruses 
are not effectively inactivated with pasteurization (29). 
Hydrophobic chromatography and PEG precipitation 
are also effective at removing viruses (30). Filtration 
also effectively removes large and small viruses (31). 
Lastly, ammonium sulfate precipitation and hydrophobic 
chromatography have been shown to effectively remove 
prions (32). A recent study by Roth et al. looked at the 
prevalence of hepatitis E virus (HEV) in plasma donors 
in the US. HEV is of emerging concern in industrialized 
countries and transmission has been reported via transfusion 
of blood components but not PDMPs (33). Roth et al. 
found that the prevalence of HEV RNA was 0.002% and 
concluded that routine screening of source plasma donors 
for HEV would not substantially improve the safety of most 
PDMPs especially given the viral reduction steps present in 
manufacturing (33).

This paper will describe blood derivatives particularly 
immunoglobulin therapy, RhIG, COVID-19 convalescent 

plasma (CCP) and hyperimmune globulins, albumin, 
clotting factors, and fibrin sealants. 

Immunoglobulin therapy

Human immunoglobulin products are made from 
large pools plasma from more than 10,000 donors to 
generate a broad range of immunoglobulins for use in 
immunodeficient patients. The plasma is fractionated as 
described above using Cohn fractionation. The fraction 
containing the majority of the immunoglobulin is referred 
to as Cohn Fraction II. Cohn fraction III also contains some 
immunoglobulins. These fractions then undergo several 
additional purification procedures such as pasteurization, 
ultrafiltration, acidification, chromatography, and solvent/
detergent treatment depending upon the manufacturer. 
These additional procedures serve to remove pathogens, 
high-molecular-weight complexes, and soluble products 
from the plasma (34). Following purification, the 
immunoglobulin product has various stabilizers added 
and is tested for pathogens and pyrogenicity. To ensure 
pathogen removal, an aliquot is spiked with enveloped and 
non-enveloped DNA and RNA viruses as well as prion 
proteins. This aliquot is purified using the same purification 
process and tested for pathogens (35,36). If the product 
is from donors that were immunized against a certain 
pathogen such as HBV or rabies, the content is assessed for 
the specific antibody in question. Immunoglobulin therapy 
may still contain pathogens, particularly newer ones, that 
we may not have developed tests for, or pathogens that are 
resistant to the purification techniques employed.

Immunoglobulin therapy has been used to manage or 
treat several disorders such as primary immunodeficiency; 
Kawasaki disease; prevention of specific antibody 
production, such as anti-D in a RhD negative female; 
and treatment of certain types of infections. The 
largest use of immunoglobulin therapy is for acquired 
hypogammaglobulinemia due to hematological malignancy 
or post-stem cell transplant (4). Notably, indications for 
immunoglobulin therapy vary from country to country as 
does off-label use (4,37-39). Global use of immunoglobulin 
therapy has increased by 6-8% annually (40). Several studies 
have shown that immunoglobulins are being used outside 
established criteria in many countries. A study of clinical 
use of immunoglobulins in hospitals in Spain showed 
that 50% of immunoglobulins were administered for 
unapproved indications with half being for diseases in which 
immunoglobulins have no established efficacy (41). Notably, 
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Canada, Australia, and the US have high immunoglobulin 
use at 120–140 g/1,000 inhabitants per year. Use of 
immunoglobulins is lower in other developed countries 
such as Germany whose use is 41.5 g/1,000 inhabitants per 
year and the UK with 56 g/1,000 inhabitants per year (19). 
Recently, there have been shortages of immunoglobulins. 
A shortage occurred in 2019 and additional shortages have 
been caused by coronavirus disease 2019 (COVID-19) 
stressing the plasma supply. The COVID pandemic caused 
a reduction in plasma donations and also resulted in some 
plasma donors being redirected as convalescent COVID-19 
plasma (CCP) donors. Another cause of limited supply is 
that source plasma donors typically only donate in the US 
for 6 months (42).

There are two main forms of immunoglobulins used 
as therapy: (I) standard immunoglobulin [available 
subcutaneous (SQ), intramuscular (IM), and intravenous 
(IV)]; (II) special immunoglobulins with known antibody 
content specific for a particular disease/infection, animal 
sera and antitoxins. The seroprevalence of antibodies to 
various infectious diseases such as measles and HAV has been 
shown to vary in donor populations. Ciencewicki et al. found 
that titers of anti-HAV immunoglobulin in source plasma 
varied from center to center with some centers having titers 
3–5 times higher (43). Notably titers of CMV and measles 
antibodies were essentially the same across the donor 
centers (43). These differences are attributed to variances 
in food and water resources, vaccination, sanitation 
conditions, climate, and socioeconomics (43,44). For this 
reason, production of immunoglobulin therapy from donor 
plasma obtained from diverse donor populations from many 
regions is important. When administered to patients, these 
immunoglobulins typically will circulate for 1–6 weeks. 

Preparations of high-titered disease specific human 
antibodies are available for administration to patients 
exposed to HBV, cytomegalovirus (CMV), vaccinia, 
botul ism, rabies,  varicel la ,  tetanus,  and for RhD 
negative individuals exposed to RhD positive RBCs. 
Although available for IM, SQ, and IV administration, 
immunoglobulin therapy is most frequently given via the 
IV route. The IV route has several advantages including: 
quick attainment of therapeutic levels, easy to give large 
immunoglobulin doses, no tissue loss due to proteolysis, 
and less painful administration as compared to IM or SQ.

IVIG administration typically takes several hours and 
should be infused while emergency medications such as 
epinephrine are easily accessible. Approximately 15% of 
patients receiving IVIG have adverse reactions such as 

nausea, backache, abdominal pain, chills, low-grade fever, 
and headaches which can be avoided by slowing the infusion 
rate. Premedication with acetaminophen, diphenhydramine, 
hydrocortisone, or nonsteroidal anti-inflammatory drugs 
may also be helpful in reducing adverse reactions to IVIG. 
Additionally, in some cases, the IVIG dose may be divided 
over 2 days. Switching to a different IVIG product may also 
be helpful in some patients. Severe immediate reactions to 
IVIG can occur and typically include chills, fever, severe 
headache, nausea, vomiting, rash, and/or myalgias. True 
anaphylaxis is rare. In patients who have a severe reaction to 
IVIG infusion, IgA deficiency should be ruled out as anti-
IgA can cause significant anaphylactic reactions (45,46). 
IVIG infusion has been associated with other complications 
such as renal insufficiency, thrombosis, myocardial 
infarction, and pulmonary embolism (47).

Various mechanisms are used to reduce and eliminate 
infectious diseases such as viruses from blood derivative 
products. Common methodologies include heat treatment, 
solvent/detergent treatment, filtration, and fatty acids 
such as caprylic acid and octanoic acid (27,48-52). Heat 
treatment has been associated with aggregation of 
immunoglobulins (53). IVIG has been associated with a 
very low rate of infectious disease transmission; however, 
Parvovirus B19 transmission via IVIG therapy have also 
been reported (54,55). Unfortunately, Parvovirus B19 
is resistant to solvent/detergent and heat treatment. 
Therefore, several large volume plasma collection centers 
are currently testing each donor’s donation for Parvovirus 
B19. There have been no reports of transmission of variant 
Creutzfeldt-Jakob disease (vCJD) and other prion diseases 
with immunoglobulin therapy. To date, there are no tests 
available to detect or screen for prion diseases.

RhIG therapy

Landsteiner and Wiener first discovered the Rhesus (Rh) 
blood group in 1940; however, it was not until 1941 that 
RhD was associated with hemolytic disease of the fetus and 
newborn (56,57). The risk of alloimmunization to RhD for 
a RhD negative mother carrying an ABO compatible RhD 
positive fetus was found to be ~16% (58). However, if the 
fetus was ABO incompatible with the mother, the risk of 
RhD alloimmunization was found to decrease to 2% (58). 
The incidence of hemolytic disease of the fetus/newborn 
varies by race as the percentage of people that are negative 
for RhD is higher in certain races and ethnic groups. In 
the US, ~15% of people of European ancestry are RhD 
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negative as compared to ~8% of African Americans and 1% 
of Asians and Native Americans. Hence, the rate of RhD 
incompatibility is highest in women of European descent 
where the chances of an RhD negative female having an 
RhD positive infant is ~60%. 

RhIG is manufactured by collecting and purifying 
plasma of RhD negative donors who have been specifically 
exposed to the RhD antigen to generate RhD antibodies. 
RhIG was first available in the US in 1968. Currently, all 
licensed and available RhIG preparations are polyclonal 
and may be given IM or IV. The IM versions contain 
IgG aggregates as well as IgA, IgM, and other proteins 
that can cause anaphylaxis if given IV. Preparations for 
IV administration undergo additional purification via ion 
exchange chromatography and are purer.

Typically, RhIG is administered to RhD negative 
pregnant women at 28 weeks of gestation to prevent 
alloimmunization. It is also administered if any feto-
maternal hemorrhage is suspected due to trauma or 
other pregnancy complications. Following delivery, the 
infant is tested for blood type and Rh status. No RhIG 
administration is needed for a mother of a RhD negative 
infant. However, if the infant is Rh positive, the number 
of infant cells is quantified in the maternal blood and an 
appropriate dose of RhIG is calculated and administered. 
In most cases, the mother only requires a single dose 
of 300 μg of RhIG. It is recommended that RhIG be 
given to Rh negative women with Rh positive infants 
within 72 hours after birth. However, it has been shown 
that partial protection is afforded by giving RhIG up to  
13 days after birth (59). When RhIG is administered to Rh 
negative women at 28 weeks and postpartum, the risk of Rh 
alloimmunization decreases to 0.1% (60).

Most RhIG comes in doses of 50 and 300 μg. A 300 μg 
dose is considered sufficient to neutralize or protect against 
15 mL of the fetus/newborn’s RBCs or 30 mL of whole 
blood. The incidence of fetal maternal hemorrhage that 
exceeds 30 mL is 0.25%; thus, a 300 μg dose of RhIG is 
sufficient in most cases (58). It is the standard of care to 
screen for fetal maternal hemorrhage and quantitate the 
hemorrhage if necessary. Several methods are available for 
this purpose including, the rosette test, the Kleihauer-Betke 
(KB) test, and flow cytometry (61). The rosette test is a 
commonly used screening test, however, it does not work if 
the mother is a D variant as the test will be falsely positive. 
If the rosette test is negative, the standard practice is to 
administer 300 μg dose of RhIG. In positive results, a more 
quantitative test such as the KB test is then used (61). Flow 

cytometry can be used as both a screening test as well as a 
quantitative test (62). 

Although platelets do not contain Rh antigens, platelet 
products can contain a few RBCs. It has been reported 
that each whole blood derived (WBD)-platelet contains  
<0.5 mL of cells and apheresis platelets (AP) contain  
<0.001 mL of red cells (63). Thus, transfusion of platelet 
products from an RhD positive donor has the risk of 
causing D alloimmunization in a RhD negative recipient. 
In some cases, blood banks may suggest RhIG when a 
platelet unit from an Rh positive donor(s) is released for 
transfusion to a Rh negative recipient. The development 
of an anti-D antibody following transfusion of a platelet 
product from a RhD positive donor depends upon a variety 
of factors, including the recipient’s immune system as 
well as the dose of RBCs in the unit. Recipients who have 
hematologic malignancies have been reported to have lower 
rates of alloimmunization following transfusion with RhD 
positive platelets (64-66). Infants also have a lower rate of 
alloimmunization following administration of Rh positive 
platelets due to an immature immune systems not fully 
competent to produce alloantibodies; thus, infants have a 
lower rate of alloimmunization following administration 
of Rh positive platelets. Notably, alloimmunization with 
subsequent development of anti-D has been documented 
following WBD-platelets (67). Some medical providers do 
not recommend administration of RhIG to women past 
childbearing age following administration of Rh positive 
products (68).

Alloimmunization to RhD following plasma transfusion 
is rare; however, several cases of alloimmunization have 
been reported (69-71). Notably, due to the rarity of 
alloimmunization in this context, RhIG is likely not 
necessary and is rarely used under these conditions.

RhIG administration typically causes minimal adverse 
reactions. Itching, headaches, chills, fever, dizziness, 
tenderness and swelling at the site of administration, 
diarrhea, nausea, vomiting, arthralgia, myalgia, and 
sweating have been reported. As described above, IM 
reparations of RhIG contain small amounts of IgA and 
have been reported to cause anaphylaxis (72). Many years 
ago, RhIG was linked to HCV transmission (73); however, 
there have been no recent reports of transmitted infectious 
diseases. In addition to being used in pregnancy, IV RhIG is 
also used in some patients with ITP who are RhD positive. 
Following administration in RhD positive individuals, 
severe hemolysis, anemia, renal insufficiency, DIC, and 
death have been reported in some cases (74).
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Convalescent plasma (CP) and hyper-
immunoglobulin (Hyper-Ig)

Convalescent blood products were first described as 
being of benefit during the Spanish Influenza of 1918. 
Retrospective analysis of CP usage during the Spanish 
Influenza pandemic showed that the mortality was reduced 
to 16% in individuals receiving CP as compared to 37% 
in control cases (75). Notably, the mortality was lower 
(19%) in patients that received CP early (prior to 4 days of 
pneumonia complications) as compared to 59% mortality 
in those that received plasma after 4 days (75). CP has 
been used and studied to treat various infections including 
Ebola, middle eastern respiratory syndrome (MERS), 
H1N1, severe acute respiratory syndrome (SARS), and 
SARS-CoV-2 COVID-19 (76-86). During pandemics, large 
amounts of CP are needed for both direct patient infusion 
and to make hyper-immunoglobulin products. 

CCP was FDA approved as an emergency investigational 
new drug on March 24, 2020 to treat critically ill 
COVID-19 patients (87). The FDA has recommended 
a titer of >1:320 in CCP. The first study to show 
improvement in patients treated with CCP was done in 
China. In this study, 5 patients with rapid progression 
of severe pneumonia were mechanically ventilated and 
were receiving steroids and antiviral medications. They 
received CCP between days 10 and 22 of hospital admission 
and showed improvement via normalized temperature, 
improved PaO2/FiO2, and improved sequential organ 
failure assessment (SOFA) score (88). Another study of 6 
patients in China who received CCP showed improved viral 
clearance and longer survival times but no improvement in 
mortality (89). Similarly, another study in China showed 
that 10 patients with severe COVID-19 who were treated 
with CCP early in disease course (average of 16.5 days 
after onset) had a substantial improvement in symptoms 
and decreased requirements for ventilatory support (78). 
CCP has also shown some benefit when given late in 
disease course. Ye et al. showed that 6 patients in China who 
were treated with CCP >4 weeks after disease onset and 
trials of other clinical regimens had clinical improvement 
and decreased ICU need (90). Libster et al. performed a 
randomized, double-blind, placebo-controlled trial of CCP 
in older adult patients with COVID-19 within 72 hours 
after the onset of mild symptoms (91). The primary end 
point was severe respiratory disease, defined as a respiratory 
rate of 30 breaths per minute or more, an oxygen saturation 
of less than 93% while the patient was breathing ambient 
air, or both. They found that 13/80 patients (16%) who 

received CCP developed severe respiratory disease as 
compared to 25/80 patients (31%) who received placebo 
(RR, 0.52; 95% CI: 0.29 to 0.94; P=0.03), with a relative risk 
reduction of 48% (91). A recent randomized, multicenter 
single-blind trial compared 257 emergency room patients 
presenting with one or more high risk factors for severe 
COVID-19 and receiving CCP to 254 patients with similar 
characteristics receiving placebo and found that disease 
progression was similar in the two groups (92). There were 
no differences in secondary outcomes (worst severity of 
illness on an 8-category ordinal scale, hospital-free days 
within 30 days after randomization, and death from any 
cause) (92). The patients in this study received CCP later 
(within 1 week of symptom onset) as compared to other 
trials showing improvement in outcome (91,92).

Prior to the COVID-19 pandemic, was the H1N1 
pandemic in 2009. During this pandemic, Baxter BioLife 
plasma centers collected plasma from convalescent donors 
as well as self-identified donors who were vaccinated against 
H1N1 to make a hyper-immunoglobulin product. They 
collected 15,000 units of plasma which was found to have 
16-fold increased hemagluttination inhibition titers as 
compared to normal source plasma (93). This group found 
that 54% of self-identified vaccinated donors, 37% of self-
identified convalescent donors, and 10% of control donors 
had titers against H1N1 greater than 64 (94). Notably, 80% 
of control donors had titers <16 as did 47% of convalescent 
donors and 40% of vaccinated donors (94). Thus, a higher 
titer final product could have been produced by eliminating 
plasma from donors with lower antibody titers. Baxter 
BioLife did not test each plasma product for influenza 
antibodies. In another study of hyper-immunoglobulin 
therapy for H1N1, 17 patients received hyper-Ig and 18 
patients received regular IVIG (95). The two groups had 
similar viral loads prior to therapy. By day 7, the hyper-Ig 
group had significantly lower viral load as compared to the 
IVIG group (P=0.02) (95). Notably, hyper-Ig treatment of 
patients prior to day 5 was associated with reduced mortality 
(OR 0.14, P=0.04) (95).

In 2019-2020, several plasma manufacturers including 
CSL, Octapharma and Takeda joined efforts to collect 
CCP to make a COVID-19 hyperimmune globulin product 
for clinical trials. This alliance was named the CoVIg-19 
Plasma Alliance. Another large plasma manufacturer, 
Grifols, collaborated with the US FDA, National Institutes 
of Health (NIH), and the Biomedical Advanced Research 
Development Authority (BARDA) to develop a COVID-19 
hyperimmune globulin product. The CoVIg-19 Plasma 



Annals of Blood, 2022 Page 7 of 27

© Annals of Blood. All rights reserved. Ann Blood 2022;7:7 | https://dx.doi.org/10.21037/aob-21-64

Alliance solicited convalescent donors and either required 
proof of previous COVID-19 positive test (either positive 
COVID-19 AB or COVID-19 PCR) provided from the 
donor or positive COVID-19 AB test at the testing center. 
Qualified donors were offered COVID-19 AB testing at 
various plasma collection centers. Each convalescent donor 
donation was tested for COVID-19 AB. Donors whose 
COVID-19 AB level fell below a positive value were then 
removed from the convalescent donor program. Hyper-
immunoglobulin products were then produced and tested 
in clinical trials by selecting certain high titer donor plasma 
units. The COVID Hyper-Ig products produced by the 
Plasma alliance, Grifols, and Emergent BioSolutions 
were studied in a phase 3 clinical trial. This trial sought to 
study the safety, efficacy, and tolerability of a combination 
of remdesivir and hyper-Ig to treat sick patients with 
COVID-19. Approximately 600 adult COVID-19 patients 
were enrolled in the US and 10 other countries on 5 
continents (96). Patients were enrolled if they had been 
hospitalized and symptomatic with COVID-19 for 12 or 
less days without life-threatening organ dysfunction or 
organ failure. This study sought to examine if the hyper-
Ig could reduce the risk of COVID-19 disease progression 
when added to standard of care or remdesivir. Analyses 
of the study outcome and data is ongoing; however, it did 
not meet its endpoints (96). Notably, there were no safety 
concerns with the hyper-Ig product studied (96). 

Overall, studies of CP use in infectious viral diseases 
have shown that it is helpful and improves outcomes. A 
meta-analysis of 40 studies of CP use in infectious diseases 
showed that CP use reduced mortality, promotes antibody 
production, decreases viral load, and shortens disease 
course. Moreover, there was a very low incidence of adverse 
events (97). Studies with CCP and other convalescent 
plasmas have shown that treatment of patients earlier 
in disease course is associated with improved outcomes 
as compared to treatment later (98). Notably, Hegerova  
et al. compared a cohort of 20 patients with COVID-19 to 
retrospectively matched controls and found that patients 
who received CCP before day 7 had a mortality rate of 0% 
as compared to 10% mortality in patients who received 
CCP later in the disease course (99). The success of CP 
early in disease course is thought to be attributable to 
the fact that viremia peaks during the first week in most 
viral illnesses and most people develop a primary immune 
response by 10–14 days followed by clearance of the  
virus (82). A retrospective multicenter randomized trial of 
CCP in the US examined 39 patients that were transfused 

with 2 units of ABO matched CCP with anti-spike titers 
>320. Patients receiving CCP were more likely than controls 
to not have an increased supplemental oxygen requirement 
by day 14 (OR 0.86) (100). Notably, survival only improved 
for nonintubated patients (HR 0.19) (100). Protection offered 
by CP is thought to last weeks to months (78,79,101).

Albumin

Albumin is the most abundant protein in human plasma 
and comprises ~50% of the total protein (102). Albumin is 
also responsible for a large portion of the plasma’s oncotic 
pressure (102). The albumin content in the human body 
is 4–5 g/kg with 1/3rd being intravascular and 2/3rd being 
extravascular (102). Albumin is synthesized primarily 
by the liver at a rate of 9–12 g/day and has a half-life of  
2–3 weeks (102). In addition to exerting oncotic pressure, 
albumin also binds other molecules, ions, and drugs. Hence, 
it serves to buffer hydrogen ions, transport hormones, 
bind bilirubin, bind and transport drugs such as lithium, 
and contribute to the redox potential of plasma (103). 
Albumin is clinically used for many diverse situations such 
as for fluid resuscitation in burn patients, replacement fluid 
in therapeutic plasma exchange (TPE), and to maintain 
oncotic pressure in patients with third spacing due to 
protein loss. 

The clinical use of albumin has had some controversy. 
In 1998, a meta-analysis reviewed the use of albumin in  
40 years of randomized controlled clinical trials (RCTs) 
and found that there was an increase in mortality associated 
with its use (104). Other meta-analyses including studies 
that employed newer albumin preparations did not support 
this finding (105,106). In 2005, a large RCT compared 4% 
albumin to normal saline in critically ill patients and found 
that mortality was equivalent in both groups (107). 

There are several different manufacturing processes to 
generate albumin from human plasma. Some involve 30% 
ethanol fractionation, anion exchange chromatography, 
diafiltration, cation exchange chromatography, gel filtration 
chromatography, and/or pasteurization (103). These 
differences in manufacture lead to differences in the albumin 
products and different associated adverse events (108,109). 
It is also believed that different manufacturing processes 
affects the capacity of albumin to bind drugs and fatty acids 
(110-112). Manufacturing differences are thought to result 
in differences in the effects of albumin on microcirculation 
as well as inflammatory marker upregulation (113,114). 
Different preparations of albumin have also been shown to 
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have heterogeneity in relation to their oxidation status with 
up to 57% having oxidation at Cys34 which reduces the 
antioxidant capacity of albumin (115). 

Compared to crystalloids (saline and Lactated Ringers 
solution), colloids (albumin and hydroxyethyl starch) are 
superior at maintaining intravascular volume. Crystalloid 
have been shown to be associated with decreased 
intravascular volume and increased pulmonary and 
peripheral edema as compared to colloid use in severely ill 
and hypovolemic patients (116,117). Notably, administration 
of colloids and crystalloids was equivalent in septic patients, 
with both groups developing equivalent edema due to 
capillary leakage (118). The SAFE study looked at the 
impact of albumin as compared to normal saline on organ 
function and mortality in patients with severe sepsis (119). 
This study found no difference in renal or other organ 
failure. Moreover, it found that the unadjusted relative risk 
of death for albumin versus saline was 0.87 for patients 
with severe sepsis (119). In subgroup analysis, trauma 
patients given albumin were found to have higher mortality  
(P=0.04) (119). This difference was attributed primarily 
to traumatic brain injury (TBI) patients where albumin 
administration was associated with a higher 28-day 
mortality (P=0.009) (119). Interestingly, a follow-up study 
on these TBI patients found that they continued to have 
higher mortality at 25 months (120). Thus, the use of 
albumin contributed to the decrease in mortality risk in 
non-TBI patients but increased mortality for TBI patients. 
The FEAST trial looked at mortality after fluid bolus in 
African children with severe infection. The children were 
randomized to boluses of 5% albumin, normal saline, or 
no bolus. There were no differences between the normal 
saline and albumin groups in terms of 48-hour mortality, 
4-week mortality, neurologic sequelae, or increased 
intracranial pressure or pulmonary edema (121). Thus, 
albumin appeared to be as safe as normal saline. In the 
ALIAS (Albumin in Acute Ischemic Stroke) part 1 and 2 
trials, investigators evaluated whether 25% human albumin 
improves clinical outcomes after acute ischemic stroke 
beyond standard of care using similar protocols. The part 
1 trial ended prematurely due to safety concerns, and the 
part 2 trial terminated early because of futility, since there 
was a statistically significant effect of albumin over saline 
administration. These studies found that treatment with 
25% albumin was not associated with improved outcome 
at 90 days but was associated with increased intracerebral 
hemorrhage and pulmonary edema (122). Rochwerg 
et al. performed a meta-analysis looking at the effect 

of replacement fluid choice in sepsis patients on renal 
replacement therapy and found that there was no difference 
between fluid resuscitation with albumin and crystalloid (OR 
1.04) (123). There were no significant differences between 
balanced crystalloid and saline (OR 0.85) or albumin 
(OR 0.82) (123). Xu et al. looked at whether albumin 
reduced mortality when used for the resuscitation of adult 
patients with severe sepsis and septic shock compared 
with crystalloid (124). They found that albumin use was 
associated with a trend toward decreased 90-day mortality 
in sepsis patients (OR 0.88; P=0.08) and that that the use of 
albumin significantly decreased 90-day mortality in septic 
shock patients (OR 0.81; P=0.03) (124). Use of albumin 
for resuscitation also slightly improved the outcome in 
sepsis patients (OR 0.81; P=0.09) (124). Thus, albumin use 
in sepsis patients may be slightly advantageous. Overall, 
additional studies are needed to clarify the risks and benefits 
of albumin in these patient populations.

Albumin is available in two formulations, an iso-
oncotic  preparat ion (4–5%) and a  hyper-oncotic 
preparation (20–25%). The 4–5% albumin is frequently 
used as a replacement fluid in TPE. Albumin is used to in 
hypovolemia, hypoalbuminemia, burns, cirrhotic ascites, 
and respiratory distress syndrome (125). Since albumin is 
derived from human plasma, it has risks of transmission of 
infectious diseases. With comprehensive donor screening 
and product manufacturing processes, the risk of disease 
transmission, however, is very remote. 

Albumin infusion has been associated with allergic 
reactions that in some cases may progress to severe 
anaphylaxis. Adverse reactions normally resolve when the 
infusion rate is slowed down or the infusion is stopped. 
In case of severe reactions, the infusion should be 
stopped and appropriate treatment should be initiated. 
Thus, epinephrine should be available to treat any acute 
hypersensitivity reaction. The amount of electrolytes in the 
20–25% and 4–5% albumin preparations differs between 
the 2 preparations, with the hypertonic albumin having less 
electrolytes. Thus, the patient’s electrolyte status should 
be monitored with albumin infusion. Infusion of large 
amounts of either albumin solution can result in changes 
in coagulation test results as well as hematocrit. Thus, 
with large volume albumin replacement, RBC or plasma 
transfusions may be necessary. Lastly, monitoring of blood 
pressure and pulse, central venous pressure, pulmonary 
artery occlusion pressure, and/or urine output may be 
helpful with administration of 20–25% albumin. Notably, 
20–25% albumin should not be diluted with water for 
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injection as this can cause hemolysis.

C1-esterase inhibitor

C1-esterase inhibitor is used to treat patients with a 
deficiency of this protein who have hereditary angioedema 
(HAE). People with HAE can have attacks of nonpruritic, 
nonpitting SQ or submucosal angioedema that causes pain 
and/or disability. C1-esterase inhibitor is approved for use 
in routine prophylaxis and acute treatment of angioedema 
attacks in adults, adolescents and pediatric patients  
(6 years of age and older) with HAE. In addition to plasma 
derived C1-esterase inhibitor, several other treatments are 
available for treatment and prophylaxis of HAE including 
lanadelumab (a monoclonal antibody against plasma 
kallikrein), recombinant C1-esterase inhibitor, icatibant (a 
B2 receptor antagonist), and ecallantide (a plasma kallikrein 
inhibitor) (126). C1-esterase inhibitor is manufactured 
from source plasma that is thawed and then depleted of 
cryoprecipitate. The cryoprecipitate-depleted plasma is then 
further purified using chromatography, ammonium sulfate 
precipitation, pasteurization, and filtration (32,126-128). 
Infusion of plasma-derived C1-esterase inhibitor is most 
frequently associated with headache, nausea, rash, vomiting, 
and fever (47). Hypersensitivity reactions and arterial/
venous thromboembolism are also possible. Using current 
manufacturing processes, Simon et al. have estimated the 
risk of one vial of C1-esterase inhibitor to contain one 
infectious virus particle of either HIV, HCV, or HBV to be 
1 in 333,333 years (126).

α1-antitrypsin

α1-antitrypsin is used to treat individuals with hereditary 
deficiency who have emphysema. The severity of α1-
antitrypsin deficiency has been shown to be related to 
the development of emphysema; an α1-antitrypsin level  
>11 μM/L has been found to be protective (129). The first 
plasma-derived α1-antitrypsin product was approved by 
the FDA i 1987 (130). Notably, α1-antitrypsin products 
have been used in individuals with α1-antitrypsin deficiency 
to prevent and treat emphysema, panniculitis, asthma, 
and vasculitis (131). Additionally, they may be beneficial 
in patients with α1-antitrypsin deficiency after lung 
transplantation (132). 

α1-antitrypsin is produced from Cohn fraction IV 
precipitate using chromatography and heat treatment 
(24,133-135). Viruses are removed and inactivated using 

pasteurization and filtration (136). α1-antitrypsin is 
administered IV; however, only ~2% of the administered 
drug is delivered to lung tissue (133). Several studies have 
shown that the α1-antitrypsin infusion increases pulmonary 
antiprotease activity as demonstrated by the correlation 
between serum α1-antitrypsin concentration and lung anti-
elastase activity as well as decreases in some inflammatory 
markers and markers of tissue damage (137-139). Several 
studies have shown a decrease in the rate and severity of 
exacerbations following treatment with α1-antitrypsin as 
well as decrease in lung density decline (140-143). Notably, 
some studies did not find a protective effect for α1-
antitrypsin therapy (144). 

The rate of adverse events with α1-antitrypsin is quite 
low. A 7-year observational cohort study of 747 participants 
receiving α1-antitrypsin showed an overall rate of 0.02 per 
patient-month, and in 83% of patients, no events were 
reported (145). The most common side-effects included 
chills, urticarial rashes, fatigue, nausea and vomiting. To 
date, no deaths have been reported related to plasma-
derived α1-antitrypsin administration and there have been 
no reported cases of infectious viral transmission (146).

Plasma-derived clotting factors

Plasma-derived clotting factor replacement therapy is 
available for Factors VIII, IX, XIII, von Willebrand factor 
(vWF), II (prothrombin/thrombin), VII, and X. Factors II, 
VII, IX, and X along with protein C (PC) and protein S (PS) 
are manufactured as the prothrombin complex concentrate 
(PCC). When a proportion of factors II, VII, IX and X 
are activated, the complex is called activated PCC (aPCC) 
and it does not contain proteins C or S. Antithrombin 
concentrates are also available. In addition to plasma-
derived factor concentrates, recombinant factors VIII, IX, 
vWF, and antithrombin are also commercially available. 
Despite the availability of recombinant factors, plasma-
derived clotting factors are still used. Many years ago, these 
products were associated with transmission of infectious 
diseases such as HIV and HCV; however, the manufacturing 
process has changed and the products are now safer with 
equivalent risk of infectious disease transmission compared 
with recombinant products (1,147-149). It has been argued 
by some that plasma-derived products are more efficacious 
and cost-effective than recombinant products in regards 
to inhibitor development, immune tolerance induction in 
patients with factor VIII (FVIII) inhibitors , and factor IX 
(FIX) replacement therapy (150,151).
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Plasma-derived coagulation factors production involves 
collection of source plasma as described above. The plasma 
is then subjected to immunoaffinity chromatography 
using monoclonal antibodies for high-purity FVIII 
concentrates followed by solvent/detergent treatment or  
pasteurization (152). These manufacturing steps have 
significantly reduced the transmission of lipid-enveloped 
viruses such as HIV, HBV, and HCV by clotting factor 
concentrates (153). Heat treatment of the product serves 
to eliminate non-enveloped viruses such as HAV and 
Parvovirus B19 (152).

Treatment with FVIII replacement therapy is associated 
with inhibitor development, particularly in patients with 
severe hemophilia A. This is a very serious complication as 
it typically renders the patient refractory to replacement 
therapy and subject to bleeding. Inhibitor development 
is seen with both plasma-derived and recombinant FVIII 
products and is seen in 25–30% of previously untreated 
patients (PUPs) within the first 10–11 days of FVIII 
exposure or within the first 50 exposures (154,155). A 
randomized trial, the Survey of Inhibitors in Plasma-
Product Exposed Toddlers (SIPPET) showed a 2-fold 
higher risk of inhibitor development in children treated with 
recombinant FVIII compared with plasma-derived FVIII 
(155-158). This difference in rate of inhibitor development 
is thought to be due to the presence of vWF in plasma-
derived products (159). The presence of vWF is thought to 
affect the immune recognition, processing and presentation 
of FVIII. vWF also protects FVIII from clearance by 
antigen-presenting cells. Moreover, surface bound FVIII-
vWF complexes may regulate the internalization of FVIII. 
FVIII binding to vWF is dependent on sulfation of Tyr1699 
in the light chain of FVIII, and incomplete sulfation of this 
residue has been suggested to occur in several recombinant 
FVIII products resulting in a loss of vWF binding (159). 
There are currently no plasma-derived products that 
contain only vWF without FVIII. However, there is a 
recombinant vWF product available in the US. 

The first plasma-derived FIX concentrate became 
available in 1992. It was chromatographically purified 
using monoclonal antibodies followed by ultrafiltration and 
thiocyanate treatment (152). Highly purified FIX is used to 
treat hemophilia B.

Antithrombin

Antithrombin is a serine proteinase inhibitor (SERPIN) 
that inhibits a variety of coagulation enzymes including 

FXa, thrombin, FIXa, FXIa, FXIIa, and FVIIa in the 
presence of heparin (160). Antithrombin prefers inhibition 
of FXa and thrombin. Patients deficient in antithrombin 
are predisposed to clotting. A common situation where 
antithrombin is decreased is when a patient is on 
extracorporeal membrane oxygenation (ECMO) where the 
circuit is anticoagulated with heparin (161). Frequently, 
these patients are very ill and require supplementation with 
antithrombin to maintain proper circuit anticoagulation. 
Acquired antithrombin deficiency may also occur in patients 
on cardiopulmonary bypass (CPB) due to hemodilution, 
consumption of antithrombin by the circuit, and utilization 
of large doses of heparin (162,163). Lastly, antithrombin 
levels are frequently decreased in sepsis (164,165). During 
sepsis, acute phase reactants are increased and antithrombin 
production is downregulated (165). The degree of 
antithrombin deficiency has been found to correlate with 
severity of illness and outcome (165). Interestingly, a meta-
analysis of several studies of antithrombin replacement 
in sepsis found a non-significant trend toward improved  
28-day survival (45% for antithrombin replacement versus 
35% without) (166). However, the KyberSept study did 
not find any difference in 28-day mortality in patients with 
sepsis and antithrombin deficiency who either received 
or did not receive antithrombin replacement (167,168). 
Notably patients with severe sepsis in the KyberSept study 
who did not receive concomitant heparin did have an 
improved outcome and survival benefit (169). Currently, 
both plasma-derived antithrombin and recombinant 
antithrombin products are available for use as replacement 
therapy. 

It has been debated as to whether antithrombin use is 
associated with an increased risk of bleeding. Niebler et al. 
found that there was no increased frequency of bleeding 
when antithrombin was administered to pediatric patients 
on ECMO (170). However, in patients with hereditary 
antithrombin deficiency, there is a 5% incidence of 
hematomas (47). A recent study by Mattke et al. looked 
at the effect of 562 doses of antithrombin concentrate 
on plasma antithrombin levels. They found that current 
antithrombin dosing guidelines overestimate the effect of 
a dose of antithrombin on the plasma antithrombin level 
in critically ill children and result in under-dosing (171). 
They recommend that age, disease state and ECMO/
CPB use be taken into consideration (171). The most 
common adverse reactions to plasma-derived antithrombin 
are dizziness, chest discomfort, nausea, dysgeusia, and 
cramping pain (47).
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Factor XIII

Factor XIII (FXIII) is a plasma protein responsible for the 
cross-linking of fibrin to stabilize the clot. A deficiency 
of FXIII results in unstable clots that rapidly degrade. 
Congenital deficiency of FXIII is rare, with an estimated 
rate of 1 per 2–5 million people (172,173). Acquired FXIII 
deficiency is more common than congenital deficiency 
and is categorized as either immune or non-immune  
mediated (174). Individuals with severe deficiency of FXIII 
are at risk for development of intracranial hemorrhage, 
spontaneous abortion, poor wound healing, and spontaneous 
bleeding episodes (175-177). As in von Willebrand Disease 
(vWD), treatment with cryoprecipitate and/or plasma is 
not recommended due to the risk of infectious disease 
transmission as well as transfusion reactions including 
transfusion related acute lung injury (TRALI).

Human plasma-derived FXIII products are manufactured 
using purification and heat-treatment to reduce infectious 
disease transmission. Studies have shown that long‐term 
administration of plasma-derived FXIII concentrate every 
28 days is a well‐tolerated and effective way to prevent 
spontaneous bleeding in children and adults with congenital 
FXIII deficiency and that prophylactic treatment with FXIII 
concentrate prior to surgery was effective for prevention 
and/or treatment of perioperative bleeding (178,179). It 
has been recommended that the FXIII level be maintained 
at 5–10% in congenital FXIII deficient individuals (180). 
The most common adverse reactions reported following 
administration plasma-derived FXIII products were joint 
inflammation, hypersensitivity, rash, pruritus, erythema, 
hematoma, arthralgia, headache, elevated thrombin-
antithrombin levels, and increased lactate dehydrogenase. 
Serious adverse reactions reported include hypersensitivity, 
acute ischemia, and neutralizing antibodies against  
FXIII (47).

PC

PC is a vitamin K-dependent protein involved in 
anticoagulation. Once activated (APC), it combines with 
PS to cleave and inactivate FVa and FVIIIa. Plasma-
derived PC has been approved for patients with congenital 
PC deficiency for the prevention and treatment of venous 
thrombosis or purpura fulminans (181). Replacement with 
plasma-derived PC is recommended following diagnosis 
of congenital PC deficiency particularly if there is active 
purpura fulminans. The typical half-life of PC is ~10 hours; 

however, during increased consumption, the half-life may 
decrease to 2–3 hours (182). Thus, frequent monitoring is 
needed following administration. Plasma-derived PC has 
been successfully administered IV as well as SQ (183,184).

Plasma-derived PC was thought to be useful in sepsis. 
Patients with sepsis have been shown to have decreased 
antithrombin, PC, and PS activity (185,186). In several 
studies, decreased PC was associated with increased risk 
of death in sepsis (187-189). Pappalardo et al. conducted a 
double-blinded, placebo-controlled, RCT to determine if 
PC improves clinically relevant outcomes in adult patients 
with severe sepsis and septic shock (190). Notably, this 
study was stopped early due to futility for the outcomes 
of prolonged intensive care unit (ICU) stay and/or  
30-day mortality. The rate of prolonged ICU stay was 79% 
(15 patients) in the PC group and 67% (12 patients) in 
the placebo group (P=0.40) (190). The ICU mortality was 
79% (15 patients) in the PC group versus 39% (7 patients) 
in the placebo group (P=0.020) (190). Lastly, the 30-day 
mortality was 68% in the PC group as compared to 39% 
in the placebo group (P=0.072) (190). PC did not improve 
any measured outcome in this study and the investigators 
concluded that PC use in sepsis should be discouraged. 
Moreover, a meta-analysis by Martí-Carvajal et al. which 
looked at the clinical usefulness of recombinant APC in 
patients with sepsis, found that APC did not significantly 
affect all-cause mortality at day 28 [780/3,435 (22.7%) 
versus 767/3,346 (22.9%); RR 1.00] (191). Moreover, 
APC did not significantly affect in-hospital mortality 
[393/1,767 (22.2%) versus 379/1,710 (22.1%); RR 1.01] and 
was associated with an increased risk of serious bleeding 
[113/3,424 (3.3%) versus 74/3,343 (2.2%); RR 1.45] (191). 
Based upon these findings, it was concluded that APC 
should not be used to treat septic patients. Notably, all 
clinical trials involving APC were stopped and APC was 
withdrawn from the market. Thus, at present, PC use is 
limited to congenital PC-deficient patients.

The most common reported adverse reactions following 
PC administration are rash, itching and lightheadedness. 
To date, there has been no reported bleeding, inhibitor 
formation, or infection transmission with plasma-derived 
PC (192). As with all proteins derived from human plasma, 
there is a risk of hypersensitivity/allergic reactions with 
plasma-derived PC administration. The only available 
plasma-derived PC product contains heparin. Thus, patients 
receiving this therapy should be monitored for heparin-
induced thrombocytopenia and if it is suspected, PC use 
should be discontinued (47). Lastly, the currently available 
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preparation of plasma-derived PC contains >200 mg of 
sodium. Consequently, patients on a low sodium diet and/or 
patients with renal impairment should be monitored more 
closely (47).

PCC

PCCs are approved for warfarin reversal. Off-label uses 
of PCC include bleeding in patients with liver failure or 
pre-procedure prophylaxis for elevated INR. aPCC is 
used to treat hemophilia A patients with FVIII inhibitors 
(alloantibodies) or acquired hemophilia (autoimmune 
condition). There are two forms of PCC: 3-factor PCC 
and 4-factor PCC. The 3-factor PCCs contain mainly 
factors II, IX, and X and only small amounts of FVII. 
The 4-factor PCC contains factors II, VII, IX and X 
as well as proteins C and S. Thus, the 4-factor PCC is 
viewed as superior to 3-factor PCC in reversing warfarin 
anticoagulation (193-197). Interestingly, in a meta-analysis 
of 18 studies involving 654 elderly patients presenting for 
emergent warfarin reversal, the INR was corrected in 75% 
of patients following 3-factor PCC and in 92% of patients 
after 4-factor PCCs (198). PCCs are infrequently used 
for trauma related bleeding as there is concern that the 
prothrombotic effects could last for days and increase the 
risk for thrombosis in this setting (199). PCCs are used off 
label in other settings including surgical bleeding. A recent 
review of 861 cardiac surgery patients found that PCC use 
was safe and reduced blood product use (OR 2.22) with no 
differences in other outcomes (200). However, there was a 
trend toward increased risk for renal replacement therapy in 
the PCC group (OR 0.41) (200). A recent pilot randomized 
controlled trial looked at PCC versus FFP for patients with 
bleeding related to cardiac surgery and found no increase 
in thromboembolic events related to PCC use (201). They 
did see an increase in serious adverse events (13 versus 5) 
related to FFP use (201). Thus, PCC use appears to be safe 
and efficacious.

PCCs are manufactured from human plasma that has 
been frozen and thawed to generate cryoprecipitate and 
cryoprecipitate-poor plasma. The plasma coagulation 
factors are then purified from the cryoprecipitate-poor 
fraction. Production of PCC involves viral inactivation 
using solvent-detergent, pasteurization, nanofiltration, and 
vapor-heated treatment. The factors in each PCC product 
are quantitated as international units (IUs) per 100 IU of 
FIX. The concentration of various clotting factors (factors 
VII, II, and X) and anticoagulant proteins (C and S) vary 

from product to product. Both 3- and 4-factors PCC have 
been used to reverse warfarin/Coumadin; however, due 
to the lack of FVII in 3-factor PCC, the PT/INR values 
may not fully correct (202,203). 4-factor PCCs are FDA 
approved for the urgent reversal of acquired coagulation 
factor deficiency in adults caused by vitamin K antagonist 
therapy with bleeding or in need of urgent surgery or 
invasive procedure (204-208).

The alternative for use in vitamin K antagonist therapy 
reversal is plasma. Plasma is much less expensive; however, 
larger volumes are needed, transfusion will take much 
longer, and there are additional risks of transfusion 
reactions and disease transmission with plasma use. 
Importantly, whether plasma, 3 factor or 4 factor PCC 
are used for vitamin K antagonist therapy reversal, IV 
vitamin K should be administered. This will help lower 
the PT/INR. Notably, IV vitamin K needs approximately 
12 hours prior to observation of clinical efficacy. PO 
vitamin K is less reliable due to inefficient and unreliable  
absorption (209,210).

In addition to vitamin K antagonist reversal, PCCs have 
been used off-label to treat coagulopathies in patients on 
ECMO, CPB, and in surgeries such as cardiac surgery 
and liver transplantation (211-217). PCCs are also 
frequently used in trauma patients as well as in patients 
with intracranial hemorrhage (218-220). PCCs have also 
been used in the reversal of direct oral anticoagulants 
(DOACs) such as direct thrombin (dabigatran) and FXa 
inhibitors (rivaroxaban, apixaban, edoxaban) (221-223). 
Specific reversal agents have been FDA-approved for 
reversal of the DOACs: idarucizumab is available to reverse 
dabigatran and Andexanet alfa is available to reverse the 
direct FXa inhibitors including rivaroxaban, apixaban, and 
edoxaban (224). PCCs are associated with increased risk 
of thromboembolism (225,226). The thrombotic risk is 
increased with repeated dosing of PCCs as well as with 
larger doses of PCCs (221,226). Care should be taken in use 
of PCCs particularly when used off-label.

Fibrinogen concentrates

Fibrinogen concentrates were first licensed over 50 years 
ago (227). Fibrinogen concentrates are used to replace/
supplement fibrinogen in individuals with congenital 
afibrinogenemia, congenital dysfibrinogenemia, as well as 
in acquired dysfibrinogenemia and fibrinogen deficiency. 
Acquired dysfibrinogenemia and fibrinogen deficiency are 
significantly more common than the congenital forms. 
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Acquired fibrinogen defects and deficiency can result from 
a prosthetic heart valve, ECMO, cardiopulmonary bypass, 
DIC, or miscellaneous other causes. During bleeding 
where patients are transfused with predominately RBCs, 
fibrinogen is the first clotting factor to reach critically low 
levels (228). Low fibrinogen levels have been shown to be 
associated with increased bleeding risk perioperatively (229).  
Decreased fibrinogen levels in patients has primarily been 
replenished using plasma or cryoprecipitate; however, 
there are disadvantages to using these products including 
risks of disease transmission (230,231). Fibrinogen 
concentrates are predominantly used to control bleeding 
and to decrease the use of allogeneic blood products during 
treatment of acquired bleeding in a variety of clinical 
settings, including surgery, trauma, liver transplantation, 
and obstetrics (215,232-242). Several studies have indicated 
that fibrinogen concentrates reduce the need for allogeneic 
blood transfusion (243-245). This is highlighted by a recent 
study in infants less than 12 months old who had cardiac 
surgery with CPB, showed that infants who received 
fibrinogen concentrates had a median of 4 units of blood 
components as compared to 5.5 units in infants who did 
not receive fibrinogen concentrates (246). Fibrinogen 
concentrates have also been shown to be effective in trauma  
settings (247). In this setting, they have an advantage 
of being ABO-universal and easily and readily available 
for transport in the field. Sanders et al. found that 
fibrinogen concentrates were helpful adjuncts to remote 
damage control resuscitation (247). Innerhofer et al. 
conducted a single center study looking at trauma induced 
coagulopathy (TIC) with randomization to receiving 
either FFP or coagulation factor concentrates (primarily 
fibrinogen concentrate). They found that coagulation 
factor concentrates/fibrinogen concentrate was superior 
to FFP for correction of TIC as defined by rotational 
thromboelastometry EXTEM coagulation time >90 s 
or FIBTEM amplitude at 10 min <9 mm (248). Thus, 
fibrinogen concentrates are helpful in a variety of clinical 
settings.

Currently, there is a lack of agreement as to what 
fibrinogen value should trigger fibrinogen replacement. 
Additionally, it is unclear if fibrinogen concentrates and 
cryoprecipitate are equivalent in replacing fibrinogen 
during trauma and further studies are needed. Many of 
these studies are complicated by various forms of bias and 
further studies are needed. There are several fibrinogen 
concentrates currently available that are produced from 
pooled donor plasma that is pasteurized, purified, virally 

inactivated, and lyophilized (148,249). The different 
fibrinogen concentrates are prepared similarly; however, 
there are differences in the manufacture of each product 
that result in clinical differences in the preparations. 
Notably, the albumin concentration is different in the 
preparations as it is used as a stabilizer in manufacturing 
for some fibrinogen concentrates (250). The different 
preparations of fibrinogen concentrates have been shown 
to behave differently in models of dilutional coagulopathy 
(251,252). Notably, depending upon the diluent used, 
two fibrinogen concentrates were noted to have different 
thrombin times as well as different thromboelastography 
coagulation time and MCF (251,252). One of the 
available fibrinogen concentrates has been shown to 
have elevated fibronectin levels as compared to the other  
preparations (252). Similarly, other preparations were 
shown to have elevated vWF and/or FXIII compared to the 
others (250,252). The exact clinical significance of these 
differences in albumin, fibronectin, vWF, and FXIII levels 
is not clear. There have been 28 reports of spontaneous 
thrombotic events that may be related to administration of 
fibrinogen concentrates over a 27-year period (253). Thus, 
the possible incidence of associated thrombotic event is 
1:23,300 doses of fibrinogen concentrates. Further studies 
are needed to assess the possible clinical differences between 
the various fibrinogen concentrates.

Fibrin sealants

Fibrin sealants are comprised of fibrinogen and thrombin 
and can polymerize into fibrin. In the presence of small 
amounts of calcium and FXIII, thrombin converts 
fibrinogen into insoluble fibrin which is then cross-lined 
and stabilized by FXIII. Fibrin sealants are FDA approved 
to be used as a topical agent that can function as a hemostat, 
sealant, or adhesive. A hemostat is an agent that causes 
blood to clot and does not work unless blood is present. A 
sealant is an agent that creates a barrier to flow of liquid 
but does not actively cause blood to clot. An adhesive is 
an agent that can glue tissues to one another and decrease 
blood loss. Fibrin sealants have been used for fistula closure, 
seroma reduction, anastomosis construction, early drain 
removal, and adhesion prevention (254,255). Fibrin sealants 
have been used to facilitate attachment of cartilage, dermis, 
mesh, nerves, pleura, and stem cells as well as used as a drug 
delivery system to release antibiotics, chemotherapeutic 
drugs, growth factors, and local anesthetics (256-264). 
Fibrin sealants can also facilitate tissue engineering by 
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functioning as a growth medium, helping with gene 
transfer, organizing tissues into body organs, and facilitating 
cell growth for graft viability (254,265-268). 

There are several limitations that restrict more 
widespread use of fibrin sealants:  (I)  difficulty in 
reconstitution and preparation into an applicator; (II) 
education as to which fibrin sealant is optimal for a given 
application; and (III) cost. Fibrin sealants have been studied 
extensively in a variety of settings including abdominal, 
cardiovascular, dental, head and neck, obstetric and 
gynecological, oncological, ophthalmological, orthopedic, 
plastic, thoracic, urologic, and vascular surgery, in addition 
to neurosurgery. 

Fibrin sealants are associated with a risk of allergic 
reaction or anaphylaxis. Each fibrin sealant on the market 
is manufactured slightly differently. Some fibrin sealants 
contain bovine thrombin which has been associated with 
complications including antibody development to FV and/
or FII and may lead to abnormalities in coagulation (47). 
These complications are seen in some patients because the 
antibodies formed against bovine FV and FII antigens are 
capable of cross-reacting, neutralizing, and inactivating 
human FV and FII. These complications are more likely 
to occur with repeated use of bovine thrombin. Moreover, 
patients with known antibodies to bovine thrombin should 
not be re-exposed. The majority of fibrin sealants are 
comprised of pooled human fibrinogen and thrombin. 
Notably, there have not been any cases of hepatitis or HIV 
viral transmission associated with fibrin sealant use in more 
than 20 years; however, there have been a few cases of 
parvovirus B19 transmission (269,270). 

Plasma-derived fibrinogen and thrombin components of 
the fibrin sealants are obtained from pooled human plasma 
that has been viral screened using both serology and PCR 
testing methodologies as well as viral reduction methods. 
During the manufacture of the concentrated fibrinogen 
and thrombin components, the plasma and proteins 
undergo filtration, heat treatment (dry or vapor heating, 
pasteurization), solvent/detergent cleansing, precipitation, 
pH treatment, and chromatography (266,267,271). 
Following this extensive purification process, the product 
has a low risk of viral and infectious disease transmission.

Fibrin sealants should only be applied topically and never 
injected intravascularly as this could cause thrombosis, 
hypotension, and death. Fibrin sealants should also not be 
allowed to enter a cell saver or cardiopulmonary bypass 
(CPB) circuits because of the risk of thrombosis (267). 
Application of too much fibrin sealant increases infection 

risk, reduces healing, and increases risk of air emboli 
from the gas-driven sprayers supplied by the product 
manufacturers. The increased risk of infection is the 
result of the fibrin protein providing a growth medium for 
bacteria (254). Biodegradation of the fibrin sealant typically 
occurs over a period of 10–14 days (267).

Platelet-rich plasma (PRP)

PRP has become increasingly popular over the last few 
years. PRP can be used as a bioactive scaffold in cell-
based therapy and tissue engineering (272). PRP contains 
cytokines, growth factors, and many other plasma proteins. 
Platelets contain many proteins including vascular 
endothelial growth factor (VEGF), platelet-derived 
growth factor (PDGF), epidermal growth factor (EGF), 
transforming growth factor beta (TGF-β), fibroblast 
growth factor (FGF), matrix metalloproteinases 2 and 
9, interleukin-8, and insulin-like growth factors (IGF-1 
and IGF-2). These growth factors have been shown to be 
involved in stem cell homing; cell migration, proliferation 
and differentiation; macrophage activation; angiogenesis; 
and collagen/matrix synthesis (273,274). PRP is produced 
from autologous whole blood collected and centrifuged to 
separate out the RBCs. Whole blood collected in EDTA 
and citrate has been used for preparing PRP; however, 
EDTA use has been linked to an increase in damaged 
platelets (275). There are several commercially available 
closed systems for isolating PRP (276). These systems 
vary principally in their ability to concentrate platelets and 
centrifugation time. Thus, the different systems yield PRP 
with variations in platelets, WBCs, and growth factors 
(277,278). The commercial PRP preparation systems 
range in cost from approximately $175–1,150 per kit as 
compared to manual preparation which is estimated to cost 
approximately $4 (not including labor) (272). In the manual 
preparation, approximately 20 mL of whole blood is mixed 
with 2 mL of anticoagulant and centrifuged. In this first 
soft spin, RBC are easily removed as they go toward the 
bottom/outer most layer. The upper layer and buffy coat are 
then transferred to another tube and centrifuged again at a 
higher rate of speed. The platelets will pellet at the bottom 
and the platelet poor plasma is removed. The platelets are 
resuspended in a small volume of plasma yielding PRP 
(278,279). When prepared manually, the centrifugation 
protocol has been shown to greatly impact the quality of 
the PRP in the absence of anticoagulants. Notably, the 
contact of blood with the wall of the vacutainer can activate  
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platelets (280). Additionally, the centrifugation force, 
angle, and duration also impact the quality (280). PRP 
can be treated with calcium or thrombin to yield activated  
PRP (281). In some studies, activated PRP was useful in 
allowing platelets to be activated and facilitating adhesion 
to titanium surfaces and release of growth factors (282). 

PRP uses include wound healing, hair restoration, skin 
and face rejuvenation, musculoskeletal regeneration, hand 
rejuvenation, and breast augmentation to name a few (281). 
Notably, PRP has been used in the fields of oral surgery, 
plastic surgery, dermatology, and orthopedic surgery. 
PRP use is somewhat controversial and still being studied. 
Many of the studies performed looking at the role of PRP 
in the processes described above are not well designed 
and also provide low level evidence for the therapeutic 
efficacy of PRP in these processes. An additional problem 
is that there is great variability in PRP preparations 
(272,283). In an attempt to standardize PRP and facilitate 
interpretation of clinical studies, PRP classification systems 
have been introduced. One system categorizes PRP 
based upon cellular content and fibrin architecture into 4 
categories: pure platelet-rich plasma (P-PRP), leukocyte-
and platelet-rich plasma (L-PRP), pure platelet-rich fibrin 
(P-PRF), and leukocyte-and-platelet-rich fibrin (L-PRF) 
(284,285). In another attempt to better categorize various 
PRP preparations, DeLong et al. introduced the PAW 
classification system. The PAW classification system is 
comprised of: P—the absolute number of platelets; A—
method used for platelet activation; W—presence or 
absence of white blood cells (286). More standardization 
is still needed to improve clinical studies and result 
interpretation.

PRP is relatively safe with risk mainly being associated 
with sterility and efficacy. Risks due to intrinsic factors 
include lower efficacy due to donors being on certain 
medications or thrombocytopenia and exacerbation/
metastasis of tumor(s). PRP use is contraindicated for repair 
of small bone defects in patients with tumors in surrounding 
areas as the use of PRP is believed to cause tumors to 
increase in growth due to the presence of angiogenic  
factors (287). Extrinsic risks include bacterial contamination 
of the PRP product and irreversible inactivation of platelets. 
Lastly are risks associated with clinical characteristics of the 
patient/donor. The PRP product may have lower efficacy 
due to the underlying characteristics of the patient/donor 
such as a diabetic donor/patient (288). Contraindications 
for PRP include presence of tumors or metastatic disease, 
active infection, thrombocytopenia, anemia (hemoglobin 

<10 g/dL), pregnancy, and breastfeeding (288,289).

Pharmacovigilance

The PDMP products described above have active 
pharmacovigilance and risk management programs to 
monitor and ensure safety of the product. Associated 
pharmacovigilance procedures and policies ensure patient 
safety and promote regulatory compliance with pertinent 
standards. The Global Pharmacovigilance and Risk 
Management System collects all adverse reaction reports 
associated with PDMP use. It continuously monitors the 
data to enable early detection of any possible risks associated 
with PDMPs.

The field of blood product derivatives is ever changing 
with new product developments as well as ever increasing 
demand. New uses for several plasma proteins are currently 
being studied and more PDMPs are expected to the 
marketplace in the next 10 years. To meet the demand for 
PDMPs, increased plasma resources are needed. Many 
countries are working to become more self-sufficient in 
plasma collection either via source or recovered products. 
Notably in the case of CP to for viral pandemics, recovered 
and/or vaccinated donors will always be needed. The recent 
COVID-19 pandemic has challenged the PDMP market 
by both decreasing donors of source and recovered plasma 
as well as allowing us to learn more about CP use through 
large studies. 
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