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Introduction

The risk of viral transfusion transmitted infection (TTI) 
could be dramatically decreased by different means, such 
as testing and donor deferral in at-risk cases. Apart from 
contamination levels below the detection limits, one can 
generally assume that if the donor tests negative, the 
blood product will also be negative. Nonetheless, bacterial 

contamination remains a constant threat in transfusion 
medicine (1-10) because TTIs cannot be prevented by 
simply testing blood donors for bacteria. Contaminating 
bacteria mainly enter into blood bags during venipuncture. 
Generally speaking, due to their initial low numbers they 
may not be detectable at the time when blood is drawn for 
the cultivation from blood components, such as red blood 
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cells (RBCs) and platelets (PLT). By the time of transfusion, 
their numbers may have increased to levels capable of 
causing severe complications, including sepsis. Bacterial 
growth kinetics vary greatly with respect to strain, ambient 
temperature and type of blood component. Particularly 
when stored at room temperature, PLT preparations are 
at a very high risk of high-titer contamination. Bacterial 
growth curve simulations indicate that, from a low starting 
population of 10–100 colony-forming units (CFU) per unit, 
the maximum time between PLT product preparation and 
pathogen reduction technology (PRT) treatment, which 
must be observed in order to guarantee product safety 
and sterility, is 24 hours in the case of slowly growing 
bacteria and 12 hours for the majority of bacterial strains 
with an intermediate growth rate (Figure 1). However, if 
contaminated with fast-growing species (e.g., Escherichia 
coli or Staphylococcus aureus) that double in number every  
60 minutes, earlier pathogen reduction (PR) is crucial 
to ensure product sterility: from a low initial count of  
100 CFU/unit, fast-growing bacteria may increase to counts 
of 6.4×103 CFU per PLT unit within 6 hours, 4.1×105 CFU 
per PLT unit within 12 hours, and 1.7×109 CFU per unit 
within 24 hours (Figure 1). These simulations imply that 
PRT with a very high inactivation capacity of more than 
seven log10 reduction steps for the respective contaminating 
bacterial species may be able to achieve sufficient sterility 
if applied to the PLT within 12 hours, but would be 
overwhelmed by the bacterial load if used even slightly later. 

Consequently, the time point of PR is highly relevant to the 
bacterial safety of pathogen-reduced PLT. Therefore, the 
capacity of a PRT to inactivate bacteria in PLT concentrates 
strongly depends on the timing of treatment. 

Different measures to prevent bacterial contamination 
are available. Sophisticated pre-transfusion testing strategies 
to prevent bacterial contamination of PLT concentrates 
have recently been published (11-14). Cold storage, for 
example, dramatically decreases the growth of bacteria that 
usually contaminate PLT preparations, but reduces PLT 
recovery and survival (15-19). Consequently, cold-storage 
PLT concentrates may be more suitable for therapeutic 
PLT transfusions than for prophylactic transfusions 
(20,21). PRTs offer a universal approach to reducing 
bacterial contamination. The PRT based on the addition 
of amotosalen followed by ultraviolet A (UVA) irradiation 
(320–400 nm) is a photochemical technology that works via 
the irreversible modification of nucleic acids in pathogens 
and leukocytes: Upon irradiation amotosalen is crosslinked 
between nucleic acid base pairs (INTERCEPT, Cerus 
Corp, Concord, CA, USA) (22-25).

The PRT based on the addition of riboflavin and 
subsequent UVA/ultraviolet B (UVB) irradiation (265–
370 nm) is a photodynamic technology that works via the 
promotion of an irreversible modification of nucleic acids 
in pathogens and leukocytes in the presence of riboflavin 
(Mirasol, Terumo BCT, Lakewood, CO, USA) (25-28).  
Ultraviolet C (UVC)-based PRT (THERAFLEX UV-
Platelets, Maco Pharma, Mouvaux, France), on the 
other hand is a purely physical PRT that uses UVC light  
(254 nm) alone, without a photosensitizing agent, to 
directly and irreversibly disrupt the integrity of nucleic 
acids (29). All of these technologies aim to inhibit nucleic 
acid amplification and to reduce or eliminate the infectivity 
of blood products due to disease-causing bacteria, viruses 
and protozoa.

THERAFLEX UV-Platelets UVC-based PRT

Effects of UVC irradiation

The germicidal effect of UVC light is already utilized for 
surface sterilization. When used to inactivate pathogens 
in blood products, however, one must strike a balance 
between exerting the germicidal properties of UVC and 
maintaining the functional integrity of the blood products. 
THERAFLEX UV-Platelets works by exposing blood 
products to UVC at a wavelength of 254 nm—a level 
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Figure 1 Growth curve analysis of various bacteria seeded at 
10–100 CFU/unit (approx. 10−2–10−1 CFU/mL) and treated with 
pathogen reduction technology at different time points. Shown 
are the growth curves for slowly growing bacteria (green), bacteria 
with an intermediate growth rate (blue), and fast-growing bacteria 
(red), which can expand to 106 CFU/mL within 12 hours. CFU, 
colony-forming units.
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that is close to the optimum wavelength for peak DNA/
RNA absorption (260 nm) and the lowest possible protein 
absorption and damage (Figure 2). The latter property is 
crucial for conserving the delicate structure of PLT during 
UVC treatment (30,31).

UVC-induced chemical reactions in the nucleic acids 
of the contaminating pathogens result in the formation of 
cyclobutane-pyrimidine and pyrimidine-pyrimidone dimers, 
thus effectively blocking the elongation of nucleic acid 
transcripts (32,33). When cells are targeted, the number 
of alterations on bases may overwhelm the DNA repair 
capacity and lead to apoptosis and related programmed 
cell death processes (34,35). Because mature RBCs and 
mature PLT do not bear a nucleus that is required for 
cellular activity and function, disease-causing pathogens 
(e.g., bacteria, viruses and protozoa) in these blood products 
can be effectively inactivated while maintaining PLT and 
coagulation factor function (36,37). However, it is common 
to all available methods for PR of PLT that they cause or 
exert some effect on the integrity of PLT. In vitro studies 
have consistently shown increased metabolic activity and 
moderate activation of PLT after treatment with UVC 
and other PRT technologies (38-43). In addition, reduced 
recovery of PRT-treated PLT in transfused patients 
suggests an impact on PLT viability (44-52). Therefore, 
it is important for each PRT method to define the 
optimal conditions and protocols to find the right balance 
between effective pathogen inactivation and functional  

preservation (43). White blood cells (WBC), however, are 
susceptible to apoptosis, so leukocytes, which could cause 
graft-versus-host disease (GvHD) in vulnerable patients, are 
also inactivated by UVC (53-63).

PR procedure

THERAFLEX UV-Platelets is a PRT that is solely based 
on UVC light and does not utilize a photosensitizer, so that 
no additional steps for the removal of such substances are 
needed before transfusion of the treated blood components 
(64,65). In brief, whole blood-derived or apheresis PLT 
suspended in SSP+ Platelet Additive Solution (Maco 
Pharma, Mouvaux, France) are transferred to a UVC-
permeable bag and irradiated with UVC light using an 
irradiation device (MACOTRONIC UV, Maco Pharma, 
Mouvaux, France). The large irradiation bag results in a 
small filling volume, providing a PLT concentrate with 
a small layer thickness and a big surface during light 
exposure. UVC light is applied from both sides at a dose 
of 0.2 J/cm2 while simultaneously agitating the bag. Due 
to the relatively low penetration depth of UVC light, 
vigorous mixing of the PLT unit is required to expose every 
blood compartment to UVC light at the surface of the bag. 
UVC exposure time is less than one minute. After UVC 
treatment, the PLT are transferred into a storage container, 
ready for transfusion without any further processing. In its 
current version, the UVC-based PRT process uses a plasma 
concentration of 30–40% for effective pathogen inactivation 
and maintenance of product quality.

Bacterial inactivation capacity

The standard method of determining the inactivation 
capacity of PRTs for PLT concentrates and other blood 
products is by measuring the reduction in virus titers 
achieved by the system (66). However, bacterial growth 
poses a different challenge for inactivation studies. 
Appropriate bacteria spike protocols have been established 
in previous studies with other PRT systems (67-69). In 
contrast to viral particles, bacteria can rapidly multiply in 
blood units and accumulate to titers that may overwhelm 
the capacity of the PRT within a relatively short time span 
(70-72). Consequently, recent recommendations for the 
validation of PRTs include the conditions of intended use, 
aiming at achieving a safe and sterile blood product through 
timely pathogen inactivation (73). These recommendations 
propose that validation tests be conducted using pooled 
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Figure 2 Relationship between UVC wavelength, DNA/RNA 
absorption and protein damage modified after (29). Damage 
capacity of UVC light at a wavelength of 254 nm: UVC light 
induces peak DNA/RNA absorption at 260 nm and the lowest level 
of protein absorption at 250 nm—this is crucial for maintaining 
the functional integrity of PLT. UVC, ultraviolet C; PLT, platelets.



Annals of Blood, 2022Page 4 of 12

© Annals of Blood. All rights reserved. Ann Blood 2022;7:28 | https://dx.doi.org/10.21037/aob-21-44

PLT from at least three different donors to exclude donor-
related effects, keeping the initial dose of bacteria as low 
as possible (1–100 CFU/unit) to mimic real contamination 
scenarios, and to use sufficiently large samples (>8 mL) for 
sterility testing after PR treatment.

Studies for evaluation of the inactivation capacity of 
the UVC-based PRT (THERAFLEX UV-Platelets, Maco 
Pharma) were assessed while strictly adhering to the recent 
recommendations. These tests were performed using a 
wide variety of transfusion-relevant bacteria, including the 
recently published and enlarged WHO reference repository 
of PLT transfusion-relevant bacterial reference strains  
(74-76). Moreover, different strains of the species were 
tested to check for potential intra-strain differences in UVC 
susceptibility, and clinical isolates from contaminated PLT 
concentrates were also tested. The results revealed that 
UVC treatment effectively inactivated all bacterial strains in 
the investigated PLT concentrates (Table 1). In brief, PLT 
concentrates of a volume between 325 and 375 mL were 
inoculated with the aforementioned bacterial suspensions. 
The yielded bacterial titers were between 105 CFU/mL and 
107 CFU/mL. PLT concentrates were treated up to the full 
UVC light dose of 0.2 J/cm2. In parallel, “hold samples” 
that were inoculated with bacteria and left untreated did not 
show any bacteria inactivation by the blood product itself, 
excluding any kind of self-sterilizing effect (56).

Bacterial titers can develop very differently within 
a PLT concentrate, depending on the inherent growth 
characteristics of the bacterial species and its response 
to the blood component and the additive solution. Some 
strains are highly susceptible to this environment and show 
self-sterilizing behavior, whereas some sterilizing effects 
may also be attributed to donor-related characteristics 
(37,77). Other strains grow slowly and reach significant 
titers only at the end of their shelf life. The most dangerous 
strains are those that are nearly undetectable at the time 
of a preparation and then rapidly grow to numbers that 
overwhelm the inactivation capacity of a PRT (Figure 1).  
Thus, it had to be determined what interval between 
preparation and UVC illumination safely and effectively 
ensures the sterility of pathogen-reduced PLT concentrates 
over the entire storage period (56,65).

In brief, in these time-to-treatment experiments two 
PLT concentrates were pooled and then inoculated with 
the respective bacterial suspension using a target titer of  
100 CFU/unit. This concentrate was then split into a 
control and a test PLT concentrate. From the test PLT 
concentrate bacterial titers were determined after 6 or 

8 hours and the PLT concentrate was then subjected to 
UVC-irradiation according to the THERAFLEX-UV-
Platelets protocol. Sterility testing was performed during 
storage time, using a culture system (BacT/ALERT, 
bioMérieux, Marcy l'Etoile, France) (56).

The time-to-treatment experiments showed that 
UVC treatment consistently achieved PLT concentrate 
sterility for up to 7 days of storage when performed within  
6 hours after spiking. In order to identify the possible limits 
of this PRT, titers of fast-growing bacteria—Escherichia 
coli, Klebsiella pneumoniae, Staphylococcus epidermidis and 
Streptococcus pyogenes—were also determined in PLT 
concentrates UVC-treated 8 hours after preparation. This 
additional time before pathogen inactivation impaired the 
sterility of the PLT concentrate in single cases: 11 out of 12 
Escherichia coli and Streptococcus pyogenes samples were still 
sterile 7 days after PRT. The above data demonstrate that 
timely inactivation is the key to preventing the transmission 
of bacteria to PLT recipients (Table 2). 

Advantages and limitations

THERAFLEX UV-Platelets has an easy and quick 
procedure. Because it does not require any photosensitizers, 
it has a short hands-on time along with a short overall 
processing time. Since UVC treatment is performed after 
standard PLT collection and preparation, it can easily be 
integrated into the blood product supply chain without 
altering the manufacturing process significantly. According 
to the current specifications, the THERAFLEX UV-
Platelets technology must be applied to plasma-reduced 
PLT for efficient PR. 

When PLT are stored, bacteria may adhere to blood 
bag and tubing systems via fibrin caps or other organized 
biofilms (78-82). Penetration of photosensitizers used 
for PRT may then be impaired, making subsequent 
UV treatment ineffective, leading to break-through 
contamination. THERAFLEX UV-Platelets uses different 
bags in sequence, so the initial adherence of bacteria to 
the bag cannot impact the final preparation. The PLT are 
transferred from a first storage bag to an irradiation bag, 
and then to a final storage bag. Moreover, THERAFLEX 
UV-Platelets only uses UVC light for PR, making the 
accessibility of a biofilm to a photosensitizer irrelevant. 
The system uses relatively large irradiation bags, which are 
agitated rapidly during the irradiation process to ensure 
efficient mixing and complete penetration of UVC light. 
The bag system is designed so as to prevent niches or 
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Table 1 Inactivation capacity of THERAFLEX UV-Platelets for bacteria (N=3–6) (56)

Species Strain N Log10 reduction factor at full UVC dose (0.2 J/cm²)*

Enterobacter cloacae PEI-B-P-43 3 6

Escherichia coli PEI-B-P-19 6 7

Klebsiella pneumoniae PEI-B-P-08 6 6

Morganella morganii PEI-B-P-91 3 7

Proteus mirabilis PEI-B-P-55 3 7

Pseudomonas fluorescens PEI-B-P-77 3 7

ATCC 17569 3 ≥5

Serratia marcescens PEI-B-P-56 3 6

ATCC 43826 6 ≥5

Staphylococcus aureus PEI-B-P-63 3 6

ATCC 25923 3 5

Clinical isolate 3 4

Staphylococcus epidermidis PEI-B-P-06 6 4

Streptococcus bovis PEI-B-P-61 3 7

ATCC 33317 3 4

Streptococcus dysgalactiae PEI-B-P-71 3 4

ATCC 35666 3 4

Streptococcus pyogenes PEI-B-P-20 4 4

DSM 11728 6 4

DSM 25953 6 4

ATCC BAA-1064 6 5

Clinical isolate 6 5

Listeria monocytogenes ATCC 19115 6 5

Acinetobacter baumannii ATCC 17961 3 5

Streptococcus agalactiae ATCC 13813 3 ≥6

Streptococcus pneumoniae ATCC 33400 3 5

Bacillus cereus PEI-B-P-57 3 3

Bacillus thuringiensis PEI-B-P-07 3 4

Propionibacterium acnes ATCC 6919 6 5

*, in some cases, the mean log10 reduction factors could not be exactly determined after full-dose UVC treatment with THERAFLEX UV-
Platelets (and was thus expressed as “≥”) as the bacterial titers of some species reached the limit of detection of the plating assay at this 
UVC dose (56). UVC, ultraviolet C.

reservoirs where pathogens could collect and escape from 
UVC light exposure.

THERAFLEX UV-Platelets is so far the only system 
that provides a systematic evaluation of the timing of 

bacterial PR needed to ensure product sterility (Table 2). 
Data show that this system not only has a high capacity 
to effectively inactivate transfusion-relevant bacteria in 
PLT concentrates, but also ensures the sterility of PLT 
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Table 2 Time to treatment: sterility of UVC-treated platelet concentrates 6 or 8 hours after bacterial spiking (56)

Species Origin/strain

Sterility of UVC-treated PLT concentrates (N/N) depending on time to 
treatment after spiking 

6 hours 8 hours

Bacillus cereus† PEI-B-P-57 12/12 n.t.

Bacillus thuringiensis† PEI-B-P-07 12/12 n.t.

Escherichia coli PEI-B-P-19 12/12 11/12

Klebsiella pneumoniae PEI-B-P-19 12/12 12/12

Enterobacter cloacae PEI-B-P-43 12/12 n.t.

Morganella morganii PEI-B-P-91 12/12 n.t.

Proteus mirabilis PEI-B-P-55 12/12 n.t.

Pseudomonas fluorescens PEI-B-P-77 12/12 n.t.

Serratia marcescens PEI-B-P-56 12/12 n.t.

Staphylococcus aureus PEI-B-P-63 12/12 n.t.

Staphylococcus epidermidis PEI-B-P-06 12/12 12/12

Streptococcus bovis PEI-B-P-61 12/12 n.t.

Streptococcus pyogenes PEI-B-P-20 12/12 11/12

Streptococcus dysgalactiae PEI-B-P-71 12/12 n.t.

These experiments were done with 12 replicates (two series of six) for each bacterial strain. †, vegetative forms only. n.t., not tested; UVC, 
ultraviolet C; PLT, platelet.

concentrates contaminated with less PI-sensitive bacteria 
when applied early after PLT preparation (56).

Leukocyte and parasite inactivation experiments have 
shown that UVC light effectively damages ribonucleic 
acid inside blood cells (36,59). The high capacity of UVC 
to inactivate leukocytes and intracellular parasites like 
Plasmodium falciparum suggests that the THERAFLEX 
UV-Platelets system may also be effective against 
intracellular bacteria and viruses, although this remains to 
be proved in scientific experiments.

After implementation of the INTERCEPT PR method 
for PLT concentrates in routine use in the US, isolated 
cases of sepsis after transfusion of pathogen-reduced PLT 
concentrates have been reported over the last years, and 
some even had a fatal outcome (83-85). While it must 
be underscored that hemovigilance data do not provide 
evidence of systemic flaws, the investigators demonstrated 
that the patients in question did contract the bacteria from 
the PLT concentrates, and it is striking that the bacteria 
involved in the cases with a fatal outcome (Acinetobacter 
baumanii complex, Leclercia adecarboxylata and Staphylococcus 
saphrophyticus) were effectively inactivated by seven log10 

steps in inactivation experiments. In view of the fact that 
Acinetobacter baumanii and Staphylococcus saphrophyticus are 
environmental strains rather than part of the usual skin 
flora, contamination after amotosalen/UV light inactivation 
seemed likely. Later analysis of the bags revealed invisible 
leaks that could only be detected by air pressure tests. 
Abrasion-related damage to the bags during transport or 
agitation was determined to be the most likely cause of the 
undetected leaks. The same bacteria, Acinetobacter baumanii 
and Staphylococcus saphrophyticus, were also implicated in 
three previous cases of sepsis after transfusion of pathogen-
reduced PLT. Since PR was performed after 16 hours 
in these cases, high bacterial contamination with titers 
above the inactivation capacity of the PR system could be 
discussed as a cause. On the other hand, the amotosalen/
UV-based system has a complex bag system consisting of 
one bag for the photosensitizer amotosalen, one bag for 
illumination, one bag for the removal of amotosalen and 
photoproducts, and one final storage bag for the PLT 
concentrate, making this system vulnerable to handling, 
transportation and storage-related damage. The UVC-
based PRT system requires only the PLT concentrate to 
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be UVC-treated, a big irradiation bag and the final storage 
bag. The irradiation process itself takes less than one 
minute. Afterwards, the UVC-treated PLT are transferred 
into the storage bag. The UVC-based PRT does neither 
require addition nor removal of photoactive substances. 
While post-PRT damage can occur on any PLT bags of any 
PRT system, it seems plausible that the THERAFLEX UV-
Platelets system’s simple procedure may be less susceptible 
to material damage and production errors that could cause 
undetectable leakage.

All PRTs for blood components are limited in their 
efficacy to inactivate spores. Previous studies have shown 
that UVC inactivates vegetative bacteria much better than 
spores (64,86,87). Thus, PLT concentrates contaminated by 
spore-forming bacteria (e.g., Bacillus spp.) may contain viable 
spores after PR. Surviving spores in PLT concentrates could 
then develop into vegetative forms and grow to clinically 
relevant numbers during storage (88). However, the 
relevance and levels of spores in bacterially contaminated 
PLT concentrates are largely unknown. Storage of PLT 
products at room temperature provides good growth 
conditions for bacteria, but may not favor the production of 
high numbers of spores. More research on the sporulation 
of bacteria in PLT concentrates is required to better address 
potential safety issues related to the insufficient inactivation 
of spores by a PRT.

As already emphasized above, high titers of bacteria can 
overwhelm the inactivation capacity of the THERAFLEX 
UV-Platelets system at the time of treatment. This problem 
is a significant challenge to all PRTs that can only be 
adequately resolved by treating PLT concentrates very early 
after preparation.

The preparation of pooled PLT concentrates from 
whole blood donations usually takes more time from blood 
collection to PR than the preparation of apheresis PLT 
concentrates. Therefore, bacteria infiltrating the collection 
bag during whole blood donation may have more time to 
adjust to the additive solution and environment within 
the blood bag and multiply than bacteria contaminating 
apheresis PLT concentrates. However, current data suggests 
that the initial bacterial burden of pooled PLT concentrates 
at the time of preparation is comparable to that of apheresis 
PLT concentrates after donation. Previous studies have 
shown that bacteria are significantly eliminated by the 
preparation procedure for random donor PLT concentrates 
(77,89-91). Therefore, it might be reasonable to define 
the maximum allowable time between PLT collection and 
PR treatment in terms of the time of preparation of the 

respective pooled or apheresis PLT concentrate. Time-to-
treatment experiments using blood banking conditions and 
bacterial contamination levels that mimic routine use have 
shown that a maximal interval of 6 hours between PLT 
preparation and UVC treatment is sufficient to guaranty 
sterility for both PLT product types. It would, of course, 
be desirable to have more experimental data on the growth 
kinetics and location of bacteria during the manufacturing 
process of whole blood-derived pool PLT concentrates 
and on the inactivation capacities of the available PRTs for 
contaminated pooled PLT concentrates under different 
PLT concentrate production, bacterial contamination 
and treatment timing conditions. However, controlling 
the experimental settings of such studies is very complex 
because additional confounding factors, such as donor-
specific interactions, elimination of bacteria by WBCs and 
the choice of additive solution, need to be considered. 

Perspectives

The investigated UVC light-based PRT effectively 
inactivates viruses, bacteria, parasites and alloreactive T-cells 
in PLT concentrates while maintaining PLT function 
(54-58,60,63,92-95). A phase I study of the safety and 
tolerability of autologous UVC-irradiated PLT concentrates 
in healthy volunteers did not reveal any adverse reactions 
or immunization against treated PLT concentrates, among 
other clinical parameters (96). Recently, the CAPTURE 
study (Clinical Assessment of Platelets Treated with 
UVC in Relation to Established Preparations), a phase 
III randomized, double-blind, parallel controlled non-
inferiority trial comparing pathogen-reduced pooled and 
apheresis PLT with conventional pooled and apheresis 
PLT was completed (97). The application for marketing 
authorization of the THERAFLEX UV-Platelets system is 
currently under evaluation by the responsible authority in 
Germany.

The THERAFLEX technology was originally developed 
for PLT but is also suitable for plasma, RBCs and whole 
blood. Proof of principle of UVC treatment for the 
inactivation of pathogens in plasma units and RBCs has 
been demonstrated (98,99). PRTs for the treatment of 
whole blood would be a major step towards increasing the 
bacterial safety of blood components. Whole blood could be 
pathogen-reduced early in the manufacturing process, thus 
significantly reducing the time for contaminating bacterial 
growth. Situations in which the bacterial load could exceed 
the inactivation capacity of the PRT would then be less 
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likely to occur. Moreover, such technology would have 
significant practical and economic advantages because the 
treatment of a single unit of whole blood could yield up 
to three different pathogen-reduced blood components: 
plasma, PLT and RBCs.

Bacterial inactivation capacity research conducted in 
the course of new PRT systems development or existing 
systems modification should include other tests in addition 
to the classical experiments for the determination of log10 
reduction capacity. To be meaningful, the study design 
must also consider the clinical setting. In accordance with 
recommendations of the Transfusion Transmitted Infectious 
Disease Bacteria Working Party of the ISBT (TTID-B), 
focused research should be conducted under conditions 
which simulate routine clinical use while the sterility 
of the investigated blood products is the only clinically 
relevant outcome. Key elements of this approach include 
the use of transfusion-relevant bacteria (ideally, WHO 
International Reference Repository of Platelet Transfusion-
Relevant Bacterial Reference Strains), different sources of 
blood products to balance the influence of donor-specific 
parameters, and sensitive tests for the detection of residual 
bacteria (73,100,101).
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