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Introduction

There are many maternal adaptations and physiologic 
changes that occur during pregnancy. Maternal plasma 
volume increases to support the blood flow and blood 
volume necessary to sustain the placenta and fetus. 
Additional red cell mass is required to provide adequate 
maternal and fetal oxygenation. Abnormally low plasma 
volume expansion is associated with poor pregnancy 
outcomes. Hematological abnormalities are frequent in 
pregnancy and must be addressed to optimize maternal 

and fetal health. Maternal iron deficiency anemia is 
prevalent, and treatment is recommended to reduce the 
risk of postpartum transfusion. Thrombocytopenia is a 
common finding in pregnancy. While pregnancy-associated 
thrombocytopenia is often benign, serious conditions such 
as thrombotic microangiopathies (TMAs) and immune-
mediated platelet destruction can occur and are associated 
with adverse outcomes. A critical review of a patient’s 
past medical history and careful assessment of the onset 
of clinical and laboratory abnormalities are necessary to 
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establish a diagnosis and provide adequate treatment of 
hematological conditions of pregnancy. Physiologic changes 
of pregnancy pose unique challenges for women with 
hematologic disorders such as sickle cell disease (SCD), 
von Willebrand disease (VWD), and inherited bleeding 
disorders. Caring for women with hemoglobinopathies 
and bleeding disorders during pregnancy requires close 
collaboration between high-risk obstetric providers, 
hematologists, and transfusion medicine specialists.

Fetomaternal hemorrhage (FMH) can lead to maternal 
alloimmunization to paternally-derived fetal red cell 
antigens. Maternal red cell alloimmunization can affect both 
the sensitizing pregnancy as well as subsequent pregnancies. 
While the development of Rh immune globulin (RhIG) 
has reduced the rate of hemolytic disease of the newborn 
secondary to RhD alloimmunization in the middle- and 
high-income countries, hemolytic disease of the fetus and 
newborn (HDFN)  due to alloimmunization to other red 
cell antigens such as c, E, and K also carries the risk of 
fetal anemia and hydrops fetalis. The blood bank plays 
a pivotal role in testing and guiding the management of 
pregnancies affected by maternal alloimmunization. Access 
to a safe blood supply is one of the essential components 
of obstetric care. Obstetric hemorrhage (OH) remains 
one of the leading causes of maternal morbidity and 
mortality globally. Comprehensive obstetric care should 
include early identification of women with risk factors for 
OH, usage of massive transfusion protocols (MTPs), and 
access to adjunct agents such as antifibrinolytics to prevent 
maternal deaths due to hemorrhage. This review explores 
the unique hematologic conditions, both physiologic and 
pathophysiologic, that occur during pregnancy and the 
postpartum period, summarizes management of maternal 
red cell alloimmunization and OH, and highlights areas 
related to transfusion in pregnancy and postpartum that 
require further investigation.

Physiologic changes in maternal blood 
parameters during pregnancy

Plasma volume expansion in pregnancy

Total blood volume (TBV) increases significantly 
throughout pregnancy. Expansion of the maternal plasma 
compartment drives the TBV increase during pregnancy. 
Plasma volume changes are detectable by weeks 6–7 of 
the first trimester (1). A recently published meta-analysis 
reported that the mean increase in plasma volume at the 

end of the first trimester is 6% (2). By the end of the third 
trimester, the average maternal plasma volume has increased 
by approximately 45–50% compared to pre-pregnancy 
baselines, equating to 1–2 L of additional intravascular fluid 
(2,3). Plasma volume shows the most rapid rate of expansion 
in the second trimester. While most studies support that 
plasma volume peaks in the third trimester, some suggest 
that maximal plasma volume is achieved in the second 
trimester (4,5). Women with twin and multiple gestation 
pregnancies have a proportional increase in the degree of 
plasma volume expansion (6). 

Renal sodium retention and activation of the renin-
angiotensin-aldosterone system primarily regulate plasma 
volume changes during pregnancy (7). Plasma volume 
increases correlate to intrauterine fetal growth and neonatal 
birthweight in healthy pregnancies (8,9). Low plasma 
volume and compromised blood volume expansion are 
associated with intrauterine growth restriction, maternal 
hypertension, and preeclampsia (PEC), as well as adverse 
pregnancy outcomes, including preterm delivery and 
recurrent pregnancy loss (10-13). Additional investigation is 
required to elucidate the underpinnings of the relationship 
between low plasma volume and these pathologic conditions 
of pregnancy.

As Aguree and Gernand explore (2), most studies 
investigating plasma volume changes in normal pregnancy 
were performed between 1934 and the 1980s. The majority 
of the study participants were of white European descent 
with an average maternal age in the 20s (2,3,14). Limited 
studies investigating how variables such as body mass index, 
maternal age, and parity affect plasma volume expansion 
during pregnancy are available. Further studies with diverse 
patient populations are necessary to comprehensively 
understand blood volume changes in pregnancy and 
determine whether the standard plasma volume expansion 
estimation of 50% applies to all women. Additionally, given 
the growing rate of maternal obesity and trends toward 
older maternal age (15,16), research developing new plasma 
volume reference ranges during pregnancy are required to 
define and distinguish physiologic versus pathophysiologic 
blood volume changes. 

Red blood cell changes and anemia of pregnancy

Red blood cell production increases during pregnancy, 
with an average red cell mass reaching 20–25% above pre-
pregnancy values by the third trimester (17,18). As the 
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rate of plasma volume expansion outpaces the increase in 
red cell mass, physiologic anemia ensues from secondary 
hemodilution. The British Society for Haematology and 
Centers for Disease Control defines anemia of pregnancy 
as a hemoglobin concentration <11.0 g/dL in the first 
trimester and <10.5 g/dL in the second and third trimesters 
(19,20). The World Health Organization (WHO) outlines 
a uniform hemoglobin cutoff of 11.0 g/dL (21). Maternal 
anemia is common, affecting up to 50% of women in low 
and middle-income countries and between 25–50% of 
women in higher-income areas (22,23). The differential 
diagnosis for anemia in pregnancy is broad and includes 
nutritional deficiencies such as iron, folate, and vitamin B12, 
hemoglobinopathies, helminthic and malarial infections, 
hemolysis, and inflammatory diseases. The prevalence of 
different causes of anemia varies by region; however, iron 
deficiency anemia is the most common cause of maternal 
anemia worldwide (19). 

To have adequate iron stores to support the enhanced 
erythropoiesis of pregnancy, 450–500 mg of iron is 
necessary. The developing fetus and placenta require an 
additional 350 mg of iron, and when blood losses associated 
with delivery are taken into account, a total of 1 gram of 
iron is needed to support a pregnancy (24,25). Many women 
have limited iron stores or are overtly iron deficient before 
pregnancy, leading to a reduced capacity to meet the iron 
requirements of pregnancy (26). Iron deficiency anemia 
is associated with adverse maternal and fetal outcomes. 
Women with iron deficiency report higher rates of fatigue 
and are at greater risk of postpartum depression (27).  
Additionally, iron deficiency anemia during pregnancy may 
increase the risk of postpartum hemorrhage (PPH) (28).  
Maternal anemia is associated with higher rates of 
intrauterine growth restriction, preterm birth, low APGAR 
scores, and increased perinatal mortality (23,29,30). Studies 
suggest that neonates born to women with iron deficiency 
anemia have neurocognitive deficits that may last into 
childhood, however larger longitudinal studies are required 
to confirm these findings (31,32).

Clinical guidelines recommend screening maternal 
hemoglobin levels at the initial prenatal visit and  
28 weeks (19). Women experiencing symptoms of anemia 
or with low hemoglobin levels and red cell parameters 
suggestive of iron deficiency should have ferritin 
measurements performed. Ferritin levels <30 ng/mL 
are often used as the threshold to define iron deficiency; 
however, there are limited data to guide whether this cutoff 

is accurate in pregnancy (25). Elevated serum ferritin levels 
do not exclude iron deficiency, as ferritin is an acute-phase 
reactant that becomes elevated with inflammation and 
infection. Recent studies suggest that low serum hepcidin 
levels are a sensitive and specific marker for iron deficiency 
anemia in pregnancy and are more accurate than ferritin 
in the setting of systemic inflammation (33,34). Hepcidin 
assays are not yet widely clinically available, and additional 
research is needed to delineate hepcidin reference ranges in 
pregnancy.

Oral iron is the recommended first-line therapy for iron 
deficiency anemia in pregnancy. Hemoglobin should be 
measured 2–3 weeks after initiating oral iron replacement, 
and hemoglobin should increase by 1–2 g/dL after several 
weeks of oral iron (19,20). Suboptimal hemoglobin 
improvement could suggest poor oral iron absorption or an 
alternative etiology of the patient’s anemia, and additional 
investigation should be performed. Oral iron replacement 
should be continued until the patient’s hemoglobin is 
in the normal range for 3 months and through 6 weeks  
postpartum (19). For patients with poor oral iron tolerance, 
reduced enteral iron absorption, or severe anemia in the 
second and third trimesters, the provision of IV iron therapy 
is more suitable. IV iron treatment is associated with a more 
rapid correction of hemoglobin levels and has fewer side 
effects compared to oral iron supplementation (35,36). It 
is important to note, however, that while both oral and IV 
iron replacement lead to improvements in maternal red cell 
parameters and ferritin levels during pregnancy, limited 
data show that this corresponds to benefits in maternal or 
neonatal outcomes. A recent systematic review by Abraha 
and colleagues (37) determined that iron supplementation 
reduced maternal anemia but did not affect rates of preterm 
delivery, low birthweight infants, and infant mortality. 
As hemoglobin correction during pregnancy reduces the 
risks of postpartum anemia and the need for peripartum 
transfusion (38), the benefits of antenatal iron therapy 
for patients with iron deficiency anemia are currently 
maintained.

Thrombocytopenia in pregnancy

After anemia, thrombocytopenia, defined as a platelet count 
<150×109/L, is the second most common hematological 
abnormality in pregnancy. It has a prevalence between 6.6% 
and 11.6% at the time of delivery (39,40). The International 
Working Group (IWG) defines thrombocytopenia as a 
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platelet count <100×109/L in pregnancy. Only 1% of the 
pregnant population meets the IWG laboratory criteria (41).  
Normal platelet counts in pregnant women range from 
165×109/L–415×109/L (42). Platelet counts gradually 
decrease throughout pregnancy, with a platelet count nadir 
in the third trimester. There are several physiologic and 
pathologic causes of thrombocytopenia during pregnancy. 
When evaluating the cause of thrombocytopenia in a 
pregnant patient, it is essential to determine the onset 
of the laboratory abnormality and ascertain whether the 
underlying mechanism is secondary to increased platelet 
destruction or decreased platelet production.

Gestational thrombocytopenia (GT), also known as 
incidental thrombocytopenia of pregnancy, is defined as 
a low platelet count during the second or third trimester 
of pregnancy. No recent history of pre-pregnancy 
thrombocytopenia should be present. In GT, the platelet 
count usually ranges between 130×109/L–150×109/L; 
rarely, patients with GT may present with platelet counts 
below 75×109/L (41,43). Approximately 70% to 80% of 
pregnancy-associated thrombocytopenia is secondary to 
GT (41). A recent case-control study of >3,500 pregnancies 
found that GT was present in 12% of pregnancies (44). In 
GT, the mean platelet count was 134.5×109/L as compared 
to 208×109/L in control pregnancies. The pathogenesis 
of GT is unknown but likely lies on the continuum of 
hemolysis, elevated liver enzymes, low platelets (HELLP) 
syndrome, and acute fatty liver of pregnancy (AFLP) (43).  
Diagnosis of GT is based on clinical and laboratory 
parameters, as there are currently no confirmatory tests or 
diagnostic biomarkers for GT. In GT, thrombocytopenia 
spontaneously resolves after delivery, and, as such, no 
medical management is typically required for these 
patients. Importantly, GT is not associated with neonatal 
thrombocytopenia.

Immune thrombocytopenia (ITP) is the most common 
cause of platelet counts below 50×109/L during pregnancy 
(41,43). Approximately 3% of pregnancy-associated 
thrombocytopenia is caused by ITP (41,43). No diagnostic 
testing is available to differentiate ITP from other causes of 
thrombocytopenia in pregnancy such as GT; however, the 
majority of women with ITP in pregnancy have a history of 
previously diagnosed ITP (45). Maternal ITP can lead to 
neonatal thrombocytopenia, and neonatal platelet counts 
should be monitored after delivery (45). 

Other uncommon causes of thrombocytopenia during 
pregnancy include TMAs such as PEC, HELLP syndrome, 

AFLP, thrombotic thrombocytopenic purpura (TTP), and 
atypical hemolytic uremic syndrome (aHUS) (41,43). PEC/
HELLP syndrome is the most common cause of TMA-
associated thrombocytopenia in pregnancy. In PEC/HELLP, 
new-onset hypertension (systolic blood pressure ≥160 mmHg 
or diastolic blood pressure ≥100 mmHg) after 20 weeks 
is present in addition to features such thrombocytopenia, 
impaired liver function or injury, new-onset renal insufficiency, 
pulmonary edema, and cerebral or visual disturbances (43). 
Delivery is the treatment of choice for PEC/HELLP, and 
serial monitoring of platelet counts can help guide the 
timing of delivery in a pregnancy affected by PEC/HELLP. 
If clinical and laboratory parameter improvement does not 
occur within 72 hours post-delivery, other TMAs should be 
considered. AFLP is another pregnancy-specific TMA that 
often occurs in a multiple gestation pregnancy. Abdominal 
pain, nausea, vomiting, and reduced plasma antithrombin III 
levels are common clinical symptoms and laboratory findings 
associated with AFLP. AFLP is managed by supportive care, 
including fresh frozen plasma (FFP) and red cell transfusions 
as indicated. Similar to PEC/HELLP syndrome, delivery is 
the treatment of choice in AFLP.

TTP and aHUS are TMAs that are not specific to 
pregnancy; however, pregnancy can trigger the development 
of both TTP and aHUS. ADAMTS13 is the test of choice 
to differentiate between TTP and aHUS. An ADAMTS13 
activity of <10% is diagnostic for TTP. Patients with aHUS 
typically have elevated serum creatinine (>1.7 mg/dL),  
moderately reduced platelet counts (~45×109/L), and 
ADAMTS13 activity levels >10% (41,43). Therapeutic 
plasma exchange is the treatment of choice in patients with 
TTP, while complement inhibitor therapy is the primary 
treatment for aHUS.

Platelets can be prophylactically transfused when a 
patient’s platelet count is below 30×109/L or when bleeding 
is anticipated during procedures or delivery (43). Judicious 
platelet transfusions can be provided to patients with TTP 
or aHUS if clinically indicated; however, there has been 
historic concern that platelet transfusions could increase the 
risk of thrombosis in patients with TTP (46). For neuraxial 
anesthesia, platelet counts above 70×109/L–80×109/L  
are considered safe and are associated with a very low 
risk of complications such as epidural hematoma (42). In 
unstable pregnant patients, weekly platelet counts should 
be performed starting at 32–34 weeks of gestation (43). In 
high-risk patients with thrombocytopenia and bleeding, 
antifibrinolytics are important adjunctive therapies (43).
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Maternal red cell alloimmunization and HDFN

Pathophysiology of HDFN

HDFN arises when maternal antibodies recognize 
paternally-derived red cell antigens on the surface of fetal 
and neonatal erythroid cells. HDFN represents a spectrum 
of disease ranging from a positive direct antiglobulin 
test at birth in an asymptomatic neonate with otherwise 
normal blood counts to severe fetal anemia and death. 
Transplacental transfer of maternal IgG antibodies begins 
within the first several weeks of life (47). Circulating 
maternal red cell antibodies that cross the placenta and bind 
fetal erythroid precursors and red cells lead to immune-
mediated clearance and destruction. Subsequent fetal 
anemia drives increased red blood cell production through 
extramedullary hematopoiesis in the spleen and liver. 
Severe anemia leads to hypoxia and multiorgan failure, 
including high output heart failure. Progressive liver 
failure results in reduced albumin levels and decreased 
oncotic pressure, which, in conjunction with cardiovascular 
compromise, contributes to the widespread edema and 
ascites characteristic of hydrops fetalis. The mortality rate 
of hydrops fetalis remains high (48). 

Red blood cell destruction leads to increased levels of 
bilirubin. In utero, excess bilirubin crosses the placenta 
and is eliminated by the maternal liver. After birth, the 
neonate’s liver becomes responsible for bilirubin clearance. 
The hepatic system for bilirubin elimination is immature 
at birth due to reduced amounts and activity of the enzyme 
uridine diphosphate glucuronosyltransferase (49). As such, 
neonates are at high risk of hyperbilirubinemia, particularly 
when hemolysis causes supraphysiologic levels of bilirubin. 
This risk is exacerbated in premature neonates (50). Severe 
hyperbilirubinemia can lead to encephalopathy known as 
kernicterus, which can cause permanent neurologic damage 
characterized by sensorineural hearing loss, cerebral palsy, 
and gaze paralysis if untreated (51).

Following the implementation of routine RhIG 
prophylaxis in RhD negative women in middle and high-
income countries, ABO HDFN has become the most 
common cause of HDFN (52). While ABO incompatibility 
is present in 20–25% of pregnancies, ABO HDFN has an 
incidence of 1 in 150 births (53,54). In contrast to HDFN 
secondary to RhD incompatibility, ABO HDFN is usually 
mild, tends to affect the neonate rather than the fetus, and 
is typified by early jaundice. Naturally occurring anti-A and 
anti-B isohemagglutinins are IgM antibodies that are unable 
to cross the placenta. Group O persons can make IgG 

anti-A and anti-B, which form the pathophysiologic basis 
of ABO HDFN. IgG anti-A and anti-B are less common 
in persons with group A, B, or AB blood groups. Fetal and 
neonatal red cells express one-third the amount of A and B 
antigens compared to adult red cells (55,56). Additionally, 
A and B substances are found in the serum and on many 
other tissues throughout the body (55,57). Tissue and 
serum A and B substances compete with A and B antigens 
on the red cell surface for maternal antibody binding, 
thereby providing protection against antibody-mediated 
red cell destruction. These protective mechanisms can be 
overwhelmed in neonates with increased red cell A and B 
antigen expression or whose mothers have high anti-A or 
anti-B titers (58). 

Maternal alloantibodies to more than 50 different 
non-ABO blood group antigens have been identified as 
causative in HDFN (59,60). Before the development of 
RhIG and the advent of intrauterine transfusion (IUT), 
HDFN affected nearly 1% of all pregnancies and carried 
a 50% mortality rate (61). RhD continues to be a primary 
cause of HDFN, particularly in regions in which universal 
RhIG prophylaxis is not available (62,63). Other Rh system 
antigens, such as c and E, are commonly implicated in non-
ABO HDFN (64). As Kell system antigens are expressed on 
early erythroid precursors, anti-K1 mediated HDFN can 
include erythropoietic suppression and reticulocytopenia. 
Alloantibodies to antigens in the Duffy, Kidd, MNS, and 
P blood group systems have all been reported in moderate 
to severe cases of HDFN (60). The IgG subtypes IgG1 
and IgG3 are associated with more severe HDFN (65,66). 
There is also growing evidence that the type and extent of 
IgG glycosylation affects red cell antibody pathogenicity. 
Kapur and colleagues (67) demonstrated that low anti-D 
fucosylation correlated with increased red cell phagocytosis 
and lower fetal  hemoglobin levels .  Interest ingly, 
glycosylation patterns vary based on the antigen specificity 
of the antibody (68), and additional investigation is required 
to evaluate the effects of glycosylation patterns on non-RhD 
HDFN. Neither IgG subtyping nor glycosylation pattern 
assessments are in routine clinical use.

Maternal alloimmunization

Sensitization to red cell antigens occurs through transfusion, 
pregnancy, and transplant. Small volume, spontaneous 
FMH  is common in pregnancy, and the rate of FMH 
increases with gestational age. Nearly half of women have 
detectable fetal red cells in the maternal circulation by the 
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third trimester (64). Risk factors for FMH include invasive 
procedures (amniocentesis, chorionic villus sampling), 
external cephalic version, placental abnormalities, abdominal 
trauma, abortion, fetal death, and manual removal of 
the placenta (69). A recent multinational retrospective 
study aimed at assessing the impact of extended red cell 
antigen matching on the formation of alloantibodies 
found that the causative antibodies in 83% of women 
with a history of severe HDFN were formed secondary 
to previous pregnancy rather than transfusion (70).  
It follows that increasing parity is a risk factor for maternal 
alloimmunization and HDFN (71).

Levine was the first to observe that ABO incompatibility 
between mother and fetus reduced the rate of RhD 
alloimmunization in RhD negative mothers (72). The 
mechanism underlying the protective effect of ABO 
incompatibility is multifactorial and partly mediated by the 
enhanced clearance of circulating fetal red cells by maternal 
isohemagglutinins (73). Recently, Zwiers and colleagues 
confirmed that ABO incompatibility also protects against 
sensitization to non-Rh red cell antigens (74). Interestingly, 
the authors found that RhIG administration also correlated 
to reduced alloimmunization rates to non-Rh antigens, 
suggesting that RhIG may have an immunosuppressive 
effect beyond RhD. Additional maternal risk factors for red 
cell alloimmunization include previous transfusion, history 
of major surgery, including cesarean section, hematologic 
disease, and previous pregnancy with a male child (75).

The prevalence of red cell alloimmunization in pregnant 
women and women of childbearing age varies significantly 
depending upon the study period, geographic region, and 
availability of RhIG prophylaxis. Recent studies of pregnant 
women in Israel, England, and India showed red cell 
alloimmunization rates of 1.0%, 0.4%, 2.27%, respectively 
(76-78). The risk of red cell alloimmunization differs based 
on the diversity of red cell antigens within a population. 
For example, as the prevalence of the RhD antigen in 
populations of Asian ancestry is >99%, the risk of RhD 
alloimmunization is low (60). In contrast, approximately 
15% of persons of white European descent are RhD 
negative, and there is a comparatively higher risk of RhD 
incompatible pregnancies. 

The American College of Obstetrics and Gynecology 
(ACOG) recommends all women have ABO and RhD typing 
and an antibody screen to detect IgG antibodies at the first 
prenatal visit (79). AABB and ACOG guidelines submit 
that the antibody screen should be repeated at 28 weeks  
in RhD negative women before RhIG administration (64). 

Several European guidelines recommend repeat antibody 
testing at 28 weeks in all women regardless of RhD status 
(71,80). First-trimester screening alone may miss late 
alloimmunization. However, whether additional screening 
reduces adverse maternofetal outcomes requires further 
investigation. After obtaining a positive maternal antibody 
screen, it is necessary to determine whether an identified 
antibody is clinically significant. IgM antibodies that cannot 
cross the placenta, such as anti-N, or antibodies recognizing 
antigens that are poorly developed on fetal red cells, such as 
I and Lewis system antigens, pose little risk of HDFN.

Management of alloimmunization in pregnancy

Once a clinically significant maternal red cell alloantibody 
is identified, fetal risk for HDFN should be assessed. If 
biologic paternity is assured, a paternal specimen should 
be obtained for red cell antigen assessment. For non-
RhD antigens, routine red cell phenotyping methods can 
be used to determine whether the father is homozygous 
or heterozygous for a red cell antigen and, consequently, 
if the fetus has a 100% or 50% probability, respectively, 
of carrying an implicated antigen. If maternal anti-D is 
present and paternal red cells are phenotypically RhD 
positive, genetic testing for paternal RHD zygosity is 
recommended to establish the fetus’s likelihood of carrying 
the RhD antigen. If paternity cannot be confirmed or if the 
father is heterozygous for the implicated red cell antigen, 
fetal DNA can be assessed. Fetal DNA is acquired via 
amniocentesis or noninvasively using cell-free fetal DNA 
(cffDNA) techniques. Amniocentesis is routinely available 
but carries a risk of adverse effects such as pregnancy loss 
and hemolysis (81). Circulating cffDNA is detectable by 
the 5th week of gestation, and cffDNA assays for fetal blood 
group antigen analysis have been validated from as early 
as 9 weeks gestational age (82). Many countries in Europe 
have implemented routine cffDNA methods to screen 
for fetal RHD (82-84). cffDNA assays for other red cell 
antigens including c, E, and K have also been developed (85).  
In the United States, cffDNA assays for fetal RHD 
genotyping are available through commercial reference lab 
testing, but there is limited availability of cffDNA testing 
for other red cell antigens (82). While cffDNA platforms 
eliminate the risks associated with amniocentesis, whether 
this testing reduces fetal morbidity and mortality compared 
to traditional serologic testing is a matter of debate.

Monitoring serial maternal antibody titers during 
pregnancy can provide insight into whether fetal red cell 
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antigens are providing an ongoing immune stimulus and 
are often used as part of the risk assessment for HDFN. 
The AABB recommends performing manual tube titers in 
saline with antihuman globulin using a 60-minute 37 ℃  
incubation (64). As the reproducibility of titers between 
laboratories varies widely, titers should be performed by the 
same laboratory throughout a patient’s pregnancy, preferably 
running previous maternal samples simultaneously for 
comparison (64,79). Using potentiators or other testing 
platforms such as gel is not currently recommended, 
as studies comparing titer methodologies support that 
these may result in higher titers than conventional tube  
testing (86). Titers are typically performed every 4 weeks 
if the titer is 1:8 or lower. Most centers consider a critical 
anti-D titer to be 1:8 to 1:32 or a 2-fold increase in titer 
level (79). Serial titers are most predictive of disease severity 
in the first affected pregnancy and are less informative in 
women with a previous history of HDFN (73). Additionally, 
critical titers for anti-K and other red cell antigens are less 
well defined. However, anti-K titers of 1:8 are often cited as 
critical given the association between anti-K and severe fetal 
anemia. Some institutions incorporate monocyte monolayer 
assays or antibody-dependent cellular cytotoxicity (ADCC) 
tests when assessing the immunogenicity of maternal 
antibodies. A recent publication by Koelewijn and 
colleagues showed that ADCC assay results more accurately 
predicted need for intrauterine or neonatal transfusion 
or phototherapy than antibody titers (87). In contrast, 
Slootweg et al. found that ADCC was not as informative 
as antibody titers at predicting the need for intrauterine 
or postnatal transfusion therapy in pregnancies affected by 
anti-K alloimmunization (88).

Before the last two decades, monitoring fetal anemia 
required invasive sampling to evaluate amniotic fluid 
bilirubin levels (89). The current standard of care for 
assessment of fetal anemia utilizes noninvasive Doppler 
ultrasound to measure fetal middle cerebral artery (MCA) 
peak systolic velocity (90). An increased peak systolic MCA 
velocity >1.5 times the median for gestational age predicts 
moderate to severe fetal anemia. When moderate to severe 
fetal anemia or evidence of hydrops is detected, fetal blood 
sampling and IUT are recommended (Figure 1) (79).  
Red cells for IUT should be group O, negative for the 
causative red cell antigen, and crossmatch compatible with 
maternal serum. Additionally, the red cell unit should be 
leukoreduced, irradiated, and hemoglobin S negative. Some 
standards recommend selecting fresh red cells to maximize 
red cell lifespan (64). However the age of red cells for IUT 

has not been widely studied. Accessing the umbilical vein 
through intrahepatic puncture or puncture of the placental 
cord insertion is considered safest (91). Intraperitoneal 
puncture can be performed if gestational age precludes 
access to the umbilical vein. IUT can be repeated to 
treat fetal anemia until the fetus reaches an appropriate 
gestational age for delivery.

IUT performed earlier than 20–22 weeks carries a 
significant risk of complication and fetal death (92). 
Intravenous immunoglobulin (IVIg) has been used to 
prevent or delay the onset of fetal anemia in women with 
high titer alloantibodies or a previous history of HDFN. A 
recent multicenter, retrospective study showed that early 
IVIg administration delayed the onset of fetal anemia and 
reduced the rates of fetal hydrops and neonatal exchange 
transfusion after delivery in a cohort of women with a 
history of severe HDFN (93). Other studies support that 
maternal IVIg administration reduces fetal mortality in 
HDFN (94,95). Early initiation of maternal IVIg therapy 
is associated with better outcomes. Expert consensus 
guidelines suggest initiating IVIg by 12–16 weeks 
gestational age in pregnancies at high risk of HDFN (91). 
Therapeutic plasmapheresis (TPE) has been used as an 
adjunct therapy in HDFN. TPE alone showed little benefit 
in HDFN, likely due to antibody rebound in the absence 
of concomitant immunomodulatory therapy (96). TPE 
in conjunction with IVIg has been reported to reduce the 
risk of fetal anemia and prevent or delay the requirement 
for IUT in case reports and small case series of patients 
with a previous history of HDFN (97-99). Given the 
paucity of data on TPE in HDFN, the role of TPE in the 
management of HDFN remains to be determined. Maternal 
plasma volume calculations for TPE or IVIg administration 
should be adjusted for increasing plasma volume throughout 
gestation.

Novel treatments targeting transplacental transfer of 
maternal IgG are being explored in HDFN. The neonatal 
Fc receptor (FcRn) transports maternal IgG across the 
placenta and aids in IgG recycling, which increases the 
half-life of IgG (100). Murine models have shown that 
FcRn blockade reduces the transplacental transfer of IgG 
and protects fetuses from thrombocytopenia in a model of 
neonatal alloimmune thrombocytopenia (101). M281 is a 
recombinant monoclonal antibody that blocks the binding 
of IgG to FcRn (102). Human studies have demonstrated 
that M281 reduces serum levels of IgG without a 
concurrent increase in infection (103). The UNITY trial 
(NCT03755128) is an ongoing multicenter clinical trial 
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Figure 1 Testing for and management of maternal alloimmunization in pregnancy. RhIG, Rh immune globulin; MCA, middle cerebral 
artery; MoM, multiple of the median; IUT, intrauterine transfusion.
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investigating whether M281 modulates the requirement 
for IUT in women at high risk of early-onset HDFN. 
It is hoped that such therapeutic approaches will reduce 
the morbidity and mortality of HDFN when fetal anemia 
occurs before IUT is feasible.

After delivery of a neonate affected by HDFN, bilirubin 
and hemoglobin are serially monitored. Phototherapy is 
used to treat hyperbilirubinemia and induces isomerization 
of bilirubin into soluble forms that can be excreted 
in the urine (104). Phototherapy initiation is guided 
by nomograms that take into account gestational age 
and bilirubin levels (105). Intensive phototherapy has 
significantly reduced the rates of neonatal exchange 
transfusions (106). Exchange transfusions remove red cells 
coated with maternal antibodies, reduce serum bilirubin 
levels, and alleviate fetal anemia. Exchange transfusion is 
indicated if there is evidence of bilirubin encephalopathy or 
if bilirubin levels remain in high-risk zones despite intensive 
phototherapy. In double volume exchange transfusions, 
up to 90% of the neonatal blood volume is replaced with 
reconstituted whole blood (64). Adverse outcomes of 
exchange transfusion include thrombocytopenia, infection, 
and hemodynamic instability. The risk of morbidity and 
mortality secondary to exchange transfusion increases in 
preterm neonates (107). 

Whether neonatal IVIg administration modulates the 
requirement for exchange transfusion in neonates affected 
by alloimmune HDFN is debated. A recent Cochrane 
review showed that neonates treated with IVIg for 
alloimmune HDFN underwent lower rates of exchange 
transfusion; however, the overall quality of evidence was 
judged to be low (108). Randomized controlled trials with a 
low risk of bias have not upheld these findings (109). There 
is also growing concern that neonatal administration of 
IVIg may increase risk of necrotizing enterocolitis (110). 
Additional studies are required to assess the safety and 
efficacy of postnatal IVIg for the treatment of HDFN.

Late anemia is common in neonates affected by HDFN. 
The etiologies of late anemia include ongoing immune-
mediated destruction of neonatal red cells by persistent 
circulating maternal antibodies and bone marrow 
suppression after IUT or exchange transfusion. The 
majority of infants affected by HDFN require at least one 
top-up transfusion (111). Neonates treated with IUT have 
higher rates of postnatal top-up transfusions, with studies 
reporting that greater than 75% of neonates require top-
up transfusions after IUT (111-113). The need for top-up 
transfusions typically falls within the first 3 months after 

delivery.
There have been several recent case reports suggesting 

that maternal immunoglobulin transmission through 
breast milk could contribute to prolonged postnatal 
courses of HDFN. In 2017, DeMoss and colleagues 
described a case of HDFN secondary to anti-K in which 
anti-K was detectable in maternal breastmilk (114). Li and 
Blaustein reported a case of prolonged HDFN purported 
to be due to passive transmission of maternal anti-D in 
breastmilk (115). A subsequent case series demonstrated 
that maternal red cell alloantibodies were present in the 
mothers’ breastmilk in three cases of prolonged neonatal 
HDFN (116). These reports merit larger, more rigorous 
studies to assess rates of detectable red cell alloantibodies in 
maternal breastmilk and to determine whether antibodies 
conveyed through breastmilk can bind neonatal red cells. 
Additional investigation is required to better understand 
the rates of gastrointestinal adsorption of maternal IgG, 
the contribution of breastmilk versus transplacental 
transmission of maternal immunoglobulin, and to exclude 
other factors that could contribute to prolonged neonatal 
anemia. While these case reports are intriguing, given the 
limited published data, no conclusions regarding whether 
breastfeeding is a risk factor for protracted anemia in 
HDFN can be made.

Prevention of maternal alloimmunization

The development of RhIG immunoprophylaxis in RhD 
negative women to prevent the formation of anti-D 
antibodies remains one of the most successful advancements 
in managing HDFN. RhIG is a polyclonal anti-D product 
manufactured from plasma obtained from pooled blood 
donors who have been sensitized to the RhD antigen. 
Recombinant forms of RhIG have been synthesized but are 
not yet in clinical use, as they have demonstrated variability 
in response and adverse effects, including hemolysis 
(117,118). ACOG recommends providing RhIG at 28 weeks, 
within 72 hours of delivery, and after occurrences that 
increase the risk of FMH, such as amniocentesis, pregnancy 
loss, and abdominal trauma (79). RhIG was initially used 
only for postpartum prophylaxis in RhD negative women; 
however, it was observed that approximately 2% of women 
developed anti-D before delivery (119). An antenatal dose of 
RhIG at 28–30 weeks is now considered standard of care, as 
greater than 90% of women who make anti-D secondary to 
fetal antigen exposure become sensitized after 28 weeks (79).  
A recent meta-analysis suggested that prenatal RhIG given 
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at 28 and 34 weeks is most effective at preventing RhD 
alloimmunization; however additional studies that include 
financial analyses are required to confirm the feasibility 
and applicability of these findings (120). Current RhIG 
regimens have reduced the rate of pregnancy-related RhD 
alloimmunization from 16% to less than 0.1% (121). 

RhIG should be provided to RhD negative women who 
have not been previously sensitized to RhD. If fetal blood 
typing via cffDNA testing confirms that the fetus is RHD 
negative or if the neonate is found to be RhD negative at 
birth, RhIG is not mandatory. Some regions now routinely 
use fetal RHD genotyping to guide RhIG prophylaxis in 
RhD negative women selectively; however, this practice 
is not in widespread use in the United States (122).  
Studies have corroborated that women with weak D types 
1, 2, and 3 are not at risk of RhD alloimmunization and, 
as such, do not require RhIG prophylaxis (123). Cost-
benefit assessments have indicated that performing RHD 
genotyping on pregnant women with weak D phenotypes 
prevents unnecessary RhIG administration and is cost-
effective. Many professional guidelines recommend this be 
implemented as routine practice (79,124,125). 

When an RhD negative mother delivers an RhD positive 
neonate, a maternal blood sample is required to estimate 
the amount of FMH and calculate the appropriate dose of 
RhIG. The rosette screen incubates the maternal specimen 
with reagent anti-D serum and group O, RhD positive 
indicator cells. The RhD positive indicator red cells form 
rosettes around RhD positive fetal cells and yield detectable 
positive results when 10 mL or more fetal cells are present 
in the maternal circulation (126). If the rosette screen is 
negative, a standard dose of 300 µg RhIG is given (64). If 
the rosette screen is positive, additional testing is necessary 
to quantify the FMH. The rosette test may yield a false 
positive in women with positive DAT or weak D variants.

The Kleihauer-Betke (KB) acid elution test relies on the 
principle that adult hemoglobin is sensitive to acid treatment 
while fetal hemoglobin is resistant. Thin smears of maternal 
blood are made and treated with acid, and the number of 
dark pink fetal cells are counted relative to the number of 
pale maternal cells. This ratio is then used to calculate the 
volume of FMH using a standard estimated maternal blood 
volume of 5,000 mL. One 300 µg vial of RhIG provides 
sufficient coverage to prevent alloimmunization for FMH 
volumes up to 15 mL of red cells or 30 mL of whole blood. 
The number of vials to be used is adjusted based on the 
calculated volume of FMH. Given that the KB test requires 
manual counting and can be influenced by variables such as 

thickness of the smear, there is inherent inaccuracy. As such, 
AABB recommends adding one additional vial to RhIG to 
all dose calculations (64). The KB test may overestimate the 
volume of FMH in women with elevated fetal hemoglobin 
levels due to hemoglobinopathies or hereditary persistence 
of fetal hemoglobin. More precise flow cytometric 
techniques measuring fetal hemoglobin and the RhD 
antigen have been developed to overcome the limitations of 
the KB test; however, these have yet to be implemented in 
many clinical practice (127). 

The standard estimate of 5,000 mL may underestimate 
the TBV in obese women, which increases the risk of 
inadequate RhIG dosing. As the rate of obesity grows 
worldwide, studies are needed to develop better tools 
for estimating blood volumes and mitigating the risk of 
underdosing of RhIG. Guidelines now recommend using 
maternal height and weight to calculate TBV for FMH 
quantification and RhIG calculations (128). Intravenous 
administration of RhIG should be considered in obese 
women because intramuscular adsorption may be reduced 
in persons with significant adiposity (129). An additional 
population trend that raises concern is the growing number 
of women who decline RhIG immunoprophylaxis due 
to general vaccine hesitancy (52). Whether rates of RhD 
HDFN will increase secondary to underdosing of RhIG in 
obese women and RhIG refusal remains to be determined.

There  a re  current ly  l imi ted  too l s  to  prevent 
alloimmunization secondary to fetal antigens in pregnancy 
outside of RhIG. Most alloimmunization prevention 
strategies in women of childbearing age focus on reducing 
the risk of sensitization in the setting of red cell transfusion. 
If a woman’s blood type is not known in the setting of 
trauma or life-threatening hemorrhage, it is recommended 
to transfuse group O, RhD negative red cells until a blood 
type is obtained. For transfusions when a patient’s red cell 
phenotype is known, some institutions routinely provide 
red cells matched for Kell antigens to women (130).  
More comprehensive matching strategies for C/c, E/e,  
and K in women of childbearing age have shown that 
the success of such protocols is hindered by movement 
between regions with and without matching regimens (70). 
Despite this, Oud and colleagues recently showed that 
C/c, E/e, and K matching guidelines could significantly 
reduce rates of transfusion-associated alloimmunization in 
women when implemented systematically (131). Women 
undergoing IUT for alloimmune-mediated HDFN are 
at high risk for further sensitization. Several studies have 
demonstrated that up to a quarter of women will form 
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new alloantibodies after IUT (132,133). Both fetal antigen 
exposure and exposure to antigens on transfused red cells 
pose a risk of maternal sensitization. Extended antigen 
matching for C/c, E/e, K, and Duffy, Kidd, and S antigens 
reduced the risk of alloimmunization after IUT by 60% 
in one study (134). Providing extended red cell matching 
in these settings requires a large inventory of phenotype 
or genotyped red cells. Building these inventories requires 
blood bank resources and diverse donor pools. Such efforts 
are currently limited by the lack of national transfusion 
and donor registries and have yet to be demonstrated cost-
effective. While significant progress has been made in 
reducing the rates and mortality of HDFN in middle and 
high-income countries in the last 50 years, additional efforts 
are required to decrease rates of non-RhD HDFN and to 
ensure that all women worldwide have access to routine 
immunoprophylaxis and adequately matched red cell 
transfusions.

OH

OH is the leading cause of maternal morbidity and 
mortality in the United States and worldwide. OH is 
challenging to diagnose because of inaccurate estimation of 
blood loss by health practitioners. OH can be categorized as 
antepartum or PPH.

Antepartum hemorrhage (APH)

OH can occur during the antepartum and postpartum 
periods. Common causes of APH include placenta previa, 
placental abruption, and localized vulvar, vaginal, or cervical 
bleeding. APH affects 3–5% of pregnancies worldwide. 
According to the Royal College of Obstetricians and 
Gynecologists (RCOG), there is no consistent definition 
of APH (135). There are many risk factors for APH, 
including a previous cesarean section, smoking, drug 
abuse, multiparity, and advanced maternal age (136,137). 
Despite understanding the APH risk factors, prevention or 
prediction of APH is difficult (135). The management of 
APH includes a single course of antenatal corticosteroids 
to women between 24 and 32 weeks of gestation if preterm 
birth is anticipated, immediate delivery if fetal compromise 
is suspected, and anticipation of PPH in women with  
APH (135). In addition, utilization of locally created MTPs  
for APH is suggested. There are currently limited available 
data on blood product utilization and outcomes in APH, 
and additional studies are required. 

PPH 

PPH is a leading cause of maternal death worldwide (138). 
According to ACOG, PPH is defined as a total blood loss 
of 1,000 mL or greater or blood loss associated with signs 
and symptoms of hypovolemia that occurs within 24 hours 
of delivery (139). In contrast, the WHO  defines PPH as 
blood loss of 500 mL or greater occurring within 24 hours 
of giving birth (140). ACOG has also recommended using 
a hematocrit decline of ≥10%, need for blood transfusion, 
and hemodynamic instability as other diagnostic criteria 
of PPH. PPH can be categorized as early PPH that occurs 
within 24 hours of delivery or late PPH that occurs after 
24 hours of delivery but within 6 weeks postpartum (141). 
The incidence of PPH ranges from 4% to 10.8% based 
on the evaluation criteria utilized (142). Uterine atony and 
trauma, including trauma secondary to iatrogenic factors 
such as obstetric lacerations, are the primary causes of  
PPH (142). Other causes of PPH include inherited or 
acquired coagulopathies, uterine inversion, retained 
products of conception, abnormal placentation, genital tract 
trauma, and antepartum-induced PPH. 

Similar to APH, the management of PPH requires a 
multidisciplinary hemorrhage protocol that is developed 
and implemented locally. The team should include 
anesthesiologists, obstetricians, and transfusion medicine 
physicians that work collaboratively to determine the 
underlying cause of bleeding, provide targeted treatments to 
control the bleeding, and supply blood transfusions. While 
risk factor stratification in PPH has not been demonstrated 
to be clinically useful, resources, including blood products 
and care, can be mobilized and escalated if at-risk women 
are identified early (143). 

In observational study of 66,369 peripartum women, 
1,540 women received a transfusion (144). As compared to 
women who were transfused with whole blood, pregnant 
women transfused with red cells had higher frequency 
of acute tubular necrosis. In contrast, in the same study, 
pulmonary edema was significantly increased in women 
who received only whole blood. Recommendations cannot 
be provided on the use of whole blood versus component 
therapy. There are currently no prospective randomized 
controlled clinical trials assessing the use of whole blood 
in women with OH. PPH is one of the most common 
indications for transfusions in sub-Saharan Africa and many 
low-resources regions (145). Access to a safe blood supply, 
either in the form of whole blood or component therapy, is 
mandatory to support women’s health worldwide.  
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MTPs

A significant complication of PPH is acute coagulopathy 
secondary to massive hemorrhage. MTPs in this population 
are based on those employed in non-obstetric patients. For 
patients undergoing massive transfusion for bleeding at 
rates that preclude the use of laboratory parameters to guide 
component therapy, many protocols utilize a balanced 1:1:1 
ratio of plasma, platelets, and red cells to approximate whole 
blood. Some studies demonstrated a reduction in mortality 
in civilian and military trauma settings using a 1:1:1 ratio 
of blood products (146). The PROPPR randomized 
controlled trial compared utilization of a 1:1:1 versus a 
1:1:2 blood product ratio in patients with trauma and major  
bleeding (147). There was no significant difference in 
mortality at 24 hours or 30 days in patients who received 
resuscitation with either a 1:1:1 or 1:1:2 blood product ratio; 
however, there were more deaths due to exsanguination 
in the 1:1:2 group. It is important to note, however, that 
these studies did not include patients with OH, and there 
is a lack of literature on optimal blood product ratios in 
pregnant women. Given this, there are no well-formulated 
recommendations on the appropriate ratio of blood 
products during obstetric-specific MTPs.

Cell salvage

Cell salvage use in the massively bleeding obstetric patient 
is increasing. While the use of cell salvage in pregnant 
women was initially controversial, improved filter systems 
that reduce the risk of amniotic fluid embolism in cell 
salvage instruments have enabled greater use of cell salvage 
in OH (148). The cell SALVage in Obstetrics (SALVO) 
study demonstrated that cell salvage use reduced the need 
for blood transfusions but was associated with increased 
exposure to fetal blood by the mother (149). If cell salvage 
is employed, the patient should undergo screening with a 
KB test to ensure adequate dosing of RhIG (150). Several 
guidelines recommend the use of cell salvage in women at 
high risk of PPH (150,151).

Antifibrinolytic therapy 

Tranexamic acid (TXA) is an antifibrinolytic lysine 
analogue that competitively inhibits plasminogen activation. 
Antifibrinolytics are frequently utilized in the management 
of menorrhagia (152). As alterations in fibrinolysis have been 
implicated in the pathogenesis of PPH (153), there have 

been a number of studies exploring the use of TXA to treat 
and prevent PPH over the past several decades. The World 
Maternal Antifibrinolytic (WOMAN) trial is a seminal 
clinical trial that assessed the effect of TXA on PPH (154).  
In the WOMAN trial, 20,060 women with PPH at 193 
hospitals in 21 different countries were randomized to 
receive either 1 to 2 grams of IV TXA or a placebo. Death 
due to bleeding was statistically significantly reduced 
in participants randomized to TXA. However, the rates 
of transfusion, hysterectomy, and surgical interventions 
were no different between the treatment groups. Adverse 
outcomes, including rates of venous thromboembolism 
and renal dysfunction, were not increased in the TXA arm. 
Notably, the benefit of TXA at reducing PPH was most 
apparent when treatment was initiated within 1–3 hours 
of delivery. A subsequent Cochrane review also supported 
the use of TXA in treating PPH (155). In response to the 
publication of the WOMAN trial, the WHO  updated 
guidelines to strongly recommend early use of TXA in PPH 
in women delivering both vaginally as well as via Cesarean 
section (156). 

As most study sites in the WOMAN trial were in low-
income areas, questions regarding whether the results are 
generalizable to more well-resourced countries have been 
raised (157). Sudhof and colleagues (158) performed a cost-
effectiveness analysis which supported that TXA is likely to 
be cost-saving even in the United States. Given the positive 
benefit to risk ratio, most obstetric guidelines recommend 
the use of TXA in combination with surgical and medical 
measures to treat PPH (151,156).

The Tranexamic Acid for Preventing Postpartum 
Hemorrhage Following a Vaginal Delivery (TRAAP) trial 
was a large, multicenter randomized, controlled trial that 
examined whether 1 gram of TXA provided concomitantly 
with prophylactic oxytocin reduced PPH (159). Over 4,000 
study participants were enrolled in the trial. PPH occurred 
in 8.1% of women randomized to the TXA group compared 
to 9.8% of the placebo. This difference did not reach 
statistical significance; however a subgroup analysis showed 
that for women with operative vaginal deliveries the rates 
of PPH were lower in the TXA arm. More recently, the 
TRAAP2 trial assessed the efficacy of TXA at preventing 
PPH in women undergoing cesarean deliveries (160). 
Similar to the TRAAP study, slightly over 4,000 women 
undergoing cesarean deliveries were randomized to receive 
placebo or 1 gram of IV TXA. PPH, defined as receiving a 
red cell transfusion within 2 days of delivery or calculated 
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estimated blood loss greater than 1,000 mL, occurred in 
26.7% of the TXA group and 31.6% of the placebo group 
(P=0.003). There was no significant difference, however, 
in provider-assessed clinically significant PPH. Additional 
trials utilizing clinically relevant endpoints are required 
to understand the role of antifibrinolytics for prophylaxis 
rather than treatment of PPH. 

Populations with unique transfusion requirements 
in pregnancy

Transfusion therapy for SCD in pregnancy

SCD is an inherited hemoglobinopathy defined by the 
presence of biallelic abnormal β-globin genes (hemoglobin 
SS, SC, or Sβ thalassemia). Due to improvements in the 
diagnosis, treatment, and care of patients with SCD, 
more patients with SCD are surviving to reproductive 
age. Women with SCD  have a higher risk of pregnancy-
associated morbidity and obstetric complications such 
as PEC, venothromboembolism, placental abruption, 
intrauterine growth restriction, and preterm birth (161,162). 
Both maternal and perinatal mortality rates are significantly 
higher in SCD as compared to women without SCD 
(163,164). Pregnant women with SCD are also more likely 
to experience SCD complications, including acute chest 
syndrome, veno-occlusive episodes (VOE), and pulmonary 
hypertension (165).

Animal studies have demonstrated hydroxyurea to be 
teratogenic (166). As such, there are limited options for 
disease-modifying therapy aside from red cell transfusions in 
pregnant women with SCD. For patients receiving antenatal 
chronic transfusion therapy, for primary or secondary stroke 
prophylaxis, for example, it is recommended that transfusion 
therapy continues during pregnancy. Whether chronic 
transfusion therapy should be initiated prophylactically 
in all pregnant women with SCD is controversial and 
remains an area of active investigation (167). There is a 
single published randomized trial comparing scheduled, 
prophylactic to on-demand transfusion therapy (168). 
Prophylactic transfusion significantly reduced the 
incidence of VOE during pregnancy, though there was no 
difference in fetal outcomes. A recent meta-analysis of 12 
observational studies of chronic transfusion in pregnant 
women with SCD showed a reduction in pain episodes, 
pulmonary complications, pulmonary embolism, and 
maternal mortality; however, the overall quality of evidence 
was judged to be low (169). Current evidence supports 

either prophylactic transfusion or transfusion on demand 
for anemia or complications in pregnant women with  
SCD (169). Additional well-designed, large trials are 
required. 

Individualized transfusion plans, including transfusion 
method, indications, and goals, should be established early 
in pregnancy for all women with SCD (170). As many 
patients with SCD receive red cell transfusions at multiple 
institutions, it is important to gather transfusion and red 
cell antibody histories from all locations where a patient 
has been previously transfused, particularly as many red 
cell alloantibodies are evanescent (171). Prior to the first 
transfusion, an extended red cell antigen profile for C/c, E/e, 
K/k, Jka/Jkb, Fya/Fyb, M/N, and S/s should be obtained (169). 
Red cell transfusions should be matched for C, E, and K 
antigens to reduce rates of red cell alloimmunization (169). 
For patients with extensive red cell alloimmunization or a 
history of delayed hemolytic transfusion reactions, extended 
antigen matching should be considered.  

The potential benefits of red cell transfusion during 
pregnancy in patients with SCD must be weighed against 
the risks of transfusion-transmitted infections, iron 
overload, red cell alloimmunization, and transfusion 
reactions. Red cell alloimmunization can lead to HDFN  
and increases the risk of delayed hemolytic transfusion 
reactions, a potential source of severe, life-threatening 
anemia in patients with SCD. As part of a multidisciplinary 
care team, transfusion medicine specialists can play critical 
roles in the management of pregnancy in SCD by assessing 
potential adverse risks of transfusion and guiding the 
selection of red cells.

Management of VWD in pregnancy

VWD is the most common inherited bleeding disorder with 
a prevalence of approximately 1% (172,173). Type 1 and 
type 3 VWD are characterized by quantitative deficiencies 
in von Willebrand factor (VWF), while type 2 VWD, 
which encompasses types 2A, 2B, 2N, and 2M, results from 
qualitative defects in VWF. The levels of VWF and factor 
VIII physiologically increase throughout pregnancy as 
part of the body’s hemostatic shift toward procoagulation 
in preparation for delivery-related blood loss (174,175). 
VWF  levels also increase in pregnant women with types 
1 and 2 VWD, often peaking at levels 200–300% higher 
than baseline (176,177). It is important to note, however, 
that while VWF antigen levels increase in pregnant patients 
with type 2 VWD, functional VWF activity remains low. In 
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pregnant women with severe deficiencies in VWF (type 3 
VWD), VWF and factor VIII levels do not achieve similar 
increases (178). 

While the majority of patients with VWD normalize 
VWF levels and activity peripartum, women with VWD 
suffer higher rates of both antepartum bleeding as well as 
PPH (179). Women with VWD are also at increased risk of 
delayed PPH, occurring several weeks after delivery when 
VWF levels decline to baseline. Expert consensus guidelines 
recommend measurement of VWF and factor VIII before 
antenatal procedures such as chorionic villus sampling and 
amniocentesis and for all women with VWD in the third 
trimester (180-182). Despite these recommendations, a 
recent study showed that only one-third of pregnant women 
with VWD in the United States have third-trimester 
VWF measurements, and women who did not undergo 
VWF monitoring had significantly higher rates of PPH 
as compared to those with recorded third-trimester VWF 
levels (183). 

There are limited controlled trials assessing factor 
replacement in pregnant women with VWD. Most 
guidelines recommend the use of desmopressin or VWF 
concentrate when VWF levels measure <50 IU/dL 
with bleeding, at delivery, or before providing neuraxial 
anesthesia (180-182). Desmopressin stimulates endothelial 
cells to synthesize and release VWF, but potential adverse 
effects include seizures, hyponatremia, and hypotension. 
Desmopressin should be utilized only for patients who 
have previously shown a response with a desmopressin 
challenge, and some guidelines recommend limiting use to 
the first and second trimesters. VWF is available in both 
recombinant and plasma-derived formulations, which are 
typically dosed at delivery and for several days postpartum. 
A single small study suggests that recombinant and plasma-
derived VWF have similar efficacy in the prevention and 
treatment of PPH in VWD; however, additional larger 
controlled trials are required (184).

Recent studies have revealed that patients with VWD 
have higher rates of PPH even when receiving therapy 
to maintain VWF >50 IU/dL (185,186). Accordingly, 
some experts now recommend treatment for VWF levels  
<80 IU/dL in pregnant women with VWD (178). There 
are several ongoing clinical trials examining rates of PPH 
when higher levels of VWF are maintained in pregnant 
women (178,187). The results of these investigations and 
implementation of universal VWF testing in the third 
trimester are expected to improve and optimize care for 
women with VWD.

Other inherited bleeding disorders in pregnancy

Hemophilia A and B are X-linked hereditary bleeding 
disorders due to deficiencies of factors VIII and IX, 
respectively. Female hemophilia carriers typically have 
low baseline factor levels, approximately 50% of normal; 
however, some hemophilia carriers with extreme lyonization 
have unexpectedly low factor levels and more severe 
bleeding diathesis (188). Factor VIII levels physiologically 
increase during pregnancy and often normalize in 
hemophilia A carriers. Factor IX does not increase 
significantly in pregnancy. While large studies examining 
bleeding risks in hemophilia carriers during pregnancy 
are lacking, observational cohort studies support that 
hemophilia carriers are at increased risk for both primary 
and secondary PPH (189,190). Whether hemophilia carriers 
have higher rates of miscarriage and antepartum bleeding 
requires further investigation.  

Factor levels should be monitored at baseline and at 
28 and 34 weeks gestation and before invasive procedures 
during pregnancy in hemophilia carriers. Most guidelines 
recommend factor replacement at delivery when factor 
VIII or IX levels are below 50 IU/dL in the third trimester 
(178,191,192). Factor VIII and IX concentrates are 
considered first-line agents for peripartum prophylaxis in 
hemophilia carriers with low factor levels. Desmopressin 
has been reported as an alternative treatment in hemophilia 
A carriers, though concerns have been raised regarding the 
safety of desmopressin use during the third trimester (193).  
Despite peripartum factor replacement to maintain levels 
≥50 IU/dL, as noted above, some studies suggest that 
hemophilia A carriers remain at higher risk of PPH, likely 
because physiological factor VIII levels are 100–200% 
higher than baseline in normal women at the time of 
delivery (190,194). An ongoing clinical trial investigates 
whether a factor VIII and IX cutoff value of 80 IU/dL 
for treatment with factor concentrates reduces PPH in 
hemophilia carriers (Prides study; NTR6947).

Women with rare inherited bleeding disorders, including 
deficiencies of factor II, V, VII, X, XI, XIII, and congenital 
fibrinogen disorders, are also at higher risk of bleeding and 
pregnancy complications. While factors VII, X, XII, and 
fibrinogen increase during pregnancy, factor XIII levels 
decrease (195). Women with inherited factor XIII and 
fibrinogen deficiencies have higher rates of miscarriage 
and placental abnormalities and require factor replacement 
early in pregnancy to prevent pregnancy loss (196,197). 
Compared to hemophilia carriers and women with 
VWD, antepartum bleeding is more common in patients 
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with factor V and X deficiencies. There are limited data 
regarding factor replacement and care of women with rare 
inherited bleeding disorders during pregnancy and delivery, 
as publications are primarily limited to case reports and 
small case series. When available, factor concentrates, and 
prothrombin complex concentrates are preferred over FFP 
or cryoprecipitate (Table 1). Most guidelines recommend 
replacement prophylaxis at delivery and for 2–4 days 
postpartum; however, additional, well-designed studies 
are required to better understand optimal factor levels and 
dosing schedules.    

Conclusions

While advances such as RhIG, IUT techniques, and 

phototherapy have reduced the rates of adverse outcomes 
secondary to RhD and ABO HDFN over the last 50 years, 
many of these tools are not widely available in low-income 
countries. Alloimmunization to other red cell antigens 
continues to pose challenges, and additional technologies 
must be developed to mitigate alloimmunization secondary 
to transfusion and pregnancy. Deaths secondary to 
antepartum and PPH remain high worldwide. Efforts to 
expand access to a safe blood supply and adjunct therapies, 
including iron and antifibrinolytics, are mandatory to 
eliminate preventable maternal deaths. The transfusion 
medicine specialist can provide a critical role in caring for 
the hematologic conditions of pregnancy and advancing 
efforts to support equal access to lifesaving transfusion 
therapy globally.

Table 1 Coagulation factor replacement agents that are available and have been reported to treat rare inherited bleeding disorders in pregnant 
and postpartum women 

Bleeding disorders Factor replacement agents Adjunct agents to prevent or treat bleeding

Fibrinogen disorders Plasma-derived fibrinogen concentrates Antifibrinolytics

Cryoprecipitate

Factor II deficiency Prothrombin complex concentrates Antifibrinolytics

FFP

Factor V deficiency FFP Antifibrinolytics

Factor VII deficiency Recombinant factor VIIa Antifibrinolytics

Prothrombin complex concentrates

FFP

Hemophilia A carrier (factor VIII deficiency) Recombinant factor VIII Antifibrinolytics

Plasma-derived factor VIII concentrates Desmopressin

Hemophilia B carrier (factor IX deficiency) Recombinant factor IX Antifibrinolytics

Plasma-derived factor IX concentrates

Factor X deficiency Prothrombin complex concentrate Antifibrinolytics

FFP

Factor XI deficiency Plasma-derived factor XI concentrates* Antifibrinolytics

FFP

Factor XIII deficiency Plasma-derived factor XIII concentrates Antifibrinolytics

Cryoprecipitate

FFP

When available, factor concentrates and recombinant factors are generally preferred over cryoprecipitate and FFP, given the reduced 
risk of transfusion reactions and transfusion transmitted infections. Antifibrinolytics such as tranexamic acid can be used as adjuncts to 
reduce postpartum hemorrhage. *, not available in the United States. FFP, fresh frozen plasma.
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