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Introduction

At the beginning of the 20th century, Landsteiner in Vienna 
discovered the ABO blood groups by noting diverse 
patterns of agglutination when red blood cells were mixed 
with plasma from different individuals. Now, over 120 years 
on, agglutination of red cells by antibodies in plasma or 
derived from cultured B cells remains the most common 
and definitive method of distinguishing blood groups, 
although agglutination enhancement methods, such as 
enzyme treatment of the red cells or bridging by secondary 
antibodies, are often required.

In 1986, GYPA, the gene encoding Glycophorin A, the 
protein expressing the MN blood group antigens and many 
other antigens of MNS system, was the first blood group 
gene to be cloned and sequenced (1). This was followed 
by ABO, the gene encoding the glycosyltransferases 
responsible for biosynthesis of the ABO antigens (2) and 
then RHCE and RHD, the genes encoding the antigens of 
the Rh blood group system (3-5). By 2021, 43 blood groups 

systems, containing a total of 345 blood group specificities, 
had been recognised by the International Society of Blood 
Transfusion (6). Most of these systems represent a single 
gene each, although four systems (MNS, Rh, Xg, Ch/Rg) 
represent two or three closely-linked homologous genes, 
making a total of 48 known blood group genes, all of which 
have been identified and the molecular genetic bases of all 
major blood group polymorphisms elucidated (7). 

Some useful reviews on blood group genotyping are 
references (7-15).

What is blood group genotyping?

The term “blood group genotyping” is not generally used 
to refer to the determination of blood group genotypes, 
but rather to the prediction of blood group phenotypes 
from appropriate DNA sequences. Other terms used 
are molecular blood grouping and blood group genomic 
testing. Most blood group polymorphisms result from single 
nucleotide polymorphisms (SNPs) (6,7). Determination of 
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the nucleotides in homozygous or heterozygous state, at the 
position of the SNP, will often predict the phenotype with a 
high degree of accuracy (usually 99%). 

Why perform blood grouping by genotyping when there 
are serological methods available? There are three main 
reasons: when we need to know a blood group phenotype, 
but do not have a suitable red cell sample; when genomic 
testing will provide more or better information than 
serological testing; and when genomic testing is more 
efficient or more cost effective than serological testing.

One question often asked is how accurate is genotyping? 
The more appropriate question, however, is how accurately 
does genotyping predict a serological phenotype? Of 
course, this depends on the genotyping platform used and 
the level of accuracy required. In some cases, inaccurate 
results compared with phenotyping might occur when gene 
sequence changes separate from the SNP being tested affect 
antigen expression. For example, in the Kidd system, the 
antithetical antigens Jka (JK1) and Jkb (JK2) result from 
c.838G>A in SLC14A1. Determination of the genotype 
at that position will predict Jka/Jkb phenotype with a high 
level of accuracy, but undetected inactivating mutations 
in SLC14A1 would give rise to false predictions, since the 
protein predicted to express Jka or Jkb would not be present 
in the red cell. These mutations are rare in most populations 
and design of blood group genotyping platforms must take 
into account the population to be tested. For example, a 
rare splice site mutation (IVS5–1) in SLC14A1 that prevents 
Jkb expression is relatively common in Polynesians, with 
frequencies between 0.3% and 1.4% (16-18). 

On the other hand, genotyping may predict the presence 
of an antigen that is expressed too weakly to be detected by 
serological methods with the reagents available, yet may still 
be of potential clinical importance. In this case, genotyping 
may be considered more accurate than serological typing. 
For example, the very weak Fyb (FY2) antigen referred to as 
Fyx is often not detected by serological tests, but is revealed 
by molecular testing (19).

Although most genotyping tests involve detecting variation 
in the genes encoding the antigen (e.g., Rh, Kell, Duffy, and 
Kidd systems), others involve detecting variation in genes 
encoding glycosyltransferases responsible for the biosynthesis 
of carbohydrate antigens [e.g., ABO (20)] or of regulator 
sequences controlling gene expression [e.g., P1 (21)].

On rare occasions, mutations in genes other than the 
blood group gene may affect antigen expression. For 
example, homozygous inactivating mutations in RHAG 
results in Rhnull phenotype, mutations in XK affects 

expression of Kell-system antigens, and various mutations 
in the erythroid transcription factor gene KLF1 affects 
expression of Lutheran and other blood group antigens (7). 
These mutations are likely to give rise to false results with 
all but the most sophisticated of blood group genotyping 
platforms.

The term “blood group genotyping” also covers genomic 
testing for human platelet antigens (HPA) (22) (https://www.
versiti.org/hpa) and human neutrophil antigens (HNA) (23).

Applications of blood group genotyping 

Blood group genotyping has a large variety of applications 
in transfusion medicine, obstetrics, and transplantation 
medicine. Some of those applications are summarised below 
and listed in Table 1.

Genotyping is used to determine blood groups extended 
beyond ABO and D on recently transfused patients, 
where it is not possible to do the testing serologically 
because of the presence of transfused red cells. These 
are usually transfusion-dependent haemoglobinopathy 
patients. Although these patients should receive full 
serological testing before commencement of the transfusion 
programme, this does not always occur. Knowledge of the 
patients’ extended blood groups means that matched blood 
can be provided in an attempt to prevent them from making 
multiple antibodies (24).

Genomic testing can be used for determining blood 
group phenotypes on red cells that have been coated 
with immunoglobulin in vivo and give a positive direct 
antiglobulin test (DAT), making serological testing difficult. 
This is particularly useful in helping to identify underlying 
alloantibodies in patients with autoimmune haemolytic 
anaemia.

Serological testing may be compromised in patients 
undergoing treatment with therapeutic monoclonal 
antibodies, especially anti-CD38 (daratumumab) and 
anti-CD47, which bind red cells (25-27). Consequently, 
genotyping is useful for blood grouping these patients. 

Genomic methods can be used for defining the numerous 
variants of D, so-called weak D and partial D, to assist in 
making decisions about how to transfuse these patients, 
ensuring that those capable of making anti-D receive D– 
blood, but without wasting valuable D– donor blood on 
those patients unlikely to make anti-D (28). Genomic 
D-variant testing can reduce the unnecessary treatment 
with anti-D immunoglobulin of pregnant women with a 
D-variant red cell phenotype, but who are very unlikely to 

https://www.versiti.org/hpa
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make anti-D following a D+ pregnancy (28).  Genotyping 
is also valuable for defining RhCE variants. Such variants 
are relatively common in people of African origin and their 
identification can help in finding suitable donors for sickle 
cell disease patients to reduce antibody production (29).

Another application is screening apparent D– donors 
for the presence RHD, in order to confirm that they do not 
have a weak form of D, such as the extremely weak DEL 
antigen, which goes undetected in standard serological 
tests, yet might still be able to immunise a D– patient or 
boost a pre-existing weak anti-D (28,30). Routine genomic 
screening of all serologically D– donors is provided by some 
blood services (31-33). 

Preimplantation genetic diagnosis can be used for 
avoidance of HDFN when a blood group antibody, which 
has already caused severe or fatal HDFN, is present in 
a woman whose partner is heterozygous for the allele 
encoding the culprit antigen. Following in vitro fertilisation, 
single blastomeres from cleavage-stage embryos can be 
genotyped and only those that are predicted to be antigen 
negative would be implanted (34,35). This technology has 
only rarely been applied.

The most common genetic background to the D– 
phenotype is homozygosity for a deletion of RHD (7). 

Genomic methods can be used for determining whether a 
D+ person has one or two copies of RHD (i.e., hemizygous 
or homozygous), which cannot be done with any accuracy 
by serological methods. Zygosity testing may be achieved 
either by detecting a hybrid of the two Rhesus boxes that 
flank RHD and is only present when RHD is deleted (36) or 
by quantitative methods that distinguish one or two copies 
of RHD (37-39). Zygosity testing is potentially useful for 
testing fathers of fetuses at risk from HDFN because the 
mother has anti-D: if the father is homozygous for RHD, 
then the fetus must be D+ and there is no need for fetal 
testing. When non-invasive fetal testing is available, this 
test is seldom necessary. 

Genotyping can replace serological tests that are 
unreliable or when suitable antisera are unavailable: for 
example, Doa (DO1) and Dob (DO2) antibodies are rare 
and unreliable; Fyb (FY2) testing, as the presence of a weak 
Fyb antigen (Fyx phenotype) may not be detected by some 
antibodies; and Jsa (KEL6) testing of donors for patients 
with anti-Jsa, as anti-Jsa reagents are generally not available. 

Genomic methods are extremely useful in the serological 
reference laboratory in helping to solve difficult problems. 
In the identification of unusual antibodies, exome 
sequencing (by next-generation sequencing) for all known 

Table 1 Some applications of blood group genotyping

Blood group testing on patients who have recently been transfused

Blood group testing of patients whose red cells are coated with immunoglobulin in vivo (DAT+)

Blood group testing of patients being treated with therapeutic monoclonal antibodies. 

Determination of D (RH1) variants in patients

Determination of RhCE variants in patients

Screening apparent D– donors for weak expression of D

Testing patients for multiple clinically significant blood groups and their variants

Blood grouping when serological reagents are rare or unreliable

Preimplantation genetic diagnosis for avoidance of HDFN

Assistance with identification of blood group antibodies in the reference laboratory

Screening donors for multiple clinically significant blood groups and their variants

Determination of RHD zygosity

ABO typing from buccal swabs in transplantation registries

A1/A2 typing in solid organ donors

Determination of fetal blood group to assess risk of HDFN

Determination of fetal blood group to assess requirement for anti-D immunoglobulin

DAT, direct antiglobulin test; HDFN, hemolytic disease of the fetus and newborn.
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blood group genes will reveal unusual genotypes of the 
maker of an antibody that will give valuable clues to the 
antibody specificity. 

In many blood services the majority of blood donors 
are only tested for ABO and D, with a small proportion 
screened for multiple clinically-significant blood groups. 
Automated serological testing for this extended blood 
grouping is commonly being replaced by DNA testing. 
The advantages of genomic testing over serology are that 
it is more suited to high-throughput automated testing, 
more accurate, and identifies some phenotypes that cannot 
be tested for by serology. Extended blood group testing is 
essential for finding matched blood for patients requiring 
chronic transfusion support to prevent them from making 
multiple antibodies, or to find compatible blood for patients 
who already have blood group antibodies (40-44). Extended 
blood grouping of donors generally requires testing for M/
N S/s U Uvar, Rh C/c E/e hrs hrb and other Rh variants, K/k, 
Fya/Fyb and GATA mutation, and Jka/Jkb. In addition, tests 
for antigens of the Kell (Kpa/Kpb, Jsa/Jsb) and Dombrock 
(Doa/Dob, Hy, Joa) systems, plus Lua/Lub, Dia/Dib, Yta/Ytb, 
Sc1/Sc2, and Coa/Cob, may be included.

The diversity within the Rh system in people of African 
origin may contribute to the high number of Rh antibodies 
in patients with sickle cell disease, which often makes the 
provision of compatible blood extremely difficult. For 
example, 6% of D+ and 21% C+ African Americans have 
partial D and partial C, respectively, and may make anti-D or 
anti-C following transfusion (42). Screening donors for Rh 
variant phenotypes is important for the provision of this rare 
blood and can only be achieved by genomic testing (41,43).

Antibodies to HPA may be involved in platelet 
refractoriness leading to failure of platelet transfusions, 
thrombocytopenia, and bleeding. Genotyping is the 
usual method for determining HPA phenotype and many 
platforms that test for multiple blood groups also include 
HPA testing (HPA1 to HPA9, plus HPA11 and HPA15) 
(9,44-50).

Antibodies to the five systems of HNA have been 
implicated in transfusion-related acute lung injury 
(TRALI), alloimmune and autoimmune neutropenia, 
and refractoriness to granulocyte transfusions (23). 
Immunological testing for HNAs has now mostly been 
replaced by molecular testing (apart from HNA-2, owing to 
a gene expression defect) (15).

In transplantation medicine, ABO genotyping may be 
used by transplant registries, which often collect buccal 
swabs, but not red cells. In addition, ABO genotyping may 

be used for confirming A2 phenotype of solid organ donors, 
since A2, but not A1, organs are often considered suitable for 
group B patients (9).

Another important application of blood group genomics, 
predicting the blood group phenotype of a fetus, will be 
discussed below. 

Technology involved in blood group genotyping

In addition to the cloning and sequencing of blood group 
genes and the identification of the nucleotide changes 
responsible for blood group polymorphisms, the technology 
that made blood group genotyping feasible in non-specialist 
molecular genetics laboratories was the polymerase chain 
reaction (PCR). This made it possible to analyse the DNA 
sequence of a small region of a blood group gene, from a 
small quantity of total genomic DNA.

When it was discovered that the D– phenotype in 
Caucasians nearly always results from a total deletion of 
RHD, it was readily apparent that D phenotype could 
be predicted simply by determining whether RHD was  
present (51). This is done by PCR amplification of one or 
more regions of RHD, with primers designed so that they 
only amplify RHD and not the homologous RHCE. Inactive 
RHD and RHD-RHCE-RHD hybrid genes, which, despite 
containing RHD sequences, produce no RhD antigen, 
complicate the methodology, but can be accommodated by 
the careful selection of PCR primers (52,53).

Most other blood group polymorphisms are encoded by 
SNPs (6,7). A variety of methods has been employed for 
distinguishing allelic single nucleotide alternatives in PCR 
products. Traditional methods involve PCR amplification 
of the region containing the SNP, followed by digestion of 
the PCR product with restriction enzymes, or by carrying 
out PCR in which one of the primers is designed to initiate 
amplification from only one of the alleles (54). Several 
commercial kits became available for this sort of testing (47). 
These methods are not generally high-throughput and often 
require gel electrophoresis, which increases contamination 
risks. Another traditional method is to carry out a PCR of 
the region containing the polymorphism, then sequencing 
the products by automated Sanger sequencing. Direct 
sequencing is low throughput and expensive, though it does 
give additional information about nucleotides around the 
SNP that might affect antigen expression. 

Allelic discrimination by quantitative PCR with Taqman 
technology is generally read on a real-time PCR machine. 
For each polymorphism a pair of fluorescent probes is 
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employed, each specific for each of a pair of alleles and each 
carrying a different reporter dye. These probes anneal to 
DNA of the appropriate sequence and are only released 
during amplification. Only then can they fluoresce under a 
laser. Relative quantities of PCR product for each allele can 
then be compared by computer (55). The multiplex reactions 
can be analysed on plates that contain 3,072 holes (56)  
and this technology is readily adaptable for automated 
testing. In the multiplex ligation-dependent probe 
amplification assay, ligation of contiguous probes is allele-
specific. Only ligated probes are amplified and fluorescently 
labelled, and, therefore, detected in a genetic analyser (57).

DNA arrays are chips or beads that have many short 
DNA sequences attached (45,58,59). Multiplex PCR 
amplifications carried out on the DNA of the subject provide 
fluorescent amplification products of all regions containing 
the polymorphisms to be tested. The amplification products 
are then incubated with a microarray or with microbeads of a 
variety of colours coated with oligonucleotides representing 
complementary sequences of all the polymorphisms to be 
tested. After scanning of the array for fluorescence by a laser 
scanner, or passing the beads through a laser, the results are 
analysed by a computer. Several commercial applications 
for blood group genotyping involving variations of this 
technology have been developed (47). Since the application 
of next generation sequencing (see below), array analysis has 
become more sophisticated. Application of DNA microarrays 
that were used in a transfusion medicine genome-wide 
association study has enabled the development of a high-
throughput universal blood donor genotyping platform 
capable of simultaneously typing all clinically relevant blood 
group antigens and their variants, plus platelet, granulocyte, 
and leukocyte (HLA) antigens (44,50).

Matrix-assisted laser desorption/ionisation time-of-
flight mass spectrometry (MALDI-TOF MS) has also been 
adapted for blood group genotyping (46). Biomolecules 
are ionised by a nanosecond laser pulse and the ions are 
accelerated in an electric field along a flight tube. Molecules 
are separated according to their mass:charge ratio and reach 
a detector at different times. DNA fragments differing by 
only a single nucleotide can be differentiated by their time 
of flight, distinguishing alleles. 

Next-generation sequencing, also called massively 
parallel sequencing or, for long reads, third generation 
sequencing, is an extremely powerful technology designed 
originally for sequencing the whole genome. Next 
generation sequencing provides the capacity for rapid 
sequencing of the whole genome or whole exome, but also 

to sequence limited regions of the genome of many different 
individuals in one run, a potential for testing all required 
blood groups of numerous donors. Millions of sequencing 
reads can be obtained in a single run and are interpreted 
by high-volume informatics (60). Targeted enrichment, 
in which selected regions are enriched in a DNA library, 
permits analysis of all red cell blood group polymorphisms 
and the identification of variant genotypes, including those 
responsible for null phenotypes, plus all platelet antigens, 
by comparing sequences with those of reference sequences 
(9,13,41,49,61-63). Next generation sequencing technology, 
however, has been considered excessively expensive for 
extended blood grouping on large numbers of blood donors 
compared with microarray technology (44). 

Fetal blood group genotyping

Despite widespread anti-D immunoglobulin prophylaxis 
programmes, some D– women still make anti-D. It is 
valuable to know the D type of the fetus of a woman with 
anti-D for appropriate management of the pregnancy: if the 
fetus is D+ it is at risk of HDFN and the pregnancy should 
be managed accordingly; if it is D– it is not at risk and there 
is no need for any intervention (10). In many countries, 
fetal RHD genotyping is now considered the standard of 
care for pregnancies at risk from HDFN. In the USA this 
application has been hampered by patent and licensing 
issues (9).

Initially, fetal DNA for RHD testing, first reported in 
1993 (64), was obtained by amniocentesis or chorionic villus 
sampling. Both interventions are invasive and can lead to 
miscarriage or fetal haemorrhage with consequent boosting 
of anti-D. In 1997, discovery that cell-free fetal DNA is 
present in the plasma of pregnant women provided a non-
invasive source of fetal DNA (65). At 10 to 20 weeks of 
gestation, a mean of around 10 to 14% of cell-free DNA 
in maternal plasma is of fetal origin (the fetal fraction), but 
the range is large, with some pregnant women having a fetal 
fraction of <1.5%. After 21 weeks the proportion of fetal 
DNA increases by about 1% per week (66,67). Fetal DNA 
cannot be isolated from the maternal DNA, but since the 
mother must be D–, as the reason for testing is that she has 
made anti-D, she will usually have no RHD. Therefore, if 
RHD is detected it must be of fetal origin and the fetus must 
be D+, whereas if no RHD is detected the fetus must be D–. 
Most methods for fetal RHD detection involve testing for 
two or more regions of RHD to avoid false positive results 
arising from variant RHD genes that produce no D antigen. 



Annals of Blood, 2023Page 6 of 11

© Annals of Blood. All rights reserved. Ann Blood 2023;8:3 | https://dx.doi.org/10.21037/aob-21-37

The usual technology employed is real-time quantitative 
PCR (QPCR) with Taqman chemistry, which measures 
the quantity of amplified product at every cycle (68). The 
quantitative aspect of this technology ensures that only 
fetal DNA is being amplified, not the much larger quantity 
of maternal DNA. It is possible to include various fetal 
markers to control for the presence of sufficient fetal DNA 
and successful amplification when the fetus is D–, but none 
is entirely satisfactory or cost-effective so, considering the 
very high level of specificity demonstrated across several 
studies, internal positive controls are not generally used 
routinely (10,11,69).

Fetal testing on fetal DNA from maternal plasma in 
alloimmunised pregnant women is also often provided for 
C (RH2), E (RH3), and c (RH4) by testing RHCE, and for 
K (KEL1) by testing for a SNP on KEL. Antibodies to these 
antigens can cause severe HDFN, particularly anti-c and 
anti-K. Tests are generally carried out by QPCR with an 
allele-specific primer or probe (70). Most studies from various 
laboratories report 100% accuracy for C, E, and c, but a few 
errors for K, which has proved more challenging (11,70).

To prevent D immunisation during pregnancy, it 
is common practice for all D– pregnant women to be 
offered anti-D immunoglobulin prophylaxis at about 
28 weeks of pregnancy. This is in addition to that given 
after delivery of a D+ baby. Without fetal testing, this 
antenatal treatment must be offered to all D– pregnant 
women, yet in a Caucasian population up to 40% of these 
D– pregnant women will have a D– fetus and receive 
the treatment unnecessarily. [In African populations the 
frequency of D– is substantially lower and in East Asians 
D– is rare (7)]. In several European countries, including 
Denmark, the Netherlands, Sweden, England, France, 
and Norway, routine non-invasive genomic D testing on 
fetal DNA obtained from the maternal plasma is being 
offered to all D– pregnant women (11,71-75). This testing 
has a very high level of sensitivity and specificity from 11 
weeks gestation and eliminates unnecessary treatment of 
pregnant women with anti-D immunoglobulin and the 
associated inconvenience, discomfort, and perceived risks 
of infection by unrecognised viruses or prions. Fetal RHD 
screening is cost effective, with the expense of the test 
offset in several ways: by savings in the cost of antenatal 
anti-D immunoglobulin given at 28 weeks gestation and 
following potential sensitising events; by a decrease in fetal 
haemorrhage testing; by maximising hospital bed capacity 
by enabling midwives to give anti-D immunoglobulin 
immediately after the delivery of a D+ baby without having 

to wait for laboratory results; and, in some countries, by 
discontinuation of cord blood typing (11,74). In addition 
to these benefits, there is a worldwide shortage of anti-D 
immunoglobulin, which is produced in volunteers who have 
been immunised with blood products, so there are ethical 
issues around wastage of this valuable gift (76,77). 

Although QPCR remains the method of choice for 
routine fetal blood group testing, some proof of principle 
studies with targeted next generation sequencing have 
demonstrated that this technology may be applied in the 
future (78-80). Advantages of next generation sequencing 
for fetal testing are that it can determine fetal fraction and 
that analysis of multiple fetal sequences eliminates concerns 
about absence of positive controls (80). 

Fetal and neonatal alloimmune thrombocytopenia 
(FNAIT) results from maternal platelet antibodies, usually 
anti-HPA1a, crossing the placenta and destroying antigen-
positive fetal platelets. At its most severe, FNAIT causes 
intra-cranial haemorrhage, frequently leading to fetal or 
neonatal brain damage and death (81). Tests involving 
QPCR, high-resolution melting analysis, or next generation 
sequencing have been developed for determining fetal 
HPA1a type from cell-free fetal DNA obtained from the 
plasma of pregnant women with anti-HPA1a (14,82,83).

External quality assurance (EQA)

When blood group genotyping is being used for clinical 
purposes, it is important that it is properly regulated. 
This regulation should include participation in an EQA 
programme. Initially the International Society for Blood 
Transfusion (ISBT) provided a series of four workshops 
(2004–2010) that functioned as EQA exercises and included 
DNA samples for multiple blood group typing plus two 
samples from pregnant women for fetal D typing (84-87).  
An EQA scheme was also provided by INSTAND in 
Germany (88). UK NEQAS launched a pilot genotyping 
EQA scheme comprising four exercises per year in 2016/17 
with the aim of becoming a full UK NEQAS EQA Scheme 
in 2020/21 (89). These exercises have revealed a high level 
of accuracy achieved with a variety of different platforms, 
but an unacceptable diversity of blood group genotype and 
phenotype nomenclature.

Four workshops comprising about 28 laboratories have 
been organised in Denmark since 2016. Each participant 
tested two blood samples from pregnant women, one with 
a D+ fetus and one with a D– fetus: no false-negative or 
false-positive results were reported (90). All participating 
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laboratories used QPCR. These workshops will continue 
as an annual event and will be organised by DEKS EQA 
(https://deks.dk).

What about the future of blood grouping?

A question commonly asked is will genotyping replace 
serological testing for blood grouping? For routine donor 
and pre-transfusion ABO testing I think that the answer 
is no, at least in the foreseeable future. The reason for 
this is that ABO testing is relatively simple to perform 
serologically and is exceptionally reliable, whereas ABO 
is highly complex genetically. And for ABO testing, there 
is no margin for error. For pre-transfusion D testing the 
same reasoning probably applies and it may be a long time 
before serological D testing will be replaced by genotyping. 
It is likely that all other blood group antigen typing 
will soon be performed by genotyping, at least in some 
countries. Antibody screening and identification will still 
require serological methods, but much of this may be done 
with synthetic, recombinant antigens (91) or genetically-
modified cultured red cells, for example, cells created by 
CRIPR-mediated gene editing of an immortalised human 
erythroblast cell line (92,93).

If all donors and patients could be tested for all clinical 
important blood groups, rapidly and at relatively low cost, 
then electronic matching of donors to patients would 
be feasible. This would result in a decrease in levels 
of alloimmunisation, reducing haemolytic transfusion 
reactions, especially delayed transfusion reactions where 
antibodies are not detectable serologically owing to 
evanescence of the antibody. It would also save time and 
expense involved in complex serological investigations. This 
will be possible within the near future from the point of 
view of blood group testing, but the logistics of obtaining 
matched blood for the right patient will be more complex. 
If there is a will to deliver this level of precision medicine, 
then a way can be found.
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