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Introduction

Transfusion practices for fetuses, neonates and children 
differ substantially from adults. These populations may 
be susceptible to adverse events due to their immature 
immune systems, decreased reserves to respond to stress 
and sensitivity to metabolic disturbances. These patients 
are usually under-represented in trials because they 
constitute vulnerable populations. Thus, the transfusion 
literature is more limited than for older patients, but recent 
studies provide guidance about transfusion thresholds and 
indications.

Intrauterine transfusions

The possible utility of an intrauterine transfusion (IUT) in 
the management of the hemolytic disease of the fetus and 
newborn (HDFN), due to red cell alloimmunization, was 
first described by Dr. Liley in 1963 (1). While initially based 
on X-ray visualization of the fetus and fetal intraperitoneal 
cavity blood transfusions, the current practice involves 
either direct IUT into the umbilical vein, or into the 
intrahepatic portion of the umbilical vein, via ultrasound-
guided cordocentesis (2). With the advancements in 
ultrasound imaging technologies, IUT is currently used 
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successfully in both immunologic and nonimmunologic 
indications. However, there is still potential risk for 
procedural and/or transfusion-related complications (2) 
and transfusion medicine service plays a crucial role in 
management of these patients.

Immunologic indications of intrauterine transfusion

While HDFN is the most common indication for IUT, 
where the transfused product consists of plasma-reduced red 
blood cells (RBC), neonatal alloimmune thrombocytopenia 
(NAIT) is the most common indication for a platelet IUT.

Hemolytic disease of the fetus and newborn

HDFN occurs due to the transplacental transport of IgG 
class antibodies targeting paternally inherited red cell and 
erythroid precursor antigens causing variable degrees of 
hemolysis, yielding a wide spectrum of outcomes ranging 
from serologic only findings to severe fetal anemia causing 
erythroblastosis fetalis and to hydrops fetalis. Sensitizing 
events include fetomaternal hemorrhage (FMH), transfusions 
and transplantations and, rarely, unknown stimuli.

Immunogenicity of red cell antigens play a key role 
since anti-D is one of the most potent immunogenic 
antigens (3) and globally the most common cause of HDFN 
with a 15.0% risk of Rh alloimmunization in pregnant 
women without prophylaxis. Of the pregnancies affected 
by Rh disease, 13.9% end in stillbirth and 7.2% survive 
with kernicterus (4). Some high-income nations have 
lowered the overall HDFN risk by providing routine Rh 
immunoprophylaxis to D-negative and variant D-positive 
females. ABO incompatibility has become a common cause 
of HDFN for such nations with a 1-4% incidence but is a 
significantly milder disease than anti-D related HDFN (4,5). 

HDFN generally occurs after first pregnancy and at 18-
20-week gestation but if maternal antibodies target erythroid 
precursors and cause erythropoietic suppression, then an 
earlier presentation may be seen. A classic example for 
such antibody is anti-K1 (6) but anti-Jra (7) and anti-Ge (8)  
were also reported in the literature. Since anti-I, -P1, Lea 
and Leb are not or poorly expressed on fetal red cells, they 
do not cause HDFN (9). Less commonly anti-E, -c, -C, -k, 
-Kpa, -Kpb, -Ku, -Jsa, -Jsb, -Jka, -Jkb, -Fya, -Fyb, -S, -s and -U 
antibodies were detected in HDFN patients (10,11).

Management of pregnancies complicated by maternal 

red cell alloimmunization includes monitoring maternal 
antibody titers and assessment of fetal wellbeing by 
ultrasound imaging which is generally done by fetal middle 
cerebral artery peak systolic velocity (MCA-PSV). If 
antibody titers are significantly elevated (e.g., anti-D >1:256) 
and/or severe anemia is detected by MCA-PSV, then 
treatment modalities include intravenous immunoglobulin 
(IVIG), plasmapheresis and IUT (12,13). The long-term 
outcomes of HDFN cases managed by IUT are good with 
an overall low incidence (4.8%) of neurodevelopmental 
impairment (14).

Neonatal alloimmune thrombocytopenia

The pathophysiology of NAIT closely resembles that of 
HDFN. IgG class maternal alloantibodies targeting human-
platelet antigens (HPA) cross the placenta and cause immune-
mediated thrombocytopenia. Almost all cases of NAIT are 
caused by antibodies against three antigens, HPA-1a affecting 
80–90% of cases, and HPA-5b and HPA-3a for rest of the 
cases (15). Mothers who are HLA-DRB3*0101 positive have 
higher odds of developing HPA-1a alloimmunization (16). 
The mothers are asymptomatic and disease spectrum ranges 
from mild asymptomatic thrombocytopenia to intracranial 
hemorrhage (ICH) and even to extracranial hemorrhage, 
although the latter is very rare (17). 

Overall, the incidence of NAIT is 0.3 to 1 in 1,000 
pregnancies and can be detected in the first pregnancy, 
however, most cases are noticed after birth (18,19). Criteria 
for suspecting NAIT is the presence of fetal ICH or platelet 
count less than 100,000/µL at birth or within seven days 
after birth of the affected child (20). 

The standard therapy for NAIT is IVIG and/or  
steroids (21). In very rare circumstances, fetal blood sampling 
may be performed to measure the platelet count and if it 
is found to be less than 50,000/µL then an IUT platelet 
transfusion could be performed (22).

Autoimmune thrombocytopenia

Compared to NAIT, transplacental transmission of 
autoantibodies causing immune thrombocytopenic purpura 
(ITP), systemic lupus erythematosus (SLE) and other 
autoimmune diseases with thrombocytopenia, are rare 
indications for IUT platelet transfusions and therapy is 
based on medical management (23,24).
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Nonimmunologic indications of intrauterine transfusion

Fetal complications of maternal human parvovirus B19 
infection are due to the inhibition of hematopoiesis 
and bone marrow failure and include fetal anemia, 
hyperdynamic circulation, cardiomegaly, non-severe to 
severe hydrops fetalis and fetal death (25). Although the 
fetal infection risk is low (1–2% of fetal infection in 30–50% 
of maternal infections), a timely IUT corrects anemia and 
improves the outcome. However, even with IUT there is a 
risk for neurological damage (2,25). 

IUT can be performed in the management of FMH and 
twin-twin transfusion syndrome. In addition, literature also 
includes case reports/series of placental and fetal tumors, 
α- and β-thalassemia, elliptocytosis, Blackfan-Diamond 
anemia, hemochromatosis and cytomegalovirus infection 
managed with IUT with some success (2).

Unit requirements

Red blood cells
Per the AABB’s Technical Manual, RBC units must be 
indirect antiglobulin test crossmatch compatible with 
the maternal plasma, irradiated to prevent transfusion-
associated graft versus host disease (TA-GVHD), 
cytomegalovirus (CMV)-safe to prevent intrauterine CMV 
infection and hemoglobin S-negative to avoid sickling (9). 
In addition to the above mentioned restrictions, if possible, 
utilizing a 5–7-day old unit and washing RBCs to prevent 
hyperkalemia and also hemoconcentrating to 70–85% 
hematocrit to minimize the total volume of the IUT are 
recommended (26). 

The RBC unit for IUT is generally group O D-negative, 
however, in some circumstances, such as need for a rare 
blood type unit then maternal or maternal sibling’s RBCs 
could be used after following all allogeneic prerequisites (27) 
or if clinically safe, then non-group O or D-positive units 
could be used. However, meeting the donor hemoglobin 
requirements for mothers might be a challenge. The volume 
of RBCs to be transfused can be calculated by the below 
formula (28) and the usual post-IUT target hematocrit is 
40–45% (9,26). The unit should be warmed to 37 ℃ before 
transfusion.

Platelets
Platelets for the IUT should be HPA-compatible with 
maternal alloantibody, irradiated and CMV-safe (9). 
In addition, some centers provide hyper-concentrated 

(>2,000×109/L) units for IUT (26) Advance notification of 
the transfusion service is required to prepare the product. 
The same formula used for calculating red cell volume (noted 
below) can be used for calculating the volume of platelet 
transfusion. The unit should be warmed to 37 ℃ before 
transfusion and infused slowly to prevent fetal stroke (26).

Formula for calculating volume of transfusion:

( )0.14 Desired Pretransfusion

Unit

Fetal weight C C
Volume to transfuse

C
× × −

=  [1]

C: Hematocrit or platelet count

Neonatal transfusion practices

Neonates constitute one of the most heavily transfused 
patient groups in the hospital, with an incidence of 1.6% 
in a recent neonatal intensive care unit (NICU) study (29).  
Neonatal transfusion practices differ substantially from 
adult and pediatric transfusion practices because of 
unique physiology differences. Neonates have small blood 
volumes when compared with older children and adults 
but high blood volume per body weight. Their immature 
organ system function increases the risk of metabolic 
derangements from blood products and additive solutions, 
and to the infectious and immunomodulatory hazards 
of transfusion such as transfusion-transmitted CMV 
infection and TA-GVHD. Neonatal responses to stresses, 
including hypothermia, hypovolemia, hypoxia, and acidosis 
are dependent on gestational age, birth weight, and co-
morbidities. 

Blood products

Red blood cell transfusion
Most RBC transfusions in newborns are administered 
to either treat anemia of prematurity or replace blood 
loss, which can result from hemorrhage or phle botomy. 
Iatrogenic losses from phlebotomy can be considerable, but 
can be minimized by judicious testing strategies, sampling 
from indwelling catheters, using microtainers for laboratory 
assays, and implementing point-of-care testing.

Recent neonatal and pediatric guidelines recommend 
transfusion at varying hemoglobin or hematocrit thresholds 
stratified by postnatal age and clinical condition or in 
circumstances where the amount of blood loss or removal 
exceeds 10% of a neonate’s total blood volume (30,31). 
Infants with significant cardiac or respiratory disease 
generally receive more aggressive RBC transfusion 
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therapy. Villeneuve and colleagues recently summarized 
recommended guidelines from several countries for RBC 
transfusion therapy in neonates (32). 

The literature supports the use of restrictive transfusion 
practices in neonates. Keir and colleagues recently 
performed a systematic review of primary and secondary 
adverse clinical outcomes in neonates exposed to liberal 
versus conservative transfusion strategies and found no 
statistically significant differences between the two groups 
across both randomized and non-randomized studies (33).  
Two clinical trials aimed at examining the short and long term 
outcomes in extremely low birth weight infants randomized 
to liberal or restrictive RBC transfusion thresholds recently 
reported results. The Effects of Transfusion Thresholds 
on Neurocognitive Outcome of Extremely Low Birth-
Weight Infants (ETTNO) study randomized 1,013 infants 
weighing less than 1,000 grams at birth to a liberal (n=492) 
or restrictive (n=521) transfusion regimen (34). Hematocrit 
thresholds were based on postnatal age and whether 
the health state was critical or non-critical. The liberal 
transfusion approach did not reduce the likelihood of death 
or disability at 24 months of corrected age. Separately, the 
Transfusion of Prematures trial (TOP) enrolled 1,824 infants 
with a birth weight of 1,000 grams or less and randomized 
them to a high (n=845) or low (n=847) hemoglobin threshold 
for RBC transfusion. The higher threshold did not improve 
survival without neurodevelopmental impairment at 22 to  
26 months of age (35).
Red blood cell dose and administration
A typical replacement transfusion is 10 to 15 mL of RBCs 
per kilogram. Because infants are so small, many pediatric 
transfusion centers dispense small aliquots from one RBC 
unit (300–350 mL) to one or several neonates who require 
multiple transfusions to decrease donor exposure and to 
conserve RBC inventory. This practice requires sterile 
connecting devices to assure that the original RBC unit 
remains a closed system and maintains its original shelf-life. 
Transfer packs or syringe sets permit multiple aliquots to be 
removed. 

Several studies have investigated whether fresher 
RBCs decreased morbidity and mortality. In the Age 
of Red Blood Cells in Premature Infants (ARIPI) trial 
conducted in Canada, 188 very low birthweight (VLBW) 
infants provided with fresh RBC transfusions (mean age of 
transfused RBCs 5.1 days, SD 2.0 days) did not demonstrate 
an improvement in a composite outcome measure of major 
neonatal morbidities [NEC, IVH, bronchopulmonary 
dysplasia (BPD), and ROP] or death at 30 and 90 days 

compared with the 189 infants who received standard RBC 
products (mean age of transfused RBCs 14.6 days, SD 
8.3 days) despite having 60% more donor exposures (36). 
Several other similarly-designed studies in older children 
and adults [ABLE (37), RECESS (38), TOTAL (39), and 
INFORM (40)] also did not identify a detrimental effect 
between fresh and standard age RBCs. Thus, guidelines for 
neonatal transfusion do not recommend limiting the age of 
transfused RBCs to <10 days (41).

Platelet transfusion
Indications
As with older children and adults, platelet transfusions 
are  adminis tered to  neonates  therapeut ica l ly  or 
prophylactically to prevent the hemorrhagic complications 
of thrombocytopenia. Neonates have different risks of 
bleeding given the same degree of thrombocytopenia. 
Differences in platelet function or concurrent coagulopathy 
depending on the underlying disease are likely causes for 
these discrepancies (42). 

Neonatal platelet transfusion threshold policies vary 
widely, both nationally and internationally (29). Because of 
the concern for IVH in the sick neonate, many physicians 
have traditionally adopted a fairly aggressive platelet 
threshold for transfusion (e.g., platelet count >100,000/µL  
in high-risk patients). However, in a cross-sectional 
observational study of neonatal outcomes with severe 
thrombocytopenia, Stanworth et al. failed to show a 
clear relationship between nadir platelet count/degree of 
thrombocytopenia and major hemorrhage (IVH, pulmonary, 
intra-abdominal, hematuria) (43,44). Retrospective studies 
have also failed to establish a link between the severity of 
thrombocytopenia and risk of IVH across both liberal and 
restrictive transfusion practices (45,46). 

A historic randomized controlled trial addressing 
whether platelet transfusions reduce major bleeding 
in neonates found no benefit of maintaining a normal 
platelet count (platelets >150,000/µL) in preterm neonates 
compared with those maintained at greater than 50,000/µL.  
However, this study did not address bleeding risk or 
transfusion benefit for neonates with platelet counts less 
than 50,000/µL (47). More recently, Platelets for Neonatal 
Transfusion Study 2 (PlaNet 2), a randomized controlled 
trial in the UK, Ireland, and the Netherlands compared 
prophylactic platelet transfusion thresholds of 25,000/µL 
and 50,000/µL in terms of mortality and major bleeding 
complications in 660 premature infants (48). Surprisingly, a 
higher platelet transfusion threshold was associated with 7% 
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more deaths and/or major bleeding. A higher incidence of 
bronchopulmonary dysplasia was also noted but there were 
no differences for other complications such as retinopathy 
of prematurity and necrotizing enterocolitis. Another trial 
also showed adverse events with higher platelet transfusion 
thresholds (49). A significantly higher rate of IVH occurred 
in the higher threshold group. Possible reasons include 
the interaction between adult platelets with a neonatal 
coagulation system which is characterized by lower 
coagulation factors but higher von Willebrand factor levels 
and decreased levels of coagulation inhibitors (42).

Thus, a generally accepted transfusion trigger for platelet 
count less than 25,000/µL has been endorsed for healthy or 
stable term and preterm infants without other risk factors, 
whereas some experts propose a higher trigger (<30,000/µL–
50,000/µL) for VLBW neonates within the first week of life, 
clinically unstable neonates, and neonates with NAIT (30,50). 

Guidelines from the United Kingdom suggest the 
following thresholds:
 No bleeding, including NAIT without bleeding or 

family history of ICH: maintain platelet count above 
25,000/µL.

 Bleeding, current coagulopathy, surgical prophylaxis, 
or NAIT with a family history of ICH in an affected 
sibling: maintain platelet count above 50,000/µL.

 Major bleeding or requiring major surgery (e.g., 
neurosurgery): maintain platelet count above 
100,000/µL.

Platelet transfusions are also indicated to treat hemorrhage 
associated with acquired (i.e., ECMO, cardiopulmonary 
bypass,  uremia) or congenital  qualitative platelet 
abnormalities (i.e., Glanzmann thrombasthenia, Bernard-
Soulier syndrome) even if the platelet count is normal.

Fresh frozen plasma transfusion
Plasma is used primarily to treat acquired coagulation 
factor deficiencies due to disseminated intravascular 
coagulation (DIC), liver failure, vitamin K deficiency 
from malabsorption, biliary disease, warfarin therapy, or 
dilutional coagulopathy from massive transfusion. It can 
also be used for specific factor replacement in congenital 
factor deficiencies (e.g., factor V, X, XI) when specific factor 
concentrates or recombinant products are not manufactured 
or unavailable (31,51). However, the optimal role of plasma 
in neonatal transfusion practice has not been established 
through evidence-based studies, and a majority of FFP 
transfusions in patients of all ages appear to be given for 

prophylactic purposes (52). Recent transfusion guidelines 
do not recommend routine use of plasma for correction 
of coagulopathy in neonates without clinically significant 
bleeds. In contrast, plasma may be of use in neonates with 
significant bleeding, including those requiring massive 
transfusion or at high risk for bleeding due to an invasive 
procedure or significant coagulopathy as evidenced by 
markedly prolonged PT or aPTT. Plasma is not indicated 
for volume expansion, enhancement of wound healing, or as 
first-line treatment for congenital factor deficiencies when 
either a virally-inactivated plasma derived factor concentrate 
or recombinant factor is available.

Cryoprecipitate transfusion
Cryoprecipitate is the cold-insoluble precipitate prepared 
from FFP that has been thawed slowly at 1 to 6 ℃ and 
refrozen at −18 ℃ after removal of the supernatant. 
It contains primarily fibrinogen, factor VIII, factor 
XIII and von Willebrand factor in a smaller volume 
than plasma (31). It may help neonates with specific 
coagulation factor needs who are volume restricted. 
Cryoprecipitate is indicated in the treatment of bleeding 
episodes associated with von Willebrand disease and/
or hemophilia A only when FDA-licensed recombinant 
factor concentrates and/or viral-inactivated pooled 
plasma-derived factor concentrates are not available. 
Cryoprecipitate is the treatment of choice for factor XIII 
deficiency, congenital afibrinogenemia, dysfibrinogenemia, 
and severe hypofibrinogenemia (<150 mg/dL) associated 
with bleeding. In general, an infant should receive 1 bag 
of cryoprecipitate per 5 kg, which increases the total 
fibrinogen by about 100 mg/dL.

Non-infectious complications

Neonates, especially extremely premature infants, are more 
susceptible to metabolic alterations due to the immaturity 
of many of their organ systems. Glucose imbalances, 
hyperkalemia, and hypocalcemia are the most common 
metabolic derangements related to transfusion, owing to 
the inability of the infant to efficiently metabolize and/or 
excrete elements intrinsic to blood and blood components. 
TA-GVHD can occur if donor lymphocytes engraft in 
the recipient’s bone marrow. Immune system immaturity 
is a risk factor. Although rare, TA-GVHD has a very high 
fatality rate (>90%). Non-infectious complications and 
mitigation approaches are summarized in Table 1.
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Transfusion for pediatric patients

Introduction

Children require transfusion of blood components for a vast 
array of medical conditions, including acute hemorrhage, 
hematologic  and non-hematologic  mal ignancies , 
hemoglobinopathy, and allogeneic and autologous stem 
cell transplantation. Evidence-based literature on pediatric 
transfusion practices continues to be limited, particularly for 
non-red blood cell (RBC) products, and many recommendations 
are extrapolated from studies performed in adult populations. 

Red blood cells

RBCs are indicated for treatment of blood loss and acute 

or chronic anemia in order to increase hemoglobin 
levels and restore adequate oxygen carrying capacity and 
tissue perfusion (55). While RBC transfusion is generally 
recommended for children experiencing acute blood loss 
exceeding 15–20% of their total blood volume (TBV) (56),  
the decision to transfuse is ultimately dependent upon 
individual patient characteristics, including age and 
physiology, hemoglobin/hematocrit levels or other 
laboratory values, clinical presentation, and underlying 
medical status. The therapeutic benefits of administering 
blood components must necessarily be weighed against the 
risks, including adverse events such as acute and delayed 
transfusion reactions, alloimmunization, physiologic 
derangements (e.g., hyperkalemia, hypothermia) and 
exposure to allogeneic blood. 

Table 1 Non-infectious transfusion adverse events

Complication Situation Risk reduction

Hypoglycemia Holding IV fluids/feeds during transfusion due 
to concerns about NEC. Anemia and immune 
dysregulation rather than RBC transfusion appear to 
increase risk of NEC

Continuing the infusion of maintenance fluids at a 
slower rate to maintain an adequate glucose infusion 
rate

Close monitoring of blood glucose during transfusions

Hyperkalemia (risk 
of electrocardiac 
abnormalities and 
cardiac arrest)

K+ load in transfusions depends on RBC unit age, 
plasma volume, transfusion rate. Irradiation causes 
membrane damage and increased leakage of 
intracellular K+

Washing older RBCs is unnecessary for most small 
volume RBC transfusions (10–20 mL/kg)

A recent study showed low prevalence in children, but 
the 1-day mortality rate was 20% (53)

Use fresh RBC units (<7–10 days) for large-volume 
RBC transfusions. If unavailable, volume-reduced or 
washed units can be considered. RBCs should be 
irradiated as close as possible to transfusion

Hypocalcemia Blood products are stored in citrate anticoagulant 
solutions. Citrate chelates calcium

Recommend monitoring ionized calcium levels and/or 
QT intervals during exchange

Complications are unlikely during a small-volume 
transfusion (10–20 mL/kg)

Minimize potentiating factors such as 
hypomagnesemia, hyperkalemia, alkalosis, and 
hypothermia

However, exchange transfusion can lead to 
symptomatic hypocalcemia

Can consider prophylactic calcium infusion.

Hypothermia RBCs are stored at 1–6 ℃. Hypothermia can develop 
with rapid large volume transfusions

Use inline blood warmers for massive transfusions or 
exchange transfusions

TA-GVHD This complication may occur in patients with immature 
or impaired immune systems who receive cellular blood 
products (RBCs, platelets, granulocytes) 

Irradiation prevents TA-GVHD

Another risk factor is HLA similarity between blood 
donor and recipient (for example, directed donations 
from family members)

Some pediatric institutions have implemented 
universal irradiation of cellular blood products (54)

NEC, necrotizing enterocolitis; RBC, red blood cell; TA-GVHD, transfusion associated graft-versus-host disease; HLA, human leukocyte antigen. 
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Randomized controlled trials (RCTs) have aimed 
to elucidate the ideal hemoglobin trigger for RBC 
transfusion. Modeled after the Transfusion Requirements 
in Critical Care (TRICC) trial (57) in adults, the 
Transfusion Requirements in the Pediatric Intensive 
Care Unit (TRIPICU) study (58) compared restrictive 
(7 g/dL) vs. liberal (9.5 g/dL) transfusion thresholds in 
hemodynamically stable, critically ill children admitted to 
the pediatric intensive care unit (PICU). The investigators 
enrolled a total of 637 subjects, randomizing 320 to the 
restrictive strategy arm and 317 to the liberal strategy arm, 
and evaluated primary outcomes characterized by severity 
and/or progression of multi-organ dysfunction syndrome 
(MODS). They also looked at secondary outcomes such 
as 28-day mortality, length of stay, sepsis, transfusion 
reactions, and infection rates. No statistically significant 
differences were detected in the two groups for any of 
the outcomes, nor was there evidence of excess harm 
or adverse events occurring in patients in the restrictive 
arm. Unlike adults in the liberal study arm of the TRICC 
trial, patients in the TRIPICU liberal group did not have 
increased mortality or cardiopulmonary complications. 
The patients in the restrictive arm had a 96% reduction 
in any transfusion exposure and a 44% decrease in 
administered RBC transfusions compared to the liberal 
group.  Subgroup analyses of patients with severe illness, 
sepsis, non-cyanotic cardiac disease or post cardiac surgery, 
respiratory dysfunction, acute lung injury, neurologic 
dysfunction, and severe trauma continued to support a 
restrictive transfusion threshold of 7 g/dL, although there 
was insufficient evidence for cyanotic patients (59). The 
results of a smaller RCT suggested that children with single 
ventricle physiology might benefit from a slightly higher 
restrictive threshold of 9 g/dL (compared with 13 g/dL 
for the liberal arm) (60). Hemoglobin thresholds are less 
useful in the setting of acute hemorrhage since significant 
losses can occur prior to detection via laboratory values, 
although nadir levels of 5 g/dL have been proposed as an 
absolute lower limit for critically ill patients (61). In the 
absence of prospective clinical trials studying clinically 
unstable children who are not in hemorrhagic or septic 
shock, general recommendations include reliance on clinical 
judgment or goal-directed therapy with physiologic targets 
(e.g., central venous O2 saturation) (59).

In 2018, participants in the Pediatric Critical Care 
Transfusion and Anemia Expertise Initiative (TAXI) 
published RBC transfusion guidelines based on available 
evidence or expert  consensus when evidence was  

lacking (62). In addition to recommendations aimed 
toward a general population of critically ill children (63), 
they provided separate recommendations for eight other 
diagnostic categories, including (I) acute respiratory 
failure (64), (II) non-hemorrhagic shock (65), (III) non-
life threatening bleeding and hemorrhagic shock (66), (IV) 
acute brain injury (67), (V) acquired and congenital heart 
disease (68), (VI) sickle cell and oncologic disease (69),  
(VII) support from extracorporeal circuit membrane 
oxygenation (ECMO), ventricular assist devices (VADs), 
and renal replacement therapy (RRT) (70), and (VIII) 
use of alternative processing of blood products (71). The 
recommendations provided for the general population of 
critically ill children incorporated previously published 
guidelines by recommending 5 g/dL as the minimum 
and 7 g/dL as the maximum transfusion thresholds in 
hemodynamically stable patients (62,63). They were 
unable to provide specific recommendations when 
hemoglobin levels ranged from 5 to 7 g/dL and advocated 
for use of clinical judgement in such cases. For certain 
clinical subgroups, the authors recommended alternative 
hemoglobin thresholds such as 7–10 g/dL in the setting of 
acute brain injury (67), 7–8 g/dL for stem cell transplant 
and oncology patients (69), and 9 g/dL as a maximum 
threshold for those with uncorrected cardiac defect or single 
ventricle physiology (68). For patients with life-threatening 
bleeding, TAXI recommended empiric transfusions of 
RBCs, plasma, and platelets in a 1:1:1 or 2:1:1 ratio for 
resuscitation regardless of laboratory values (66).

Platelets

Platelet transfusions are indicated for restoring primary 
hemostasis during hemorrhage as well as prevention of 
bleeding in the presence of severe thrombocytopenia 
or acquired or congenital platelet dysfunction (55). The 
majority of transfusions are administered prophylactically 
to oncologic and hematopoietic stem cell transplant (HSCT) 
patients with hypoproliferative thrombocytopenia induced 
by chemotherapy, radiation, or myeloablation (72,73).

Platelet counts have historically been used as a surrogate 
marker for determining the likelihood of bleeding. As 
discussed earlier, recent studies in preterm neonates have 
suggested that restrictive prophylactic thresholds as low as 
25,000/µL are safe and may actually be associated with a 
lower risk of major bleeding and mortality than more liberal 
thresholds of >50,000/µL (48,49). For pediatric patients, 
there are few platelet trigger RCTs available to formulate 
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evidence-based recommendations. The 2015 AABB clinical 
guidelines recommend a transfusion threshold of 10,000/µL  
to prevent spontaneous hemorrhage in adults with therapy-
induced hypoproliferative thrombocytopenia; higher 
thresholds of 20,000/µL are recommended for those 
undergoing central venous catheter (CVC) placement 
and 50,000/µL for lumbar puncture (LP) or major non-
CNS surgery (74). The extent to which these guidelines 
may be applied to children is controversial, especially 
considering evidence of poor correlation between platelet 
count and bleeding risk in children (75). Several pediatric 
clinical guidelines recommend a standard transfusion 
threshold of 5,000–10,000/µL for stable, non-bleeding 
children, excluding patients with immune-mediated 
thrombocytopenia or stable aplastic anemia (30,56). No 
definitive guidelines have been established for bleeding or 
unstable pediatric patients or those with qualitative platelet 
dysfunction, although higher values (e.g., 100,000/µL) or 
clinical evidence of hemostasis may be targeted in these 
situations (76).

The largest prospective randomized transfusion 
study to include a significant pediatric population is the 
Optimal Platelet Dose Strategy to Prevent Bleeding in 
Thrombocytopenia (PLADO) study, which examined the 
effect of different platelet doses on the incidence of bleeding in 
1,272 patients with hypoproliferative thrombocytopenia (77).  
Patients were randomized to three different groups and 
received low (1.1×1011/m2 of body surface area), medium 
(2.2×1011/m2), or high (4.4×1011/m2) platelet doses whenever 
their morning platelet counts were 10,000/µL or less. 
Subgroup analysis of the 200 children who received 
at least one platelet transfusion did not demonstrate 
an association between platelet dose and incidence of 
significant bleeding (75). However, pediatric patients (age 
0-18 years), particularly those undergoing autologous or 
syngeneic stem cell transplantation, had a significantly 
higher risk (and increased frequency) of WHO grade 2 
or higher bleeding compared to adults (age ≥19 years). 

This difference was observed regardless of pre-transfusion 
platelet count and suggests that other variables account for 
the higher incidence of bleeding in children compared to 
adults, possibly due to differences in endothelial structure 
or treatment chemotherapy dose/intensity (75,78).

Platelet transfusion thresholds for patients undergoing 
invasive procedures (79) or surgery (80) have also been the 
focus of multiple studies, although conclusive triggers have 
not been established in patients of any age.  A retrospective 
review of 5,223 lumbar punctures performed on 958 children 

with acute lymphoblastic leukemia did not find increased 
rates of bleeding or other major adverse events in severely 
thrombocytopenic patients (742 LPs performed at platelet 
count of 21,000–50,000/µL, 170 at 11,000–20,000/µL, and 
29 at ≤10,000/µL) (81). Based on these findings, the authors 
did not recommend prophylactic platelet transfusion prior 
to LP for patients with counts >10,000/µL, a far lower 
“safe” threshold than the 50,000/µL recommended by 
AABB for adults. AABB (74) and ASCO (82) guidelines 
recommend a transfusion threshold of 20,000/µL for minor 
invasive procedures such as bone marrow aspiration/biopsy 
and central venous catheter (CVC) insertion (83). For 
major, non-CNS surgery in patients without bleeding or 
coagulopathy, ASCO provides a range of 40,000–50,000/µL 
while AABB recommends a minimum count of 50,000/µL.  
British practice guidelines (30,76) have proposed 75,000–
100,000/µL as targets for patients undergoing neuro-
or ophthalmic surgery. ECMO patients are also heavily 
transfused since they are systemically heparinized and often 
experience rapid consumption and activation of circulating 
platelets by the extracorporeal circuit. Thus, they may 
require maintenance of counts at 100,000/µL or higher to 
prevent bleeding complications (56,72).

Plasma 

Indications for plasma transfusion in children are similar 
to those described above for neonates. Although plasma 
transfusions are administered to nearly 3% of all pediatric 
inpatients in the United States (84) and 12–13% of all 
intensive care patients (85,86), multiple RCTs published 
since the 1970s have failed to demonstrate clear indications 
for plasma administration for either therapeutic or 
prophylactic purposes in adults and children (87). Expert 
consensus recommendations have specifically stated that 
prophylactic plasma transfusions should not be given solely 
for correction of mild to moderate coagulopathy without 
active bleeding or planned invasive procedures or surgery 
(30,76,88). Both adult (89) and pediatric (90) studies have 
found that over 65% of plasma transfusions in critically 
ill patients did not adhere to published guidelines, with 
approximately 34% of plasma orders being requested for 
non-bleeding patients without planned invasive procedures. 
These findings are highly concerning when considering 
transfusion-related risks and adverse events as evidenced by 
recent studies demonstrating increased organ dysfunction, 
nosocomial infections (91), hypercoagulability (92), and 
overall mortality associated with plasma transfusions in 
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critically ill children.
The studies referenced above also unveiled widely 

divergent INR thresholds used to guide transfusion 
decision-making (93,94). An international multicenter 
prospective study of critically ill pediatric patients examined 
incremental changes in coagulation parameters and 
found the differences between pre-transfusion and post-
transfusion INR (median 1.5 vs. 1.4) and aPTT (median 48 
vs. 41 sec) to be negligible regardless of dose except in cases 
of severe coagulopathy (INR >2.5 or aPTT >60 sec) (95).  
These observations are similar to those previously 
described in general populations (96,97) and confirm that 
traditional laboratory coagulation values are not sensitive 
biomarkers for evaluating response to plasma transfusion 
nor for predicting bleeding risks in children with mild 
coagulopathy (86). Hemorrhagic complications during 
invasive procedures, including pediatric liver biopsy (98) 
and central venous catheter placement (99), are rare in the 
setting of mild PT-INR abnormalities (range 1.5–2.0). A 
2005 meta-analysis reviewed the safety profile of various 
invasive interventions, including bronchoscopy, central 
vein cannulation, femoral angiography, liver biopsy, 
kidney biopsy, and other minor procedures (100). The 
majority did not appear to be associated with increased 
bleeding, although there was insufficient data for particular 
procedures (kidney biopsy, lumbar puncture, and para- 
and thoracentesis), and the studies were of variable quality 
overall with inconsistent characterization of the degree of 
coagulopathy.  

Cryoprecipitate

Cryoprecipitate  i s  pr imari ly  used for  f ibr inogen 
replenishment in current clinical practice, primarily for 
hypofibrinogenemia or dysfibrinogenemia complicated 
by  b leeding (e .g . ,  DIC)  or  prophylax i s  pr ior  to 
invasive procedures or surgery (55). Human-derived 
(pathogen reduced) fibrinogen concentrate is approved 
for treatment of bleeding episodes in patients with 
congenital fibrinogen deficiency (i.e., afibrinogenemia or  
hypofibrinogenemia) (101), but is increasingly being used as 
an alternative to cryoprecipitate for acquired deficiencies. 
Several RCTs have found fibrinogen concentrate to be 
equally effective in treating hypofibrinogenemia-related 
bleeding following cardiac surgery in infants (102), 
children (103), and adults (104). Massive transfusion 
protocols have variably incorporated cryoprecipitate or 
fibrinogen concentrate, particularly for resuscitation 

in cases of postpartum hemorrhage (105). Similar to 
plasma, transfusion thresholds for cryoprecipitate remain 
controversial, although recommended fibrinogen levels 
range from 100 (traditionally indicated for congenital 
hypofibrinogenemia) up to 150–200 mg/dL for acquired 
deficiency secondary to trauma or cardiovascular surgery 
(106,107).

Ensuring infectious disease safety

Through the  combinat ion  o f  the  donor  h i s tory 
questionnaire and improved infectious disease screening for 
HIV/AIDS, hepatitis B, hepatitis C and other pathogens, 
the blood supply has never been safer than it is now. 
However, donor testing does not cover all diseases and 
emerging pathogens continue to pose a risk.

Cytomegalovirus infection

The prevalence of CMV is 30% to 70% in blood donors, 
varies based on demographic differences within areas of 
the United States, and increases with age. This DNA virus 
remains latent within the leukocytes of immune persons 
and can be transmitted by transfusion of cellular blood 
components into seronegative recipients. Primary infection 
occurs in a seronegative recipient from a blood component 
from a donor who has either active or latent infection. 
There is wide variation in clinical sequelae from transfusion-
transmitted CMV (TT-CMV), ranging from asymptomatic 
serological conversion, to significant morbidity and 
mortality from CMV-related pneumonia, cytopenias, and 
hepatic dysfunction. Premature, seronegative neonates 
less than 1,250 grams, fetuses receiving intrauterine 
transfusions, severely immunocompromised individuals, 
and recipients of hematopoietic stem cell and solid-organ 
transplants are recipient groups at increased risk for post-
transfusion CMV-related morbidity and mortality (108). 

In one study, equivalent rates of post-transfusion 
CMV infection in allogeneic HSCT patients occurred 
with CMV-seronegative units and leukoreduced units 
(1.4% vs. 2.4%, respectively) (109). These reports support 
considering leukoreduced blood products as “CMV safe” 
and some experts have argued that leukocyte reduction 
alone is sufficient to prevent TT-CMV (110). However, 
no formal consensus on the debate of equivalency has been  
developed (111), leading some to advise against the 
elimination of “dual inventories” of CMV-seronegative and 
seropositive blood products. Nonetheless, variable strategies 
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for preventing TT-CMV currently exist depending on the 
number of high-risk patients treated at a given center, the 
regional donor demographics, and product availability. A 
prospective multicenter birth cohort study revealed that 
acquisition of CMV in this patient population was primarily 
through maternal breast milk (112). 

Pathogen reduction

Pathogen reduction (PR) is an all-encompassing term for 
a variety of methods (e.g., photochemical activation or 
solvent detergent treatment) that may be applied to blood 
following collection to confer broad protection against 
multiple infectious agents by countering proliferation and 
contamination (113). Many of these technologies target 
DNA or cell membranes and are effective across different 
classes of pathogens (e.g., viruses, bacteria, and parasites), 
offering the ability to interdict agents that are known to be 
transfusion-transmissible but also emerging pathogens that 
pose uncertain risks.

The appeal of pathogen reduction is that it is a pro-
active approach to blood safety that inactivates pathogens 
instead of only screening for their presence. Although 
developed to complement current testing, PR could 
ultimately prove to be an alternative to testing. If widely 
effective, PR could reduce the number of donor deferrals 
due to disease risk factors. PR has been implemented for 
plasma and platelets. Its impact is limited by the absence 
of a suitable method that can be applied to RBCs, which 
are the most frequently transfused blood products. PR 
may provide additional benefits such as TA-GVHD 
prevention and alloimmunization reduction (114,115), but 
it is also associated with increased transfusion needs (due to 
decreased platelet corrected count increments) and potential 
detrimental effect on hemostatic properties of platelets and 
plasma (116). 

Two different methodologies of photochemical activation 
have been more extensively studied. The only platform 
approved by the FDA at this time is the INTERCEPT® 
system (Cerus, Concord, CA, USA). This technique uses 
amotosalen, which can intercalate between DNA bases. 
In the presence of activation by UVA light, this molecule 
irreversibly cross-links with the DNA, thus preventing 
DNA transcription and cellular reproduction. After 
INTERCEPT® treatment, an adsorption step removes 
excess amotosalen; only a tiny quantity remains (117). 
The technology is effective against viruses, bacteria, and 
protozoans. However, breakthrough transmission has been 

reported with hepatitis A virus, hepatitis E virus, parvovirus 
B19, poliovirus, and certain spore-forming and/or fast-
growing bacteria (118,119). There have also been cases of 
severe septic reactions with Acetinobacter baumanii complex 
and other bacteria due to processing or environmental 
contamination after INTERCEPT® treatment (120,121).

The Mirasol® (TerumoBCT, Lakewood, CO, USA) 
system uses riboflavin as a photosensitizer compound with 
UVB light. Riboflavin readily traverses lipid membranes and 
then intercalates non-specifically with nucleic acids. Upon 
exposure to UVB light, intercalated riboflavin modified 
guanine residues promote the generation of oxygen radicals 
(122,123). Since riboflavin and its by-products are naturally 
occurring, no additional steps for removal following 
treatment are believed to be necessary. Mirasol® has shown 
efficacy against a wide variety of pathogens (113,123,124).

There is relative paucity of neonatal and pediatric safety 
data. One study evaluated INTERCEPT platelets in 2,441 
patients, including 46 neonates (<28 days of age) and 242 
children (<18 years of age). Similar rates of adverse events 
occurred in children compared to adults. No events were 
reported in the neonates (125). In another study, Mirasol 
platelets were transfused to 2,458 patients, including 
99 neonates (age range not specified) and 379 children  
(<15 years of age). Overall adverse event rate was similar in 
all patient groups, but neonates did have higher transfusion 
requirements when receiving PR platelets (126). 

Summary and future directions

Current intrauterine, neonatal and pediatric transfusion 
practices are informed by a combination of evidence-
based recommendations where they exist, expert consensus 
statements incorporating best practices, guidelines 
derived from adult populations, and historic precedents 
not supported by data. Practices can be highly variable 
between institutions. Cure and colleagues (127) recently 
identified several key areas requiring additional research, 
including ideal parameters for assessing the need for 
transfusion beyond cell counts as well as markers for 
assessing transfusion efficacy and long-term outcomes, 
methods of gathering and compiling epidemiologic data on 
neonatal transfusions, and blood management strategies for 
neonates. Studies in the last few years have provided more 
information about transfusion thresholds and the impact of 
growing pathogen-reduced product use (128). Nevertheless, 
the persistence of non-evidence-based approaches 
highlights the ongoing need for additional research targeted 
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toward these special populations.

Key points

 Indications for intrauterine transfusions include 
HDFN, NAIT and occasionally other immune or 
hematologic disorders.

 Current neonatal and pediatric transfusion practices are 
guided by the age and clinical status of the patient but 
remain highly variable across institutions due to lack of 
evidence-based studies for many blood components.

 Recent clinical trials have contributed toward 
understanding of neonatal and pediatric transfusion 
triggers and clinical outcomes, but ongoing and future 
studies are needed for further clarification of these 
parameters as well as identification of viable alternatives 
to blood products.

 Leukoreduction, donor selection criteria, and improved 
infectious disease screening have contributed to a very 
safe blood supply.

 Nevertheless, transfusions still carry infectious 
and non-infectious risks, and should therefore be 
administered carefully and judiciously. Rapid, large 
volume transfusions, in particular, can lead to metabolic 
derangements in smaller patients.

 Pathogen reduction is a proactive approach to blood 
safety and has shown a good safety profile.
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